Skew Cyclic Codes over $F_q + uF_q + \ldots + u^{k-1}F_q$

Jing Li, Xiuli Li

Abstract—This paper studies a special class of linear codes, called skew cyclic codes, over the ring $R = F_q + uF_q + ... + u^{k-1}F_q$, where q is a prime power. A Gray map ϕ from R to F_q and a Gray map ϕ' from R^n to F^n_q are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ϕ' and Θ are cyclic codes over F_q , and they still keep the dual relation.

Keywords-Skew cyclic code, gray map, automophism, cyclic code.

I. INTRODUCTION

In recent years, the study of coding theory on finite chain has attracted the attention of many scholars. Reference [1] shows cyclic codes of odd length and self-dual codes over ring $F_2 + uF_2$. The structure and weight of the cyclic code of arbitrary length over $Z_2 + uZ_2$ and $Z_2 + uZ_2 + u^2Z_2$ has been given in [2]. Reference [3] shows skew codes over $F_4 + vF_4(v^2 = v)$, and shows the relationship between the cyclic codes and the cyclic codes over the ring $F_2 + vF_2$ and F_4 , by defining the Gray map.

As a finite ring in more general sense, the research of the structure of cyclic codes, cyclic codes and quasi cyclic codes over the ring $R = F_q + uF_q + \dots + u^{k-1}F_q$ has aroused the interest of many people. Reference [4] provides the structure and ideal over the ring $F_q + uF_q + \dots + u^{k-1}F_q$ length $p^s n$ where p, n are coprime, and obtains the direct sum and spectral representation (MS polynomial) of the cyclic codes over the ring by using the discrete Fourier transform and inverse isomorphism. According to [5], the structure and the number of codewords of all $(u\lambda - 1)$ - cyclic codes with length p^{e} over finite chain ring $F_{q} + uF_{q} + \dots + u^{k-1}F_{q}$ are generated by finite ring theory. Reference [6] studies the Gray image of constacyclic codes over finite chain rings; it is proved that the Gray image of arbitrary cyclic codes over finite chain rings is equivalent to quasi cyclic codes over finite fields. Reference [7] shows quasi cyclic codes over the ring $F_p + uF_p + \dots + u^{k-1}F_p$, and establishes the relation between cyclic codes over $F_p + uF_p + \dots + u^{k-1}F_p$ and quasi cyclic codes over F_p . By using the torsion codes of arbitrary $(1 + \lambda u)$ -length constacyclic codes over $R = F_{p^m}[u] / \langle u^k \rangle$, the bound of homogeneous distance

of these constacyclic codes is obtained in [8], and a new Gray map is defined to establish the relation between the constacyclic codes over R and the linear codes over F_{p^m} , then

some optimal linear codes are constructed.

This paper will study the properties of skew cyclic codes over $R = F_q + uF_q + \dots + u^{k-1}F_q$ where q is prime power.

II. LARGE BASIC KNOWLEDGE

 $R = F_q + uF_q + \dots + u^{k-1}F_q \text{ is a finite ring where } q = p^m, p \text{ is arbitrary prime, and } m \text{ is positive integer. Any element } c \text{ in the ring } R \text{ can be represented uniquely by } c = r_0(c) + ur_1(c) + \dots + u^{k-1}r_{k-1}(c) \text{ where } r_i(c) \in F_q, 0 \le i \le k-1.$

A subset C of the ring R is called a code over R, in which the element is called a codeword. And a linear cyclic code length n over R can be considered as a R-submodule of R^n .

There are two forms to express these elements in *C* the first one is $c = (c_0, c_1, \dots, c_{n-1}) \in C$ in vector form, another one is

 $f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C$ in functional form.

Define the new Grey map ϕ as follows:

$$\phi: R \to F_q^{\dagger}$$

$$\phi(r_0 + ur_1 + \dots + u^{k-1}r_{k-1}) = (r_0, r_0 + r_1, r_0 + r_1 + r_2, \dots, r_0 + r_1 + \dots + r_{k-1})$$

Thus, there is another Grey map ϕ' which is derived as:

$$\phi': R^n \to F_q^k$$

$$\phi'(c_0, c_1, \dots, c_{n-1}) = (\phi(c_0), \phi(c_1), \dots, \phi(c_{n-1}))$$

$$= (r_{0,0}, r_{0,0} + r_{1,0}, r_{0,0} + r_{1,0} + r_{2,0}, \dots, r_{0,0} + r_{1,0} + \dots + r_{k-1,0},$$

$$r_{0,1}, r_{0,1} + r_{1,1}, r_{0,1} + r_{1,1} + r_{2,1}, \dots, r_{0,1} + r_{1,1} + \dots + r_{k-1,1},$$

$$\dots \dots$$

$$r_{0,n-1}, r_{0,n-1} + r_{1,n-1}, r_{0,n-1} + r_{1,n-1} + r_{2,n-1}, \dots, r_{0,n-1} + r_{1,n-1} + \dots + r_{k-1,n-1})$$

The Hamming weight of codeword $c = (c_0, c_1, \dots, c_{n-1})$ in

R is defined as
$$w_H(c) = \sum_{i=0}^{n-1} w_H(c_i)$$
, where

$$w_{H}(c_{i}) = \begin{cases} 1, c_{i} \neq 0\\ 0, c_{i} = 0 \end{cases}, \quad 0 \leq i \leq n-1.$$

The Hamming distance of code C is defined as

Jing Li is with the School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (corresponding author, phone: 18765279986; e-mail: 672092400@qq.com).

Xiuli Li is with Qingdao University of Science and Technology, Qingdao, China (e-mail:lixiuli2004@tom.com).

$$d_{H}(C) = \min d_{H}(c,c'),$$

where $\forall c, c' \in C$, $c \neq c'$, $d_H(c, c') = w_H(c - c')$.

We define the Lee weight of codeword $c = (c_0, c_1, \dots, c_{n-1})$ in *R* as $w_L(c) = \sum_{i=1}^{n-1} w_H(\phi(c_i))$, where $w_H(\phi(c_i))$ is Hamming

weight of $\phi(c_i)$. We also define the Lee distance between cand c' as $d_L(C) = \min d_L(c,c')$, where $\forall c, c' \in C$, $c \neq c'$, $d_L(c,c') = w_L(c-c')$.

Obviously, the Gray map ϕ' is an isometric mapping from R^n (Lee distance) to F_q^{kn} (Hamming distance).

Theorem 1. If C is [n, M] linear code over R and $d_L(C) = d$, , then $\phi'(C)$ is [nk, M] linear code over F_q and $d_H(\phi'(C)) = d$.

Proof. $d_L(C) = d_H(\phi'(C))$ is known. It can be seen easily that the length of $\phi'(C)$ is nk. Next, it needs to prove that ϕ' keeps linear operation.

Let $c = (c_0, c_1, \dots, c_{n-1})$, $e = (e_0, e_1, \dots, e_{n-1}) \in \mathbb{R}^n$, when $0 \le i < n-1$, there are

$$c_i = r_0(c_i) + ur_1(c_i) + \dots + u^{k-1}r_{k-1}(c_i)$$
$$e_i = r_0(e_i) + ur_1(e_i) + \dots + u^{k-1}r_{k-1}(e_i)$$

Thus,

$$\begin{split} \phi'(c+e) \\ &= \left(\phi'(c_{0}+e_{0}), \phi'(c_{1}+e_{1}), \cdots, \phi'(c_{n-1}+e_{n-1})\right) \\ &= \left(r_{0}(c_{0}+e_{0}), r_{0}(c_{0}+e_{0})+r_{1}(c_{0}+e_{0}), \cdots, r_{0}(c_{0}+e_{0})+r_{1}(c_{0}+e_{0})+\cdots+r_{k-1}(c_{0}+e_{0}), \cdots, r_{0}(c_{n-1}+e_{n-1}), r_{0}(c_{n-1}+e_{n-1})+r_{1}(c_{n-1}+e_{n-1}), \cdots, r_{0}(c_{n-1}+e_{n-1})+r_{1}(c_{n-1}+e_{n-1})+\cdots+r_{k-1}(c_{n-1}+e_{n-1})\right) \\ &= \left(r_{0}(c_{0}), r_{0}(c_{0})+r_{1}(c_{0}), \cdots, r_{0}(c_{0})+r_{1}(c_{0})+\cdots+r_{k}(c_{0}), \cdots \right) \\ &+ \left(r_{0}(e_{0}), r_{0}(e_{0})+r_{1}(e_{0}), \cdots, r_{0}(e_{n-1})+r_{1}(e_{n-1})+\cdots+r_{k}(e_{n-1})\right) \\ &+ \left(r_{0}(e_{n-1}), r_{0}(e_{n-1})+r_{1}(e_{n-1}), \cdots, r_{0}(e_{n-1})+r_{1}(e_{n-1})+\cdots+r_{k}(e_{n-1})\right) \\ &= \phi'(c_{0}, c_{1}, \cdots, c_{n-1}) + \phi'(e_{0}, e_{1}, \cdots, e_{n-1}) \\ &= \phi'(c) + \phi'(e) \end{split}$$

If $\lambda \in F_a$, $c \in R$, then

$$\phi'(\lambda c) = \phi'(\lambda c_0, \lambda c_1, \cdots, \lambda c_{n-1}) = \lambda \phi'(c_0, c_1, \cdots, c_{n-1}) = \lambda \phi'(c)$$

So, ϕ' keeps linear operation and ϕ' is a bijection. Thus, the number of codewords in C and $\phi'(C)$ is the same. This

gives the proof.

Now, define a ring automorphism θ as follows

$$\theta(c) = \theta(r_0 + ur_1 + \dots + u^{k-1}r_{k-1})$$

= $r_0 + u^{k-1}r_1 + u^{k-2}r_2 + \dots + u^2r_{k-2} + ur_{k-1}$

for all $c = r_0(c) + ur_1(c) + \dots + u^{k-1}r_{k-1}(c)$ in R. One can verify that θ is an automorphism and $\theta^2(a) = a$ for any $a \in R$. This implies that θ is an automorphism with order 2.

A ring like

$$R[x,\theta] = \left\{ a_0 + a_1 x + \dots + a_{n-1} x^{n-1} : a_i \in R, 0 \le i \le n-1, n \in N \right\}$$

is called skew polynomial ring. For a given automorphism θ of R, the set $R[x,\theta]$ of formal polynomials forms a ring under usual addition of polynomial and where multiplication is defined using the rule $(ax^i)*(bx^j) = a\theta^i(b)x^{i+j}$.

Let $f(x) = \sum_{i=0}^{s} f_i x^i$, $g(x) = \sum_{i=0}^{t} g_i x^i$, where f_i and g_i are units of R, then there exist unique polynomials u(x) and v(x) of $R[x,\theta]$ which make g(x) = u(x) * f(x) + v(x)establish where v(x) = 0 or $\deg(v(x)) < \deg(f(x))$. When v(x) = 0, f(x) is called the right divisor of g(x); that is, f(x) right divides g(x) exactly.

Let $R_n = \frac{R[x,\theta]}{(x^n-1)}$, define multiplication from left as

$$r(x)*(f(x)+(x^{n}-1))=r(x)*f(x)+(x^{n}-1),$$

where $f(x) + (x^n - 1)$ is element of R_n , and $r(x) \in R[x, \theta]$. For any $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n)$ in R^n , the inner product is defined as $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Let C be linear code over R, the dual code of C is $C^{\perp} = \{x \in R^n | \langle x, c \rangle = 0, \forall c \in C\}$. A code C is called self-dual code if $C = C^{\perp}$.

Definition 1. A subset C of R^n is called a quasi-cyclic code of length N (N = ns) if C satisfies the following conditions: (1) C is a R-submodule of R^n ; (2) If

$$c = (c_{0,0}, c_{0,1}, \dots, c_{0,n-1}, | c_{1,0}, c_{1,1}, \dots, c_{1,n-1}, \dots, | c_{s-1,0}, c_{s-1,1}, \dots, c_{s-1,n-1}) \in C$$

then

$$\varphi_n(c) = (c_{s-1,0}, c_{s-1,1}, \cdots, c_{s-1,n-1}, | c_{0,0}, c_{0,1}, \cdots, c_{0,n-1}, |$$
$$\cdots, | c_{s-2,0}, c_{s-2,1}, \cdots, c_{s-2,n-1}) \in C$$

Particularly, C is cyclic code when n=1.

Definition 2. A subset C of R^n is called a skew cyclic code of length n if C satisfies the following conditions:

(1) *C* is a R^n -submodule of R^n ; (2) If $c = (c_0, c_1, \dots, c_{-n}) \in C$ then

If
$$\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1, \cdots, \mathcal{C}_{n-1}) \in \mathbb{C}$$
, then

$$\varphi_{\theta}(c) = (\theta(c_{n-1}), \theta(c_0), \cdots, \theta(c_{n-2})) \in C.$$

III. CONSTRUCTION

Theorem 1. The center of $R[x,\theta]$ is $F_q[x^2]$.

Proof. The subring of the elements of R that are fixed by θ is F_q . Since θ is an automorphism with order 2, for any $a \in R$, there is $(x^{2i}) * a = \theta^{2i} (a) x^{2i} = (\theta^2)^i (a) x^{2i} = a x^{2i}$. Thus x^{2i} is in the center of $R[x, \theta]$. This implies that any $f(x) = \varepsilon_0 + \varepsilon_1 x^2 + \varepsilon_2 x^4 + \dots + \varepsilon_s x^{2s}$ is a center element with $\varepsilon_i \in F_q$, $0 \le i \le s$.

Conversely, let $Z(R[x,\theta])$ be the center of R, so f(x)*a = a*f(x) for any $f(x) \in Z(R[x,\theta])$ and any $a \in R$. Since $f(x) = \varepsilon_0 + \varepsilon_1 x + \varepsilon_2 x^2 + \dots + \varepsilon_n x^n$ for $\varepsilon_i \in F_q$, $0 \le i \le n$, there are

$$f(x) * a = a * f(x),$$

$$(\varepsilon_0 + \varepsilon_1 x + \varepsilon_2 x^2 + \dots + \varepsilon_n x^n) * a = a * (\varepsilon_0 + \varepsilon_1 x + \varepsilon_2 x^2 + \dots + \varepsilon_n x^n),$$

$$a\varepsilon_0 + \varepsilon_1 \theta(a) x + \varepsilon_2 \theta^2(a) x^2 + \dots + \varepsilon_n \theta^n(a) x^n$$

$$= a\varepsilon_0 + a\varepsilon_1 x + a\varepsilon_2 x^2 + \dots + a\varepsilon_n x^n$$

It is known that $|\langle \theta \rangle| = 2$, so there are $\varepsilon_i x^i * a = a\varepsilon_i x^i$ when *i* is even, and $\varepsilon_i x^i * a \neq a\varepsilon_i x^i$ when *i* is odd. Hence, any $f(x) = \varepsilon_0 + \varepsilon_1 x + \varepsilon_2 x^2 + \dots + \varepsilon_n x^n$ of $Z(R[x,\theta])$ only exists even power term of *x*, that is $f(x) = \varepsilon_0 + \varepsilon_2 x^2 + \varepsilon_4 x^4 + \dots + \varepsilon_{2s} x^{2s}$. Thus, any element of center is in $F_q[x^2]$. This gives the proof.

Theorem 2. Let $R_n = \frac{R[x,\theta]}{(x^n-1)}$, a code *C* in R_n is a skew cyclic code if and only if *C* is a left $R[x,\theta]$ -submodule

of the left $R[x,\theta]$ module R_n . **Proof.** Suppose C is θ -cyclic code, so $(\theta(c_{n-1}), \theta(c_0), \dots, \theta(c_{n-2})) \in C$ for $c = (c_0, c_1, \dots, c_{n-1}) \in C$, that is for any $f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C$, there is $x * f(x) \in C$. Next, $g(x) * f(x) \in C$ for any $g(x) \in R[x,\theta]$ from linear property, then C is a left $R[x,\theta]$ -submodule of the left $R[x,\theta]$ module R_n .

Now suppose that C is a left $R[x,\theta]$ -submodule of the left $R[x,\theta]$ module R_n , so

$$x * f(x) = \left(\theta(c_{n-1}), \theta(c_0), \cdots, \theta(c_{n-2})\right) \in C$$

for any $f(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C$, this implies that

$$(\theta(c_{n-1}), \theta(c_0), \cdots, \theta(c_{n-2})) \in C$$

for any $c = (c_0, c_1, \dots, c_{n-1}) \in C$. Thus, C is θ -cyclic code. This gives the proof.

Theorem 3. Let *C* be a θ -cyclic code in $R_n = \frac{R[x,\theta]}{x^n-1}$ and let f(x) be a polynomial in *C* of minimal degree. If f(x) is monic polynomial, then $C = \langle f(x) \rangle$ where f(x) is a right divisior of $x^n - 1$.

Proof. Suppose g(x) = u(x) * f(x) + v(x) for any $g(x) \in C$ where v(x) = 0 or $\deg(v(x)) < \deg(f(x))$. Since $f(x) \in C$, then $v(x) = g(x) - u(x) * f(x) \in C$. Also since f(x) is polynomial in C of minimal degree, we have v(x) = 0, this implies that $C = \langle f(x) \rangle$.

Since the θ -cyclic codes over R_n and its left $R[x,\theta]$ -submodule are corresponding one by one, thus f(x) is a right divisior of $x^n - 1$. This gives the proof.

Theorem 4. Let *n* be even. If codes *C* over *R* are θ -cyclic codes, so is its dual codes C^{\perp} .

Proof. Let $c = (c_0, c_1, \dots, c_{n-1}) \in C^{\perp}$, $a = (a_0, a_1, \dots, a_{n-1}) \in C$, so $\langle c, a \rangle = 0$ for any c and a. Since C is θ -cyclic codes, then $(\theta(a_{n-1}), \theta(a_0), \dots, \theta(a_{n-2})) \in C$. Thus,

$$\left(\theta^{n-1}(a_1),\theta^{n-1}(a_2),\cdots,\theta^{n-1}(a_0)\right) \in C$$
.

Therefore,

by

$$c_{0}\theta^{n-1}(a_{1})+c_{1}\theta^{n-1}(a_{2})+\dots+c_{n-1}\theta^{n-1}(a_{0})=0$$

$$\theta(c_{0})\theta^{n}(a_{1})+\theta(c_{1})\theta^{n}(a_{2})+\dots+\theta(c_{n-1})\theta^{n}(a_{0})=0$$

It is known *n* is even, then have $\theta^n(a_j) = a_j$ for $a_j \in R$. Hence,

$$a_0\theta(c_{n-1}) + a_1\theta(c_0) + \dots + a_{n-1}\theta(c_{n-2}) = 0$$

 $(\theta(c_{n-1}), \theta(c_0), \dots, \theta(c_{n-2})) \in C^{\perp}$ and C^{\perp} is θ -cyclic codes. This gives the proof.

Theorem 5. Let *n* be even, then the θ -cyclic codes *C* generated by a monic right divisior g(x) over *R* are cyclic codes if and only if the coefficients of g(x) are elements of F_q .

Proof. Let $g(x) = x^m + \sum_{i=0}^{m-1} g_i x^i$ where $g_i \in F_q$. So, $\theta(g_i) = g_i$, x * g(x) = g(x) * x from definition of θ , thus the θ -cyclic codes *C* generated by a monic right divisior g(x) over *R* are cyclic codes.

Let the θ -cyclic codes C generated by g(x) over R be cyclic codes, then $x * g(x) \in C$, $g(x) * x \in C$. Hence,

$$u(x) = x * g(x) - g(x) * x$$

= $(\theta(g_0) - g_0)x + (\theta(g_1) - g_1)x^2 + \dots + (\theta(g_{m-1}) - g_{m-1})x^m \in C$

Since g(x) is the right divisor of u(x), there exists $u(x) = t * g(x) = tx^m + tg_{m-1}x^{m-1} + \dots + tg_1x + g_0$ where t is a constant. Comparing two formulas of u(x), then

$$\theta(g_{m-1}) - g_{m-1} = t,$$

$$\theta(g_{m-2}) - g_{m-2} = tg_{m-1};$$

$$\vdots$$

$$\theta(g_1) - g_1 = tg_2,$$

$$\theta(g_0) - g_0 = tg_1,$$

$$tg_0 = 0.$$

If t = 0, then u(x) = 0, this theorem is proved. If $t \neq 0$, $g_0 = 0$, it shows that $g_i = 0$, $1 \le i \le m-1$, hence $g(x) = x^m$, $\theta(g_i) = g_i$, $0 \le i \le m$. Thus, the coefficients of g(x) are elements of F_q . This gives the proof.

Theorem 6. Let n be odd and C be a skew cyclic code of length n over R. Then, C is equivalent to cyclic code of length n over R.

Proof. Since *n* is odd, gcd(2, n) = 1. Hence, there exist integers *b*, *c* such that 2b+cn=1. Thus, 2b=1-cn=1+zn where z > 0.

Let
$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in C$$
, we have

$$x^{2b} * a(x)$$

= $\theta^{2b}(a_0)x^{1+zn} + \theta^{2b}(a_1)x^{2+zn} + \dots + \theta^{2b}(a_{n-1})x^{n+zn}$
= $a_{n-1} + a_0x + a_1x^2 + \dots + a_{n-2}x^{n-1} \in C$

Thus, C is cyclic code of length n over R. This gives the proof.

Corollary 1. If *C* is a skew cyclic code of length *n* over *R*, then the Gray image $\phi'(C)$ of *C* is equivalent to quasi-cyclic code of length *nk* over F_q .

Proof. Let $(c_0, c_1, \dots, c_{n-1}) \in C$, each element c in C can be expressed as $c = r_0(c) + ur_1(c) + \dots + u^{k-1}r_{k-1}(c)$. It is known that $\varphi_{\theta}(c) = (\theta(c_{n-1}), \theta(c_0), \dots, \theta(c_{n-2})) \in C$, that is $\varphi_{\theta}(C) = C$. For ϕ' , $\phi'(\varphi_{\theta}(C)) = \phi'(C)$. From Theorem 1 in Section II, $\phi'(C)$ is linear code over F_q and ϕ' keeps linear operation, so

$$\begin{split} \phi'(\varphi_{\theta}(c_{0},c_{1},\cdots,c_{n-1})) \\ &= \phi'(\theta(c_{n-1}),\theta(c_{0}),\cdots,\theta(c_{n-2})) \\ &= \left(\phi(r_{n-1,0}+u^{k-1}r_{n-1,1}+u^{k-2}r_{n-1,2}+\cdots+ur_{n-1,k-1}), \\ \phi(r_{0,0}+u^{k-1}r_{0,1}+u^{k-2}r_{0,2}+\cdots+ur_{0,k-1}),\cdots\cdots, \\ \phi(r_{n-2,0}+u^{k-1}r_{n-2,1}+u^{k-2}r_{n-1,2}+\cdots+ur_{n-2,k-1})) \\ &= \left(r_{n-1,0},r_{n-1,0}+r_{n-1,1},r_{n-1,0}+r_{n-1,1}+r_{n-1,2},\cdots, \\ r_{n-1,0}+r_{n-1,1}+r_{n-1,2}+\cdots+r_{n-1,k-1}\Big| r_{0,0},r_{0,0}+r_{0,1},r_{0,0}+r_{0,1}+r_{0,2}, \\ &\cdots,r_{0,0}+r_{0,1}+r_{0,2}+\cdots+r_{0,k-1}\Big|,\cdots\cdots,\Big| r_{n-2,0},r_{n-2,0}+r_{n-2,1}, \\ r_{n-2,0}+r_{n-2,1}+r_{n-2,2},\cdots,r_{n-2,0}+r_{n-2,1}+r_{n-2,2}+\cdots+r_{n-2,k-1}) \end{split}$$

Now, each section of right side of equation is a cyclic code of length nk. Thus, $\phi'(C)$ is quasi-cyclic code of length nk over F_a . This gives the proof.

REFERENCES

- [1] Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over $F_2 + uF_2$ (J). IEEE Trans Inform Theory, 1999, 45(4):1250-1255.
- [2] Abualr T, Siap T. Cyclic codes over the rings $Z_2 + uZ_2$ and $Z_2 + uZ_2 + u^2Z_2$ (J). Designs Codes and Cryptography, 2007, 42(3):273-287.
- [3] Xu Xian-qi, Zhu Shi-xin. Skew cyclic codes over the ring $F_4 + vF_4$ (J). Journal of Hefei University of Technology, 2011, 34(9):1429-1432.
- [4] Han Mu, Ye You-pei, Zhu Shi-xin. Cyclic codes over F_p+uF_p+···+u^{k-1}F_p with length p^sn (J). Information Sciences, 2011, 181(4):926-934.
- [5] Zhu Shi-xin, Li Ping, Wu Bo. A Class of Repeated-root Constacyclic Codes over the Ring F_q + uF_q + ... + u^{k-1}F_q (J). Journal of Electronics & Information Technology, 2008, 30(6):1394-1396.
- [6] Qian Jian-fa, Ma Wen-ping. Constacyclic and cyclic codes over finite chain rings(J). Science Direct, 2009, 16(3):122-125.
- [7] Li Fu-lin, Zhu Shi-xin. Quasi-cyclic codes over $F_{\rho} + uF_{\rho} + \cdots + u^{k}F_{\rho}$ (J). Journal of Hefei University of Technology, 2009, 32(11):1766-1768.
- [8] Ding Jian, Li Hong-ju. Construction of optimal codes with Homogenuous distance(J). Journal of University of Science and Technology of China, 2015, 45(7): 588-593.