Skew Cyclic Codes over $F_{q}+u F_{q}+\ldots+u^{k-1} F_{q}$

Jing Li, Xiuli Li

Abstract

This paper studies a special class of linear codes, called skew cyclic codes, over the ring $R=F_{q}+u F_{q}+\ldots+u^{k-1} F_{q}$, where q is a prime power. A Gray map ϕ from R to F_{q} and a Gray map ϕ^{\prime} from R^{n} to $F^{n}{ }_{q}$ are defined, as well as an automorphism Θ over R. It is proved that the images of skew cyclic codes over R under map ϕ^{\prime} and Θ are cyclic codes over F_{q}, and they still keep the dual relation.

Keywords—Skew cyclic code, gray map, automophism, cyclic code.

I. Introduction

IN recent years, the study of coding theory on finite chain has attracted the attention of many scholars. Reference [1] shows cyclic codes of odd length and self-dual codes over ring $F_{2}+u F_{2}$. The structure and weight of the cyclic code of arbitrary length over $Z_{2}+u Z_{2}$ and $Z_{2}+u Z_{2}+u^{2} Z_{2}$ has been given in [2]. Reference [3] shows skew codes over $F_{4}+v F_{4}\left(v^{2}=v\right)$, and shows the relationship between the cyclic codes and the cyclic codes over the ring $F_{2}+\nu F_{2}$ and F_{4}, by defining the Gray map.

As a finite ring in more general sense, the research of the structure of cyclic codes, cyclic codes and quasi cyclic codes over the ring $R=F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ has aroused the interest of many people. Reference [4] provides the structure and ideal over the ring $F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ length $p^{s} n$ where p, n are coprime, and obtains the direct sum and spectral representation (MS polynomial) of the cyclic codes over the ring by using the discrete Fourier transform and inverse isomorphism. According to [5], the structure and the number of codewords of all $(u \lambda-1)$ - cyclic codes with length p^{e} over finite chain ring $F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ are generated by finite ring theory. Reference [6] studies the Gray image of constacyclic codes over finite chain rings; it is proved that the Gray image of arbitrary cyclic codes over finite chain rings is equivalent to quasi cyclic codes over finite fields. Reference [7] shows quasi cyclic codes over the ring $F_{p}+u F_{p}+\cdots+u^{k-1} F_{p}$, and establishes the relation between cyclic codes over $F_{p}+u F_{p}+\cdots+u^{k-1} F_{p}$ and quasi cyclic codes over F_{p}. By using the torsion codes of arbitrary $(1+\lambda u)$-length constacyclic codes over $R=F_{p^{m}}[u] /\left\langle u^{k}\right\rangle$, the bound of homogeneous distance

[^0]of these constacyclic codes is obtained in [8], and a new Gray map is defined to establish the relation between the constacyclic codes over R and the linear codes over $F_{p^{m}}$, then some optimal linear codes are constructed.

This paper will study the properties of skew cyclic codes over $R=F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ where q is prime power.

II.Large Basic Knowledge

$R=F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ is a finite ring where $q=p^{m}, p$ is arbitrary prime, and m is positive integer. Any element c in the ring R can be represented uniquely by $c=r_{0}(c)+u r_{1}(c)+\cdots+u^{k-1} r_{k-1}(c)$ where $r_{i}(c) \in F_{q}, 0 \leq i \leq k-1$.
A subset C of the ring R is called a code over R, in which the element is called a codeword. And a linear cyclic code length n over R can be considered as a R-submodule of R^{n}.

There are two forms to express these elements in C the first one is $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$ in vector form, another one is $f(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in C$ in functional form.
Define the new Grey map ϕ as follows:

$$
\begin{gathered}
\phi: R \rightarrow F_{q}^{k} \\
\phi\left(r_{0}+u r_{1}+\cdots+u^{k-1} r_{k-1}\right)=\left(r_{0}, r_{0}+r_{1}, r_{0}+r_{1}+r_{2}, \cdots, r_{0}+r_{1}+\cdots+r_{k-1}\right)
\end{gathered}
$$

Thus, there is another Grey map ϕ^{\prime} which is derived as:

$$
\begin{gathered}
\phi^{\prime}: R^{n} \rightarrow F_{q}^{k n} \\
\phi^{\prime}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)=\left(\phi\left(c_{0}\right), \phi\left(c_{1}\right), \cdots, \phi\left(c_{n-1}\right)\right) \\
=\left(r_{0,0}, r_{0,0}+r_{1,0}, r_{0,0}+r_{1,0}+r_{2,0}, \cdots, r_{0,0}+r_{1,0}+\cdots+r_{k-1,0}\right. \\
r_{0,1}, r_{0,1}+r_{1,1}, r_{0,1}+r_{1,1}+r_{2,1}, \cdots, r_{0,1}+r_{1,1}+\cdots+r_{k-1,1}, \\
\cdots \cdots \\
\left.r_{0, n-1}, r_{0, n-1}+r_{1, n-1}, r_{0, n-1}+r_{1, n-1}+r_{2, n-1}, \cdots, r_{0, n-1}+r_{1, n-1}+\cdots+r_{k-1, n-1}\right)
\end{gathered}
$$

The Hamming weight of codeword $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$ in R is defined as $w_{H}(c)=\sum_{i=0}^{n-1} w_{H}\left(c_{i}\right)$, where

$$
w_{H}\left(c_{i}\right)=\left\{\begin{array}{l}
1, c_{i} \neq 0 \\
0, c_{i}=0
\end{array}, 0 \leq i \leq n-1 .\right.
$$

The Hamming distance of code C is defined as

$$
d_{H}(C)=\min d_{H}\left(c, c^{\prime}\right),
$$

where $\forall c, c^{\prime} \in C, c \neq c^{\prime}, d_{H}\left(c, c^{\prime}\right)=w_{H}\left(c-c^{\prime}\right)$.
We define the Lee weight of codeword $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$ in R as $w_{L}(c)=\sum_{i=0}^{n-1} w_{H}\left(\phi\left(c_{i}\right)\right)$, where $w_{H}\left(\phi\left(c_{i}\right)\right)$ is Hamming weight of $\phi\left(c_{i}\right)$. We also define the Lee distance between c and c^{\prime} as $d_{L}(C)=\min d_{L}\left(c, c^{\prime}\right)$, where $\forall c, c^{\prime} \in C, c \neq c^{\prime}$, $d_{L}\left(c, c^{\prime}\right)=w_{L}\left(c-c^{\prime}\right)$.

Obviously, the Gray map ϕ^{\prime} is an isometric mapping from R^{n} (Lee distance) to $F_{q}^{k n}$ (Hamming distance).
Theorem 1. If C is $[n, M]$ linear code over R and $d_{L}(C)=d$, then $\phi^{\prime}(C)$ is $[n k, M]$ linear code over F_{q} and $d_{H}\left(\phi^{\prime}(C)\right)=d$.
Proof. $d_{L}(C)=d_{H}\left(\phi^{\prime}(C)\right)$ is known. It can be seen easily that the length of $\phi^{\prime}(C)$ is $n k$. Next, it needs to prove that ϕ^{\prime} keeps linear operation.

Let $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right), e=\left(e_{0}, e_{1}, \cdots, e_{n-1}\right) \in R^{n}$, when $0 \leq i<n-1$, there are

$$
\begin{aligned}
& c_{i}=r_{0}\left(c_{i}\right)+u r_{1}\left(c_{i}\right)+\cdots+u^{k-1} r_{k-1}\left(c_{i}\right) \\
& e_{i}=r_{0}\left(e_{i}\right)+u r_{1}\left(e_{i}\right)+\cdots+u^{k-1} r_{k-1}\left(e_{i}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \phi^{\prime}(c+e) \\
&=\left(\phi^{\prime}\left(c_{0}+e_{0}\right), \phi^{\prime}\left(c_{1}+e_{1}\right), \cdots, \phi^{\prime}\left(c_{n-1}+e_{n-1}\right)\right) \\
&=\left(r_{0}\left(c_{0}+e_{0}\right), r_{0}\left(c_{0}+e_{0}\right)+r_{1}\left(c_{0}+e_{0}\right), \cdots,\right. \\
& r_{0}\left(c_{0}+e_{0}\right)+r_{1}\left(c_{0}+e_{0}\right)+\cdots+r_{k-1}\left(c_{0}+e_{0}\right), \cdots, \\
& r_{0}\left(c_{n-1}+e_{n-1}\right), r_{0}\left(c_{n-1}+e_{n-1}\right)+r_{1}\left(c_{n-1}+e_{n-1}\right), \cdots, \\
&\left.r_{0}\left(c_{n-1}+e_{n-1}\right)+r_{1}\left(c_{n-1}+e_{n-1}\right)+\cdots+r_{k-1}\left(c_{n-1}+e_{n-1}\right)\right) \\
&=\left(r_{0}\left(c_{0}\right), r_{0}\left(c_{0}\right)+r_{1}\left(c_{0}\right), \cdots, r_{0}\left(c_{0}\right)+r_{1}\left(c_{0}\right)+\cdots+r_{k}\left(c_{0}\right), \cdots \cdots\right. \\
&\left.r_{0}\left(c_{n-1}\right), r_{0}\left(c_{n-1}\right)+r_{1}\left(c_{n-1}\right), \cdots, r_{0}\left(c_{n-1}\right)+r_{1}\left(c_{n-1}\right)+\cdots+r_{k}\left(c_{n-1}\right)\right) \\
&+\left(r_{0}\left(e_{0}\right), r_{0}\left(e_{0}\right)+r_{1}\left(e_{0}\right), \cdots, r_{0}\left(e_{0}\right)+r_{1}\left(e_{0}\right)+\cdots+r_{k}\left(e_{0}\right), \cdots \cdots\right. \\
&\left.r_{0}\left(e_{n-1}\right), r_{0}\left(e_{n-1}\right)+r_{1}\left(e_{n-1}\right), \cdots, r_{0}\left(e_{n-1}\right)+r_{1}\left(e_{n-1}\right)+\cdots+r_{k}\left(e_{n-1}\right)\right) \\
&= \phi^{\prime}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)+\phi^{\prime}\left(e_{0}, e_{1}, \cdots, e_{n-1}\right) \\
&= \phi^{\prime}(c)+\phi^{\prime}(e)
\end{aligned}
$$

$$
\text { If } \lambda \in F_{q}, c \in R \text {, then }
$$

$$
\phi^{\prime}(\lambda c)=\phi^{\prime}\left(\lambda c_{0}, \lambda c_{1}, \cdots, \lambda c_{n-1}\right)=\lambda \phi^{\prime}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)=\lambda \phi^{\prime}(c)
$$

So, ϕ^{\prime} keeps linear operation and ϕ^{\prime} is a bijection. Thus, the number of codewords in C and $\phi^{\prime}(C)$ is the same. This
gives the proof.
Now, define a ring automorphism θ as follows

$$
\begin{aligned}
\theta(c) & =\theta\left(r_{0}+u r_{1}+\cdots+u^{k-1} r_{k-1}\right) \\
& =r_{0}+u^{k-1} r_{1}+u^{k-2} r_{2}+\cdots+u^{2} r_{k-2}+u r_{k-1}
\end{aligned}
$$

for all $c=r_{0}(c)+u r_{1}(c)+\cdots+u^{k-1} r_{k-1}(c)$ in R. One can verify that θ is an automorphism and $\theta^{2}(a)=a$ for any $a \in R$. This implies that θ is an automorphism with order 2 .

A ring like

$$
R[x, \theta]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in R, 0 \leq i \leq n-1, n \in N\right\}
$$

is called skew polynomial ring. For a given automorphism θ of R, the set $R[x, \theta]$ of formal polynomials forms a ring under usual addition of polynomial and where multiplication is defined using the rule $\left(a x^{i}\right) *\left(b x^{j}\right)=a \theta^{i}(b) x^{i+j}$.

Let $f(x)=\sum_{i=0}^{s} f_{i} x^{i}, g(x)=\sum_{i=0}^{t} g_{i} x^{i}$, where f_{i} and g_{i} are units of R, then there exist unique polynomials $u(x)$ and $v(x)$ of $R[x, \theta]$ which make $g(x)=u(x) * f(x)+v(x)$ establish where $v(x)=0$ or $\operatorname{deg}(v(x))<\operatorname{deg}(f(x))$. When $v(x)=0, f(x)$ is called the right divisor of $g(x)$; that is, $f(x)$ right divides $g(x)$ exactly.
Let $R_{n}=R[x, \theta] /\left(x^{n}-1\right)$, define multiplication from left as

$$
r(x) *\left(f(x)+\left(x^{n}-1\right)\right)=r(x) * f(x)+\left(x^{n}-1\right),
$$

where $f(x)+\left(x^{n}-1\right)$ is element of R_{n}, and $r(x) \in R[x, \theta]$.
For any $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ in R^{n},the inner product is defined as $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$. Let C be linear code over R, the dual code of C is $C^{\perp}=\left\{x \in R^{n} \mid\langle x, c\rangle=0, \forall c \in C\right\}$. A code C is called self-dual code if $C=C^{\perp}$.
Definition 1. A subset C of R^{n} is called a quasi-cyclic code of length $N(N=n s)$ if C satisfies the following conditions:
(1) C is a R-submodule of R^{n};
(2) If

$$
\begin{gathered}
c=\left(c_{0,0}, c_{0,1}, \cdots, c_{0, n-1}, c_{1,0}, c_{1,1}, \cdots, c_{1, n-1}, \cdots,\right. \\
\left.c_{s-1,0}, c_{s-1,1}, \cdots, c_{s-1, n-1}\right) \in C
\end{gathered}
$$

then

$$
\begin{gathered}
\varphi_{n}(c)=\left(c_{s-1,0}, c_{s-1,1}, \cdots, c_{s-1, n-1},\left|c_{0,0}, c_{0,1}, \cdots, c_{0, n-1},\right|\right. \\
\left.\cdots, \mid c_{s-2,0}, c_{s-2,1}, \cdots, c_{s-2, n-1}\right) \in C
\end{gathered} .
$$

Particularly, C is cyclic code when $n=1$.
Definition 2. A subset C of R^{n} is called a skew cyclic code of length n if C satisfies the following conditions:
(1) C is a R^{n}-submodule of R^{n};
(2) If $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$, then

$$
\varphi_{\theta}(c)=\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C .
$$

III. Construction

Theorem 1. The center of $R[x, \theta]$ is $F_{q}\left[x^{2}\right]$.
Proof. The subring of the elements of R that are fixed by θ is F_{q}. Since θ is an automorphism with order 2, for any $a \in R$, there is $\left(x^{2 i}\right) * a=\theta^{2 i}(a) x^{2 i}=\left(\theta^{2}\right)^{i}(a) x^{2 i}=a x^{2 i}$. Thus $x^{2 i}$ is in the center of $R[x, \theta]$. This implies that any $f(x)=\varepsilon_{0}+\varepsilon_{1} x^{2}+\varepsilon_{2} x^{4}+\cdots+\varepsilon_{s} x^{2 s}$ is a center element with $\varepsilon_{i} \in F_{q}, 0 \leq i \leq s$.

Conversely, let $Z(R[x, \theta])$ be the center of R, so $f(x) * a=a * f(x)$ for any $f(x) \in Z(R[x, \theta])$ and any $a \in R$. Since $f(x)=\varepsilon_{0}+\varepsilon_{1} x+\varepsilon_{2} x^{2}+\cdots+\varepsilon_{n} x^{n}$ for $\varepsilon_{i} \in F_{q}$, $0 \leq i \leq n$, there are

$$
\begin{gathered}
f(x) * a=a * f(x), \\
\left(\varepsilon_{0}+\varepsilon_{1} x+\varepsilon_{2} x^{2}+\cdots+\varepsilon_{n} x^{n}\right) * a=a *\left(\varepsilon_{0}+\varepsilon_{1} x+\varepsilon_{2} x^{2}+\cdots+\varepsilon_{n} x^{n}\right), \\
a \varepsilon_{0}+\varepsilon_{1} \theta(a) x+\varepsilon_{2} \theta^{2}(a) x^{2}+\cdots+\varepsilon_{n} \theta^{n}(a) x^{n} . \\
=a \varepsilon_{0}+a \varepsilon_{1} x+a \varepsilon_{2} x^{2}+\cdots+a \varepsilon_{n} x^{n} .
\end{gathered}
$$

It is known that $|\langle\theta\rangle|=2$, so there are $\varepsilon_{i} x^{i} * a=a \varepsilon_{i} x^{i}$ when i is even, and $\varepsilon_{i} x^{i} * a \neq a \varepsilon_{i} x^{i}$ when i is odd. Hence, any $f(x)=\varepsilon_{0}+\varepsilon_{1} x+\varepsilon_{2} x^{2}+\cdots+\varepsilon_{n} x^{n}$ of $Z(R[x, \theta])$ only exists even power term of x, that is $f(x)=\varepsilon_{0}+\varepsilon_{2} x^{2}+\varepsilon_{4} x^{4}+\cdots+\varepsilon_{2 s} x^{2 s}$. Thus, any element of center is in $F_{q}\left[x^{2}\right]$. This gives the proof.
Theorem 2. Let $R_{n}=R[x, \theta] /\left(x^{n}-1\right)$, a code C in R_{n} is a skew cyclic code if and only if C is a left $R[x, \theta]$-submodule of the left $R[x, \theta]$ module R_{n}.
Proof. Suppose C is θ-cyclic code, so $\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C$ for $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$, that is for any $f(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in C$, there is $x * f(x) \in C$. Next, $g(x) * f(x) \in C$ for any $g(x) \in R[x, \theta]$
from linear property, then C is a left $R[x, \theta]$-submodule of the left $R[x, \theta]$ module R_{n}.
Now suppose that C is a left $R[x, \theta]$-submodule of the left $R[x, \theta]$ module R_{n}, so

$$
x * f(x)=\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C
$$

for any $f(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in C$, this implies that

$$
\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C
$$

for any $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$. Thus, C is θ-cyclic code. This gives the proof.
Theorem 3. Let C be a θ-cyclic code in $R_{n}=R[x, \theta] /\left(x^{n}-1\right)$ and let $f(x)$ be a polynomial in C of minimal degree. If $f(x)$ is monic polynomial, then $C=\langle f(x)\rangle$ where $f(x)$ is a right divisior of $x^{n}-1$.
Proof. Suppose $g(x)=u(x) * f(x)+v(x)$ for any $g(x) \in C$ where $v(x)=0$ or $\operatorname{deg}(v(x))<\operatorname{deg}(f(x))$. Since $f(x) \in C$, then $v(x)=g(x)-u(x) * f(x) \in C$. Also since $f(x)$ is polynomial in C of minimal degree, we have $v(x)=0$, this implies that $C=\langle f(x)\rangle$.
Since the θ-cyclic codes over R_{n} and its left $R[x, \theta]$ -submodule are corresponding one by one, thus $f(x)$ is a right divisior of $x^{n}-1$. This gives the proof.
Theorem 4. Let n be even. If codes C over R are θ-cyclic codes, so is its dual codes C^{\perp}.
Proof. Let $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C^{\perp}, a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right) \in C$, so $\langle c, a\rangle=0$ for any c and a. Since C is θ-cyclic codes, then $\left(\theta\left(a_{n-1}\right), \theta\left(a_{0}\right), \cdots, \theta\left(a_{n-2}\right)\right) \in C$. Thus,

$$
\left(\theta^{n-1}\left(a_{1}\right), \theta^{n-1}\left(a_{2}\right), \cdots, \theta^{n-1}\left(a_{0}\right)\right) \in C .
$$

Therefore,

$$
\begin{gathered}
c_{0} \theta^{n-1}\left(a_{1}\right)+c_{1} \theta^{n-1}\left(a_{2}\right)+\cdots+c_{n-1} \theta^{n-1}\left(a_{0}\right)=0 \\
\theta\left(c_{0}\right) \theta^{n}\left(a_{1}\right)+\theta\left(c_{1}\right) \theta^{n}\left(a_{2}\right)+\cdots+\theta\left(c_{n-1}\right) \theta^{n}\left(a_{0}\right)=0
\end{gathered}
$$

It is known n is even, then have $\theta^{n}\left(a_{j}\right)=a_{j}$ for $a_{j} \in R$.
Hence,

$$
a_{0} \theta\left(c_{n-1}\right)+a_{1} \theta\left(c_{0}\right)+\cdots+a_{n-1} \theta\left(c_{n-2}\right)=0
$$

by
transforming
formulas.
Thus

ISSN: 2517-9934
Vol:11, No:5, 2017
$\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C^{\perp}$ and C^{\perp} is θ-cyclic codes. This gives the proof.
Theorem 5. Let n be even, then the θ-cyclic codes C generated by a monic right divisior $g(x)$ over R are cyclic codes if and only if the coefficients of ${ }^{g(x)}$ are elements of F_{q}.
Proof. Let $g(x)=x^{m}+\sum_{i=0}^{m-1} g_{i} x^{i}$ where $g_{i} \in F_{q}$. So, $\theta\left(g_{i}\right)=g_{i}$,$x * g(x)=g(x) * x$ from definition of θ, thus the θ-cyclic codes C generated by a monic right divisior $g(x)$ over R are cyclic codes.

Let the θ-cyclic codes C generated by $g(x)$ over R be cyclic codes, then $x * g(x) \in C, g(x) * x \in C$. Hence,

$$
\begin{aligned}
& u(x)=x * g(x)-g(x) * x \\
& =\left(\theta\left(g_{0}\right)-g_{0}\right) x+\left(\theta\left(g_{1}\right)-g_{1}\right) x^{2}+\cdots+\left(\theta\left(g_{m-1}\right)-g_{m-1}\right) x^{m} \in C
\end{aligned}
$$

Since $g(x)$ is the right divisor of $u(x)$, there exists $u(x)=t * g(x)=t x^{m}+t g_{m-1} x^{m-1}+\cdots+\operatorname{tg}_{1} x+g_{0}$ where t is a constant. Comparing two formulas of $u(x)$, then

$$
\begin{gathered}
\theta\left(g_{m-1}\right)-g_{m-1}=t, \\
\theta\left(g_{m-2}\right)-g_{m-2}=t g_{m-1}, \\
\vdots \\
\theta\left(g_{1}\right)-g_{1}=t g_{2}, \\
\theta\left(g_{0}\right)-g_{0}=t g_{1}, \\
t g_{0}=0 .
\end{gathered}
$$

If $t=0$, then $u(x)=0$, this theorem is proved. If $t \neq 0$, $g_{0}=0$, it shows that $g_{i}=0,1 \leq i \leq m-1$, hence $g(x)=x^{m}$, $\theta\left(g_{i}\right)=g_{i}, 0 \leq i \leq m$. Thus, the coefficients of $g(x)$ are elements of F_{q}. This gives the proof.
Theorem 6. Let n be odd and C be a skew cyclic code of length n over R. Then, C is equivalent to cyclic code of length n over R.
Proof. Since n is odd, $\operatorname{gcd}(2, n)=1$. Hence, there exist integers b, c such that $2 b+c n=1$. Thus, $2 b=1-c n=1+z n$ where $z>0$.

Let $a(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in C$, we have

$$
\begin{aligned}
& x^{2 b} * a(x) \\
& =\theta^{2 b}\left(a_{0}\right) x^{1+z n}+\theta^{2 b}\left(a_{1}\right) x^{2+z n}+\cdots+\theta^{2 b}\left(a_{n-1}\right) x^{n+z n} \\
& =a_{n-1}+a_{0} x+a_{1} x^{2}+\cdots+a_{n-2} x^{n-1} \in C
\end{aligned}
$$

Thus, C is cyclic code of length n over R. This gives the proof.

Corollary 1. If C is a skew cyclic code of length n over R, then the Gray image $\phi^{\prime}(C)$ of C is equivalent to quasi-cyclic code of length $n k$ over F_{q}.
Proof. Let $\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$, each element c in C can be expressed as $c=r_{0}(c)+u r_{1}(c)+\cdots+u^{k-1} r_{k-1}(c)$. It is known that $\varphi_{\theta}(c)=\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \in C$, that is $\varphi_{\theta}(C)=C$. For $\phi^{\prime}, \phi^{\prime}\left(\varphi_{\theta}(C)\right)=\phi^{\prime}(C)$. From Theorem 1 in Section II, $\phi^{\prime}(C)$ is linear code over F_{q} and ϕ^{\prime} keeps linear operation, so

$$
\begin{aligned}
& \phi^{\prime}\left(\varphi_{\theta}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)\right) \\
= & \phi^{\prime}\left(\theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \cdots, \theta\left(c_{n-2}\right)\right) \\
= & \left(\phi\left(r_{n-1,0}+u^{k-1} r_{n-1,1}+u^{k-2} r_{n-1,2}+\cdots+u r_{n-1, k-1}\right),\right. \\
& \phi\left(r_{0,0}+u^{k-1} r_{0,1}+u^{k-2} r_{0,2}+\cdots+u r_{0, k-1}\right), \cdots \cdots, \\
& \left.\phi\left(r_{n-2,0}+u^{k-1} r_{n-2,1}+u^{k-2} r_{n-1,2}+\cdots+u r_{n-2, k-1}\right)\right) \\
= & \left(r_{n-1,0}, r_{n-1,0}+r_{n-1,1}, r_{n-1,0}+r_{n-1,1}+r_{n-1,2}, \cdots,\right. \\
& r_{n-1,0}+r_{n-1,1}+r_{n-1,2}+\cdots+r_{n-1, k-1} r_{0,0}, r_{0,0}+r_{0,1}, r_{0,0}+r_{0,1}+r_{0,2}, \\
& \cdots, r_{0,0}+r_{0,1}+r_{0,2}+\cdots+r_{0, k-1}|, \cdots \cdots,| r_{n-2,0}, r_{n-2,0}+r_{n-2,1}, \\
& \left.r_{n-2,0}+r_{n-2,1}+r_{n-2,2}, \cdots, r_{n-2,0}+r_{n-2,1}+r_{n-2,2}+\cdots+r_{n-2, k-1}\right)
\end{aligned}
$$

Now, each section of right side of equation is a cyclic code of length $n k$. Thus, $\phi^{\prime}(C)$ is quasi-cyclic code of length $n k$ over F_{q}. This gives the proof.

References

[1] Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over $F_{2}+u F_{2}$ (J). IEEE Trans Inform Theory, 1999, 45(4):1250-1255.
[2] Abualr T, Siap T. Cyclic codes over the rings $Z_{2}+u Z_{2}$ and $Z_{2}+u Z_{2}+u^{2} Z_{2}$ (J). Designs Codes and Cryptography, 2007, 42(3):273-287.
[3] Xu Xian-qi, Zhu Shi-xin. Skew cyclic codes over the ring $F_{4}+v F_{4}(\mathrm{~J})$. Journal of Hefei University of Technology, 2011, 34(9):1429-1432.
[4] Han Mu, Ye You-pei, Zhu Shi-xin. Cyclic codes over $F_{p}+u F_{p}+\cdots+u^{k-1} F_{p}$ with length $p^{s} n$ (J). Information Sciences, 2011, 181(4):926-934.
[5] Zhu Shi-xin, Li Ping, Wu Bo. A Class of Repeated-root Constacyclic Codes over the Ring $F_{q}+u F_{q}+\cdots+u^{k-1} F_{q}$ (J). Journal of Electronics \& Information Technology, 2008, 30(6):1394-1396.
[6] Qian Jian-fa, Ma Wen-ping. Constacyclic and cyclic codes over finite chain rings(J). Science Direct, 2009, 16(3):122-125.
[7] Li Fu-lin, Zhu Shi-xin. Quasi-cyclic codes over $F_{p}+u F_{p}+\cdots+u^{k} F_{p}(\mathrm{~J})$. Journal of Hefei University of Technology, 2009, 32(11):1766-1768.
[8] Ding Jian, Li Hong-ju. Construction of optimal codes with Homogenuous distance(J). Journal of University of Science and Technology of China, 2015, 45(7): 588-593.

[^0]: Jing Li is with the School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China (corresponding author, phone: 18765279986; e-mail: 672092400@qq.com).

 Xiuli Li is with Qingdao University of Science and Technology, Qingdao, China (e-mail:lixiuli2004@tom.com).

