
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

855

FCNN-MR: A Parallel Instance Selection Method
Based on Fast Condensed Nearest Neighbor Rule

Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract—Instance selection (IS) technique is used to reduce
the data size to improve the performance of data mining methods.
Recently, to process very large data set, several proposed methods
divide the training set into some disjoint subsets and apply IS
algorithms independently to each subset. In this paper, we analyze
the limitation of these methods and give our viewpoint about how to
divide and conquer in IS procedure. Then, based on fast condensed
nearest neighbor (FCNN) rule, we propose a large data sets instance
selection method with MapReduce framework. Besides ensuring the
prediction accuracy and reduction rate, it has two desirable properties:
First, it reduces the work load in the aggregation node; Second
and most important, it produces the same result with the sequential
version, which other parallel methods cannot achieve. We evaluate the
performance of FCNN-MR on one small data set and two large data
sets. The experimental results show that it is effective and practical.

Keywords—Instance selection, data reduction, MapReduce, kNN.

I. INTRODUCTION

THE process of knowledge discovery and data mining has

six steps: problem specification, problem understanding,

data preprocessing, data mining, evaluation and result

exploitation [1]. Data mining is the essential process and a

large number of well-known techniques (such as classification,

regression, clustering and so on) have been proposed in many

applications. However, the quality of data, which serves as

the input for data mining, has a great impact on the mining

performance. Low-quality data will lead to low-quality mining

results [2]. In the real world, raw data sets may contain a lot

of redundant, erroneous, missing and noisy values and not

perfectly suitable for data mining task. Data preprocessing

techniques are applied before mining and will improve the

quality of data and mining results. In this paper, we focus on

data reduction (DR), one of the data preprocessing techniques,

aiming to reduce the size of training sets for k nearest neighbor

(kNN) decision rule [3].

The kNN technique is a simple classification method and

is widely used in the field of data mining. It has high storage

requirement and is computationally expensive due to the

comparison of every instance in the training set to find the

closest neighbors. In order to reduce the runtime and storage

requirements, several methods have been proposed [4]–[7] to

reduce the size of the stored data for the kNN, such as instance

selection, feature selection and feature extraction. Among

Lu Si is with the National University of Defense Technology, China (e-mail:
lusi@ubuntukylin.com).

Jie Yu, Shasha Li, Jun Ma, Lei Luo and Qingbo Wu are with the National
University of Defense Technology, China.

Yongqi Ma and Zhengji Liu are with the Institute of Computer Application,
China Academy of Engineering Physics, China.

these techniques, instance selection techniques aim to choose

a subset from the total available data by removing instances

that are noisy and/or redundant. A successful algorithm can

significantly reduce the size of training set without a significant

reduction of generalization accuracy [8].

Instance selection is usually divided into three approaches:

selection, abstraction and hybrid. Selection algorithms

maintain a subset of the original instances and abstraction
algorithms modify the instances using a new representation.

Hybrid algorithms are based on the combination of selection
and abstraction methods. In comparing instance selection

algorithms, reduction rate and classification accuracy are two

main evaluation criteria. However, with the exponential growth

of data in many application domains such as industry, medicine

and financial businesses, processing very large scale data sets

for instance selection is becoming a major limitation and a

fast execution speed of reduction is definitively needed. The

traditional sequential methods lack enough scalability to cope

with data sets with millions of instances even though they have

already been performed over the previous smaller data set.

Recent improvements in this field cover the stratification of

data and redesign the algorithms and their inclusions in parallel

environments [9]–[13]. Among these methods, [10], [11]

implement the algorithms with MapReduce [14] framework

which was proposed by Google and has been widely used to

process big data problems on computing clusters.

In this paper, we analyze the limitation of these methods

and propose a large data sets instance selection method by

redesigning fast condensed nearest neighbor (FCNN) rule [15],

[16] in a MapReduce way, namely FCNN-MR. Unlike other

proposed parallel methods that apply IS on disjoint subsets

independently and finally merge partial results together, we

parallel the prediction process and select informative instances

in the aggregation node. It reduces the work load in the final

single aggregation node and can produce the same result with

the sequential version.

The rest of this paper is organized as follows: Section II

discusses the related work and preliminaries. In Section III,

we analyze the limitation of previously proposed methods

and give out our viewpoint about how to divide and conquer

for instance selection. Section IV illustrates the design and

implementation of FCNN-MR. The performance evaluation

results of FCNN-MR are given in Section V. We discuss the

limitation and future work in Section VI. Finally, the paper is

concluded in Section VII.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

856

II. RELATED WORK AND PRELIMINARIES

In this section, we briefly review some of the most relevant

methods (Section II. A) and describe two preliminary works,

FCNN (Section II. B) and MapReduce (Section II. C). In this

paper, we use T as original instances in the training set and

S represents the subset of T. That is to say, instance selection

is searching for a subset S of instances to keep from training

set T.

A. Instance Selection

The condensed nearest neighbor (CNN) rule [17] is the

first and probably the simplest instance selection strategy. It

begins with an empty subset S, and adds each instance from

training set T to S if the instance is misclassified using only

the instances in S. However, noisy instance will usually be

misclassified by their neighbors, and thus will be retained in

S. Generalized condensed nearest neighbor (GCNN) rule [18]

is a recent extension of CNN. GCNN assigns an instance to S
if it satisfies an absorption criterion according to a threshold.

It can reduce the size of S compared to CNN. Reduced nearest

neighbor (RNN) rule [19] starts with S = T and removes each

instance from S if the removal does not cause other instances

in T to be misclassified by the remaining instances in S. It is

able to remove noisy instances, but is more expensive in terms

of learning time compared to CNN. Edited nearest neighbor

(ENN) rule [20] proposed by Wilson also starts with S = T, and

then removes any instance that would be misclassified by its

k nearest neighbors (with k = 3, typically). This algorithm

removes noisy and close border instances. Repeated ENN

(RENN) rule applies the ENN algorithm repeatedly until all

instances in S have a majority of their k nearest neighbors

with the same class. Five decremental reduction optimization

procedure algorithms (DROP1 - DROP5) [4] were proposed

by Wilson and Martinez. Among them, DROP3 is the most

successful method. In DROP3, each instance has k nearest

neighbors called associates. The algorithm removes it if at least

as many of its associates in T would be classified correctly

without it (where S = T originally). Furthermore, DROP3 uses

ENN to remove noisy instances.

Recently, some new instance selection methods were

proposed by different researchers. Based on outlier pattern

analysis and prediction, Lin et al. [21] proposed an approach

to detect the representation instances from large data sets.

IRAHC [8] maintains a hyperrectangle and removes interior

instances and keeps border and near border ones. [22]

utilizes the fuzzy-rough instance selection method based on

weak gamma evaluator to remove redundant and erroneous

instances. [23] proposed a fast instance selection method

for large data sets by clustering. This algorithm selects

border instances and some non-border instances. Evolutionary

algorithm [24] is one type of instance selection. In this method,

some initial sets of instances are represented by chromosome

strings. According to a fitness function, the individuals are

evaluated and the best chromosomes are selected after a

specific number of iterations.

Nowadays, in order to deal with huge data sets that

additionally involve millions of instances, some distributed

algorithms [9]–[13] were proposed. [9], [12], [13] divide

the original training set into small subsets where the instance

selection algorithms are applied and then merge them into one

subset. [10], [11] proposed MapReduce-based frameworks

for nearest neighbor classifier to deal with the classification

problems of large data sets. They partition the large data

sets into some small subsets and selects informative instances

in Map phase with traditional instance selection algorithms.

In Reduce phase, they collect the selected instances from

different nodes to rejoin a subset. We will analyze the

limitations of these parallel methods in Section III.

B. Fast Condensed Nearest Neighbor

Fast condensed nearest neighbor (FCNN) rule [15], [16]

proposed by F. Angiulli is one of the state-of-the-art instance

selection algorithms and exhibits excellent performance in

either maintaining classification accuracy, reduction rate, or

execution speed. FCNN retains border instances and order

independent. It has sub-quadratic time complexity and requires

few iterations to converge.

Algorithm 1 Fast Condensed Nearest Neighbor Rule

Input:
Original training set T

Output:
The reduced set S

1: S = ∅

2: ΔS = ∅

3: Add centroids of each class to ΔS
4: repeat
5: S = S ∪ ΔS
6: ΔS = ∅

7: for each instance I ∈ S do
8: Add the nearest enemy inside it’s Voronoi region

to ΔS
9: end for

10: until ΔS = ∅

FCNN searches for informative instances in an incremental

manner. That is to say, it begins with an empty subset S,

and adds each instance in T to S if it fulfills the criterion.

Algorithm 1 shows the complete procedure of FCNN. First

of all, the subset S is initialized by the centroids of each class

in T. The centroid of each class is the instance which is closest

to the geometrical center of the class region. Then, during each

iteration, for each instance I in S, its nearest enemy inside its

Voronoi region (consists of all instances closer to it than to

any ohter.) is added to a temporary set ΔS. The process is

performed repeatedly until ΔS is empty (no enemy is found),

i.e., all instances in T are correctly classified using S. Further

more, FCNN algorithm can be extended to the case in which

the kNN rule are taken into account. In this case, it leverages

k nearest neighbors in S to predict the instance class in T - S.

C. MapReduce

MapReduce [14] was proposed by Google in 2004 and

has become a popular distributed and parallel computing

model for large-scale data-intensive computations since then.

In MapReduce, the input data for a job are split into some



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

857

Fig. 1 Flowchart of other proposed parallel instance selection methods

data chunks called inputsplit and stored in a distributed file

system [25]. A MpaReduce operation essentially includes two

phases: Map and Reduce. Each one has 〈key, value〉 pairs as

input and output. In Map phase, each inputsplit is assigned

to one map worker which invokes map functions to compute

and generate a set of 〈key, value〉 intermediate pairs. In

Reduce phase, a user-defined reduce function is applied to

all intermediate values associated with the same intermediate

key and produces a list of output values.

Hadoop is one of the most popular implementation of

MapReduce and is released under the umbrella of the Apache

Software Foundation. It is an open source framework and

written in Java. In this work, we implement the proposed

algorithm on Hadoop platform.

III. HOW TO DIVIDE AND CONQUER

Selecting informative instances from large-scale data sets is

a challenging task. Divide and conquer algorithm can break

down a problem into two or more sub-problems that are simple

enough to be solved. Then, the solutions to the sub-problems

are combined to give a final solution to the original problem.

Inspired by the divide and conquer methodology, [9]–[13]

divide the original training set T into many disjoint subsets

Ti, and then apply traditional instance selection algorithm

over each subset independently to get a partial reduced set

Si. Finally, they merge all partial reduced sets Si into a final

set S (as described in Fig. 1).

However, the traditional instance selection algorithms have

to know the whole data set and select the nearest neighbor

of an instance. These distributed previous methods lack the

information of the whole problem and may lead to the

introduction of noisy and redundant instances. Like [15],

[16], we generated a data set composed by 9,000 instances

with 2 attributes. Instances were randomly distributed into

the unit square and partitioned in two classes by a circle of

diameter 0.5. We divided the data set into n splits, applied

FCNN algorithm on them independently, and merged the

results together. As we can see in Fig. 2, with the number

of split increasing, more noisy and redundant instances are

remained.

To mitigate this problem, [9] repeats the divide and

aggregation procedure in a recursive manner; [11] introduced

a voting mechanism to select informative instances from

partial result sets Si; [10] leverages a filter to remove

noisy and redundant instances in rejoining phase. However,

these remedies can relieve the problem to some extent, they

do not actually implement the traditional instance selection

algorithm in a parallel way. More fatally, the size of rejoined

set is increasing with the split number. The final process

of aggregation and selecting requires to perform in a single

compute node. In [10], they perform IS methods again to

reduce the merged subset, the compute node may become a

bottleneck in the distributed system.

Instead of applying the instance selection algorithm

independently, FCNN-MR uses the whole training set and

parallels the procedure of searching nearest neighbors. In

FCNN-MR, the reduced result is the same with sequential

version of FCNN. Meanwhile, it reduce the work load in

aggregation node and has a good performance of scalability.

In the next section, we will introduce the implementation of

our approach.

IV. FCNN-MR

This section describes the proposed MapReduce approach

for instance selection, FCNN-MR. FCNN-MR algorithm is

based on FCNN to select representative instances from training

set. During each iteration of FCNN, the nearest enemy inside

the Voronoi region of each instance in S is found and added to

S. We redesign FCNN and parallelize this algorithm following

a MapReduce procedure. The working way of FCNN-MR is

illustrated in Fig. 3.

First, FCNN-MR initializes the subset S by the centroids

of each class. Second, the splitting procedure of MapReduce

divides the training set T into n disjoint subsets (Ti) of

instances. Then, FCNN-MR allocates Ti and S to every

compute nodes, and each Ti subset is processed independently

producing several intermediate 〈label, instance〉 pairs by the

corresponding Map task. During the Shuffle phase, the system

combines the instances with the same label to minimize

network overloading and routes them to the reduce node.

Finally, the reduce phase collects all intermediate inputs and

uses only one Reduce task to form the final output for one

iteration. This above procedure is repeated until the criterion

is fulfilled (see Algorithm 2).

The mapper and reducer function are described in

Algorithm 3 and Algorithm 4 respectively. For each input

instance from Ti, the mapper function finds whose Voronor

region it locates in and emit a 〈key, value〉 pair if it is the

enemy of the region. The key of the pair is the label of the

Voronor region. Briefly speaking, the mapper function predicts

the class of the instance from Ti using the nearest neighbors in



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

858

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

a
0.0

0.5

1.0

Fig. 2 Example of subset computed by FCNN with different split number

Fig. 3 Flowchart of FCNN-MR algorithm

Algorithm 2 FCNN-MR

Input:
Original training set T

Output:
The reduced set S

1: S = ∅

2: ΔS = ∅

3: Add centroids of each class to ΔS
4: repeat
5: S = S ∪ ΔS
6: ΔS = ∅

7: for each instance I ∈ S do
8: Invoke a mapper function (Algorithm 3) to process
9: end for

10: Merge all intermediate results and invoke a reducer function
(Algorithm 4) to generate ΔS

11: until ΔS = ∅

Algorithm 3 The mapper function for FCNN-MR

Input:
〈k, instance〉 pairs, subset S

Output:
null or 〈label, instance〉 pair

1: Get the class C of instance I from 〈label, instance〉
2: Predict the class C* of I by the nearest neighbor in S
3: if C �= C* then
4: emit 〈label, instance〉 pair
5: end if

Algorithm 4 The reducer function for FCNN-MR

Input:
〈label, [instance]〉 pairs, subset S

Output:
A temporary set ΔS

1: ΔS = ∅

2: for each 〈label, [instance]〉 pair do
3: Add the nearest enemy to ΔS
4: end for

S and emit a 〈key, value〉 pair if the prediction is wrong. The

reducer function computes the nearest one to the instance in

S with the same label from each 〈label, [instance]〉 and adds

them into a temporary set ΔS. The time complexity of this

procedure is O(m) (m is the number of instances routed to the

Reduce node). If ΔS is empty, the algorithm is finished and

FCNN-MR will return the final output S. Otherwise, it will

update S by absorbing ΔS to prepare the next iteration.

It is noteworthy that the update of subset S does not mean

modifying the file in the distributed file system. It just creates

a new file to store the new merged set S which will be loaded

and allocated among the cluster before the next iteration.

V. EXPERIMENTS

In this section, we present results obtained by the

experiments. Section V. A describes the experiment

environment and the data sets chosen. Section V. B shows

the accuracy and reduction rate for FCNN-MR. Section V. C

presents and discusses the impact of split.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

859

TABLE I
THE CONFIGURATION OF NODES

Items Configuration
Operating system Ubuntu 15.10

JDK JDK-7u71-linux
MapReduce Hadoop 2.6.0

Maximum map tasks 512
Maximum reduce tasks 1

TABLE II
SUMMARY OF THE USED DATA SETS

Data set #instances #dimension #classes
Page-blocks 5,473 10 5
Poker-hand 1,025,010 10 10

Mnist 70,000 784 10

A. Experimental Setup

The experiments for this paper were carried out on nine

nodes in a cluster: eight compute nodes and a master. It should

be noted that we used three physical machines as hosts and

each of them contains three virtual machines. The master

processes, NameNode and JobTracker, are hosted in the master

node and a number of TaskTrackers and DataNodes are hosted

in the compute nodes. The configuration of nodes in the cluster

is given in Table I.

We selected a small data set (Page-blocks) and two large

data sets (Poker and Mnist) to evaluate the performance of our

approach. Page-blocks and Poker are from the UCI Machine

Learning Repository and Mnist is from Mnist database.

Table II summarizes the main characteristics of these data sets.

In Table II, #instances, #dimension, and #classes denote the

number of instances, the number of attributes and the number

of classes in the data sets respectively.

Page-blocks comes from 54 distinct documents and

classifies all the blocks of the page layout of a document.

All attributes are numeric. In Poker-hand data set, each

record is an example of a hand consisting of five playing

cards from a standard deck of 52 and is composed of 10

attributes totally. MNIST database has a training set (60,000

examples) and a test set (10,000 examples). The digits have

been size-normalized and centered in a 28×28 image. Each

image has 784 attributes each of which is associated with a

distinct pixel (ranges from 0 to 255).

B. Accuracy and Reduction Rate Results

To test the reduced sets selected by FCNN-MR, we used

kNN classifier and the Euclidean distance. The reduction rate

TABLE III
RESULTS FOR THREE DATA SETS

Data set Results
Accuracy Reduction Rate Iteration

Mnist k = 1 0.9449 0.8954 20
k = 3 0.9428 0.8876 19
k = 5 0.9259 0.8908 19

Poker-hand k = 1 0.5664 0.4275 30
k = 3 0.4856 0.3658 31
k = 5 0.4397 0.3502 32

Page-blocks k = 1 0.9617 0.9100 41
k = 3 0.9690 0.8972 36
k = 5 0.9617 0.8810 32

is the ratio of the number of removed instances to the number

of instances in the original data set T. Based on the results

shown in Fig. 4, we can see that FCNN-MR can keep the

accuracy with the number of mapper. Further more, we list the

numeric results in Table III, including the accuracy, reduction

rate and iteration. We stress that we do not devote to optimize

the classification accuracy and the reduction rate for a specific

problem, but the parallel method can produce the same outputs

with the sequential version.

C. Work Load in Aggregation Node

As we clarified in Section III, divide the training set

into disjoint chunks and perform instance selection algorithm

independently can lead to the introduction of noisy and

redundant since the lack of the whole information. To alleviate

these problems, MRPR [10] proposes three aggregation

alternatives (join, filtering, and fusion) in the Reduce phase.

Join simply concatenates all partial results Si into a final set

S. Filterinng and fusion remove noisy or redundant instances

respectively and have better performance with respect to

accuracy and reduction rate. Actually, filtering and fusion
apply some other instance selection algorithms again on the

merged subset. As described in MRPR, the accuracy and

reduction rate decrease according as the number of available

instances in the used training set is reduced. Besides these,

the impact on performance of the Reduce node cannot be

neglected since only one single node can be used. It may

become a bottleneck in the system. Fig. 5 shows the number

of instances stored in the Reduce node during the execution

of MRPR with the data sets above described. We can see that

the size of storage increases with the mapper number.

Table IV summarizes the result details and lists the storage

requirement in FCNN-MR. Note that FCNN is an incremental

algorithm and the size of subset S stored in the Reduce node

increases with each iteration. Table IV lists the the size of

S in the last iteration in which S is the largest. We can see

that FCNN-MR requires lesser storage space which means less

load in the Reduce node.

VI. DISCUSSION

FCNN also has some variants (FCNN2 - FCNN4) that

can be redesigned following the proposed distributed model.

During each iteration, FCNN2 adds the centroids of the

enemies in each Voronoi region; FCNN3 only adds one

closest enemy which belongs to the Voronoi region with most

enemies; FCNN4 only adds one centroid which belongs to

the Voronoi region with most enemies. They can use the same

way as what FCNN-MR do (Algorithm 3) to predict each

instance class in the Map phase and select different informative

instances in the Reduce phase. The time complexity for these

selecting procedures are O(m) (m is the number of 〈key, value〉
pair routed to the Reduce node).

Note that the distributed model is applicable to any instance

selection method which only need to maintain a small part of

the training set, like RMHC [26] and MCNN [27]. We plan

to implement these methods based on the proposed model and

evaluate the performance of them in the future work.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

860

0 100 200 300 400 500 600

number of mapper

0.90

0.91

0.92

0.93

0.94

0.95

a
c
c
u
ra

c
y

(a) Mnist

k=1

k=3

k=5

0 100 200 300 400 500 600

number of mapper

0.35

0.40

0.45

0.50

0.55

0.60

a
c
c
u
ra

c
y

(b) Poker-hand

k=1

k=3

k=5

0 100 200 300 400 500 600

number of mapper

0.950

0.955

0.960

0.965

0.970

a
c
c
u
ra

c
y

(c) Page-blocks

k=1

k=3

k=5

Fig. 4 The accuracy with different number of mapper

0 100 200 300 400 500 600

number of mapper

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s
to

ra
g
e
 r

e
q
u
ir

e
m

e
n
t

(a) Mnist

k=1

k=3

k=5

0 100 200 300 400 500 600

number of mapper

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

s
to

ra
g
e
 r

e
q
u
ir

e
m

e
n
t

(b) Poker-hand

k=1

k=3

k=5

0 100 200 300 400 500 600

number of mapper

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

s
to

ra
g
e
 r

e
q
u
ir

e
m

e
n
t

(c) Page-blocks

k=1

k=3

k=5

Fig. 5 Storage requirement in Reduce node with different number of mapper

TABLE IV
THE NUMBER OF INSTANCE STORED IN REDUCE NODE

Data set Storage requirement
8 16 32 64 128 256 512 FCNN-MR

Mnist k = 1 11034 13043 15464 18269 21646 25296 29079 6275
k = 3 12132 14601 17575 21225 25494 30421 35933 6744
k = 5 11934 14787 17766 21711 26416 32087 38780 6533

Poker-hand k = 1 633859 644570 655943 664305 672290 678866 683913 572508
k = 3 682903 694360 704845 713648 721447 728038 736599 634227
k = 5 696499 708991 719889 729523 739670 748266 757521 649827

Page-blocks k = 1 618 681 776 866 1009 1158 1412 443
k = 3 714 788 867 977 1051 1067 1187 506
k = 5 756 853 952 1049 1096 1112 1191 586

There are also some limitations. First, for decremental

methods which start with S = T, it is impossible to allocate the

whole very large data set into every compute node. However,

they are applicable to other parallel models [9]–[13]. Second,

each iteration in FCNN-MR will start a new task in the

MapReduce system, it may spend more time to prepare and

allocate jobs.

VII. CONCLUSIONS

Instance selection is an important preprocess task, specially

for instance-based learning methods, since it can reduce the

runtime in the classification stage. In this paper, the purpose

is not to optimize the classification accuracy and the reduction

rate with an instance selection method. We focus on the

learning speed which is usually neglected but definitively

needed when facing the very large scale data set. We propose a

novel parallel instance selection method, namely FCNN-MR.

Unlike other distributed methods [9]–[13] which simply apply

instance selection methods on disjoint subset independently

and merge the partial results together, FCNN-MR redesigns

the prediction procedure of each instance in the Map phase and

selects informative instances in the Reduce phase. Compared

with other proposed parallel methods, FCNN-MR can reduce

the work load in the aggregation node in the cluster and has

a good performance of scalability. The key property of this

parallel method is the same outputs with the sequential version.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

861

REFERENCES

[1] S. Garcła, J. Luengo, and F. Herrera, “Data preprocessing in data
mining,” Computer Science, vol. 72, 2015.

[2] B. J. Han, “Data mining. concepts and techniques. 3rd ed,” Data Mining
Concepts Models Methods & Algorithms Second Edition, vol. 5, no. 4,
pp. 1 – 18, 2000.

[3] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[4] D. R. Wilson and T. R. Martinez, “Reduction techniques for
instance-based learning algorithms,” Machine Learning, vol. 38, no. 3,
pp. 257–286, 2000.

[5] M. Kudo and J. Sklansky, “Comparison of algorithms that select features
for pattern classifiers,” Pattern Recognition, vol. 33, no. 1, pp. 25–41,
2000.

[6] H. Liu and H. Motoda, “Feature extraction construction and selection:
A data mining perspective,” Springer International, vol. 94, no. 448, p.
014004, 1999.

[7] I. Triguero, J. Derrac, S. Garcia, and F. Herrera, “A taxonomy
and experimental study on prototype generation for nearest neighbor
classification,” Systems Man & Cybernetics Part C Applications &
Reviews IEEE Transactions on, vol. 42, no. 1, pp. 86–100, 2012.

[8] J. Hamidzadeh, R. Monsefi, and H. S. Yazdi, “Irahc: Instance reduction
algorithm using hyperrectangle,” Pattern Recognition, vol. 48, no. 5, pp.
1878–1889, 2015.

[9] Haro-Garc, A. Aida, Garc, and N. A-Pedrajas, “A divide-and-conquer
recursive approach for scaling up instance selection algorithms,” Data
Mining and Knowledge Discovery, vol. 18, no. 3, pp. 392–418, 2009.

[10] I. Triguero, D. Peralta, J. Bacardit, S. Garcła, and F. Herrera, “Mrpr: A
mapreduce solution for prototype reduction in big data classification,”
Neurocomputing, vol. 150, no. 150, p. 331C345, 2015.

[11] J. Zhai, X. Wang, and X. Pang, “Voting-based instance selection
from large data sets with mapreduce and random weight networks,”
Information Sciences, vol. 367, pp. 1066–1077, 2016.

[12] H. Liu and H. Motoda, “On issues of instance selection.” Data Mining
and Knowledge Discovery, vol. 6, no. 2, pp. 115–130, 2002.

[13] J. R. Cano, F. Herrera, and M. Lozano, “Stratification for scaling up
evolutionary prototype selection,” Pattern Recognition Letters, vol. 26,
no. 7, pp. 953–963, 2005.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters.” in Conference on Symposium on Opearting Systems
Design & Implementation, 2004, pp. 107–113.

[15] F. Angiulli, “Fast condensed nearest neighbor rule,” in International
Conference, 2005, pp. 25–32.

[16] Angiulli, “Fast nearest neighbor condensation for large data sets
classification,” IEEE Transactions on Knowledge & Data Engineering,
vol. 19, no. 11, pp. 1450–1464, 2007.

[17] B. P. E. Hart, “The condensed nearest neighbor rule,” in IEEE Trans.
Information Theory, 1968.

[18] C. H. Chou, B. H. Kuo, and F. Chang, “The generalized condensed
nearest neighbor rule as a data reduction method,” vol. 2, pp. 556–559,
2006.

[19] G. W. Gates, “The reduced nearest neighbor rule,” IEEE Transactions
on Information Theory, vol. 18, no. 3, pp. 431 – 433, 1972.

[20] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems Man & Cybernetics, vol. 2,
no. 3, pp. 408–421, 1972.

[21] W. C. Lin, C. F. Tsai, S. W. Ke, C. W. Hung, and W. Eberle, “Learning
to detect representative data for large scale instance selection,” Journal
of Systems & Software, vol. 106, no. C, pp. 1–8, 2015.

[22] A. Onan, “A fuzzy-rough nearest neighbor classifier combined with
consistency-based subset evaluation and instance selection for automated
diagnosis of breast cancer,” Expert Systems with Applications, vol. 42,
no. 20, pp. 6844–6852, 2015.

[23] J. A. Olvera-Lpez, J. A. Carrasco-Ochoa, and J. F. Martłnez-Trinidad,
“A new fast prototype selection method based on clustering,” Pattern
Analysis and Applications, vol. 13, no. 2, pp. 131–141, 2010.

[24] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in kdd: an experimental study,”
IEEE Transactions on Evolutionary Computation, vol. 7, no. 6, pp.
561–575, 2004.

[25] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, no. 11, pp. 1 – 10, 2007.

[26] D. B. Skalak, “Prototype and feature selection by sampling and random
mutation hill climbing algorithms,” Machine Learning Proceedings, pp.
293–301, 1994.

[27] V. S. Devi and M. N. Murty, “An incremental prototype set building
technique,” Pattern Recognition, vol. 35, no. 2, pp. 505–513, 2002.


