
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

848

An Improved Method on Static Binary Analysis to
Enhance the Context-Sensitive CFI
Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract—Control Flow Integrity (CFI) is one of the most
promising technique to defend Code-Reuse Attacks (CRAs).
Traditional CFI Systems and recent Context-Sensitive CFI use coarse
control flow graphs (CFGs) to analyze whether the control flow
hijack occurs, left vast space for attackers at indirect call-sites. Coarse
CFGs make it difficult to decide which target to execute at indirect
control-flow transfers, and weaken the existing CFI systems actually.
It is an unsolved problem to extract CFGs precisely and perfectly
from binaries now. In this paper, we present an algorithm to get a
more precise CFG from binaries. Parameters are analyzed at indirect
call-sites and functions firstly. By comparing counts of parameters
prepared before call-sites and consumed by functions, targets of
indirect calls are reduced. Then the control flow would be more
constrained at indirect call-sites in runtime. Combined with CCFI,
we implement our policy. Experimental results on some popular
programs show that our approach is efficient. Further analysis show
that it can mitigate COOP and other advanced attacks.

Keywords—Contex-sensitive, CFI, binary analysis, code reuse
attack.

I. INTRODUCTION

CONTROL-FLOW INTEGRITY (CFI) [1] has been

developed as one of the most promising techniques

to stop code-reuse attacks (CRAs). Since all control-flow

transfers in a program should act as designed in the original

program, CFI provides a strong guarantee to protect running

tasks. Unfortunately, CFI techniques are suffering from many

difficulties when implemented actually accounting for troubles

in static analysis at indirect transfers, especially without source

codes. With the improving of code reuse techniques, even the

existing fine-grained CFI systems could often be bypassed.

With a control flow graph (CFG) extracted from binaries,

call relations are analyzed and every possible target is collected

for those instructions leading to indirect control flow transfers,

such as ret and indirect calls, etc. Most traditional CFI systems

that work at binary-level adopt binary rewrite technique to

insert validation codes into the original programs. However

most of them only focus on the indirect transfers by validating

that whether their targets is contained in the legitimate set

collected by static analysis or not. Without the runtime

control-flow context, the knowledge of execute path generated

by branch instructions can not be attained. Mistakes may occur

when deciding which transfer target is legitimate. For instance,

if the function D is called by functions A, B and C. The return

Lei Luo is with the National University of Defense Technology, China
(e-mail: l.luo@nudt.edu.cn).

Qintao Shen, Jun Ma, Jie Yu and Qingbo Wu are with the National
University of Defense Technology, China.

Yongqi Ma and Zhengji Liu are with the Institute of Computer Application,
China Academy of Engineering Physics, China

target of D will be one of all next instructions of call-sites in

functions A, B and C and it is hard to determine. If we do not

know exactly about the caller, we can not determine where D
should return, which leave many gaps for attackers.

Context-Sensitive CFI (CCFI) [2], proposed recently, takes

all transfers into consider by monitoring the branches of

executable programs in runtime, which mitigates the problem.

PathArmor achieved the goal of CCFI by using Last Branch

Record (LBR) registers, the intel hardware feature, to capture

the branches to analyze the runtime context.

CFI heavily depends on CFG. However, extracting a sound

and accurate CFG at instruction-level from binaries is an

unsolved problem. Therefore CFI systems have to enforce

their policies with coarse CFGs. But coarse CFGs weakens

the CFI systems to defend the advanced attacks. The existing

CFI systems, including state-of-the-art traditional CFI [3]–[9]

and CCFI, are encountering security problems.

Advanced attack techniques, e.g., Counterfeit
Object-Oriented Programming (COOP) [10] and Control-Flow
Bending (CFB) [11], have the ability to make full use of

function existing in program binaries to enforce function-reuse

attacks. The key factor that leads those exploitations effective

is that coarse CFGs lose control of call targets at indirect

call-sites. Once the control flow of a program has been

hijacked, the attacker could jump to any function with

an indirect call. More seriously, COOP has been proved

Turing complete, which means that every Turing-computable

problem can be resolved if exploited with such technique.

Dozens of methods and platforms [12]–[14] have been

proposed to analyze the program binaries to extract their

CFGs. They mainly could be divided into two categories,

dynamic and static. The use of dynamic methods will face

the problem that the resulting CFG may not be complete.

At the same time, it may even suffer from errors because of

lacking runtime conditions of stack and heap. In contrast, static

methods, which will enumerate all possible paths to construct

a complete CFG, will encounter the problem of path explosion.

All methods mentioned above will consume considerable extra

memory and computing resources.

In this paper, we try to mitigate the problem mentioned

above by proposing a static analysis algorithm, which restricts

the targets of the indirect calls in coarse CFG. Then we

implement our CFI policies with PathArmor. We write a

proof-of-concept program to help to analyze the security of

our algorithm. Lastly, a bunch of typical programs are chosen

to evaluate the effect of our algorithms.

The remainder of this paper is organized as follows.

Section II covers advanced function reuse methods and some



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

849

state-of-the-art CFI systems. Section III proposes our idea

and algorithm. Section IV describes our implementation of

the algorithm. Section V analyzes our experiment result on

several typical programs and the security of our CCFI policy

which combines our algorithms with PathArmor. Section VI

concludes the paper.

II. BACKGROUND

CRAs techniques have developed for a long time since

the first exploitation proposed in 1997 [15], and bring great

challenge to system security. The origin CFI was believed to

have excellent security, but it and its’ following CFI systems

are all facing the problem that precise CFG is difficult to

extract. The existing static analysis techniques on binaries

consumes too much memory and computation resources,

therefore simpler methods are adopted by CFI techniques.

A. Code Reuse Attacks

Code reuse attacks (CRAs) have developed for a long term

since the first ret2libc technique published in 1997. Ret2libc
[16] can find and take advantage of the function in the

shared libraries and then obtain a shell by calling the system()
function.

Return-Oriented Programming (ROP) [17], which can

realize arbitrary computation without code injection over any

sufficiently large program codebase, became popular after

2007. In ROP, code in shared libraries and also in program

binaries can be reused. A series of short sections of code,

ending with the low-level instruction ret, named gadgets, can

be chained together into a coherent exploit. ROP is so strong

and flexible that the automated attack methods and tools using

ROP appeared quickly.

Jump-Oriented Programming (JOP) [18] was developed

after ROP. Compared with ROP, JOP can take both gadgets

ending with ret and gadgets which end with indirect jmp.

Moreover, both ROP and JOP have been proved Turing

complete, too.

COOP is a binary-level function reuse technology proposed

recently to exploit C++ programs. Virtual functions and

virtual tables are features of C++ language. At binary-level,

virtual functions are all special function pointers recorded

in virtual tables, which means that program will do indirect

calls when using virtual functions. Based on the analysis of

C++ programs, COOP finds that there exists many virtual

functions with different effects on memory and registers

(Program Counters, Parameter Registers. etc.). Object with

virtual function table could be counterfeited by COOP to

control where and when the selected virtual functions, which

are called vfgadgets (virtual-function gadgets), should be

loaded and executed.

CFB can achieve an attack vector even when an precise

fine-grained CFI system is deployed. In the code space of

program, what CFB do firstly is to find a path to system()
in CFG. And then the control flow would be diverted down

to this path, and the protection system would be bypassed

successfully after executing system() lastly.

From the ret2libc to the advanced COOP and CFB, the reuse

of existing binary code has become increasingly fine-grained

and more and more carefully craft. The key point is that all

those code reuse techniques using by attackers is based on the

important fact that we do not know exactly how the control

flow changes at indirect transfer points.

B. Control-Flow Integrity

CFI is a natural idea to protect programs against CRAs,

which was believed to achieve excellent security. Although

the origin CFI was put forward as early as 2005, it has

not been widely applied in industry yet. Regardless of

performance factors, the security of existing CFI systems is

still questionable. Recent papers [10], [11], [19]–[22] show

that for both coarse and fine grained CFI systems, there is the

possibility of being bypassed.

Coarse-grained CFI systems [3], [5] do not require precise

CFGs. And they only check that whether the targets of ret
and indirect call are in the legitimate collection according

to result of static analysis, when the control flow transfer is

indirect. For example, in a coarse-grained CFI policy, the legal

destination addresses of all ret instructions are any of the next

instruction after a call, and all entry sites of functions in the

binary are allowable when doing a indirect call instruction,

etc. Such loose policies taken by coarse-grained CFI systems

result in that carefully crafted gadgets can still be found and

used to break the CFI.

Fine-grained CFI [4], [6], [7], [9] systems also suffer from

approximate CFGs, especially in large-scale programs. In

fine-grained CFI, the call relations between functions will be

calculated firstly and then the functions are assigned with

unique labels. Those labels will be checked before functions

return to make sure that the return is correct. Because of the

coarse CFG used in the CFI systems, attackers may succeed in

mining a path from vulnerability code to a system call. Even a

best formed Fine-grained CFI with the most restrictive policy

can not stop all attacks.

Existing coarse and fine grained CFI systems are both far

from desired effect. One of the most important reasons is that

the context semantics are missing when program is running.

PathArmor which realized a practical context-sensitive CFI

mitigates the problem with the help of hardware (LBR). With

a partly collection of control flow transfers, PathArmor will

validate groups of execution paths, which occur during the

runtime of program. By searching paths in CFG, PathArmor

can judge whether the path is legitimate.

C. Binary Analysis

There are many famous platforms to analyze program

binaries, such as IDAPro [23], BAP [13], angr [24], etc. One

of the main problems to recover CFG completely and precisely

from low-level binaries is indirect branch instructions.

Many programs try to address the problem through static

analysis, in which filed symbolic execution is one of

the popular methods. In symbolic execution, formulas and

symbols need to be constructed based on binary code, and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

850

paths in CFG can be calculated with some algorithms such as

enumeration of all possible transfers.

A precise CFG may be obtained by symbolic execution,

only if the size of target program is not too big. Otherwise it

would bring out another problem called path explosion. Plenty

of memory and CPU resources would be needed even if a

suitable size program is analyzed using this algorithm.

Since the performance cost is another problem in CFI

systems, it is not a good choice to analyze binaries with static

methods described above.

III. METHODOLOGY

The biggest difference between CCFI and other CFI systems

is the way to validate the running state.

Traditional CFI systems always examine whether the next

transfer target is in the expected legitimate collections at the

indirect transfer points as isolated, ignoring the previous path

the program executed.

CCFI makes it more certain that the path of program’s

executed control flow could be a real path defined in the CFG.

All transfers gathered by hardware will be validated. CCFI is

a more promising way to protect binaries against the advanced

CRAs.

A. Weakness Analysis

CCFI provides stronger defensive ability than the origin

CFI. However, it’s practical implementation, PathArmor, does

not care about the precise of CFG, either. The using of

approximate CFGs weakens CCFI, and leaves gaps for

attackers.

Just like other CFI systems, all possible entry sites of

functions in binaries, with a very simple data-flow analysis,

are taken as legitimate at the indirect call-sites with the policy

of PathArmor. When validating the collected paths, PathArmor

can not decide whether the targets of indirect calls are correct.

So when an ”unknown” path is captured by PathArmor, it will

be inserted into the CFG after that its’ safety is confirmed.

As it is known, transfer targets at the indirect call-sites are

undefined and ambiguity after compiled. In other words, any

address can be called only if allowed by the CFI policy. It

means that each entry address of functions can be called.

Under a weak CFG, all we shall do to exploit binary is to

find a path from vulnerability to system functions.

Origin CCFI has talked about the situation under attacking

of COOP and CFB, the forward-edge invariants have been

enhanced to raising the bar against COOP-like and CFB-like

attacks. Actually, PathArmor depends on simple data-flow

analysis to decide the target of transfers at indirect call-sites.

It leads to gaps left for attackers as a result that many targets

are taken and some impossible addresses are selected, either.

B. Parameter Counter Matching Based Indirect-Call
Targets Reduction Algorithm

In most programs written by C/C++ language, there are

many indirect calls as due to that C/C++ allow flexible

function pointers, which make it very hard to analyze the real

Algorithm 1 Forward analysis of functions

Input: Instructions Set of Function F
Output: Counter of parameters consumed by the function,

Counter;
1: procedure FORWARD ANALYSIS(F , CFG)
2: CFG,BBs ←F
3: for all block ∈ Set(EntryBlocks) do
4: registerStatus ←Set(rdi, rsi, rdx, rcx, r8, r9)
5: toV isit ←StackInitialize()
6: visited ←StackInitialize()
7: toV isit.push(block)
8: while toV isit.empty() not TRUE do:
9: targteBlock ← toV isit.pop()

10: if targetBlock ∈ visited AND targetBlock
contains loops then

11: Continue
12: end if
13: insts ←GetInstructions(targetBlock)
14: registerStatus ←UpdateStates(insts)
15: if targetBlock contains Dynamic Site or

targetBlock is EixtBlock then
16: Break
17: end if
18: visited.push(targetBlock)
19: toV isit.push(targetBlock.targets())
20: end while
21: end for
22: Counter ←Get(registerStatus)
23: return Counter
24: end procedure

function to call at binary-level. As described above, the key to

mitigate the problem is to get a more precise CFG to constraint

transfers that occur at the forward-edges, which also means

indirect call-sites. Existing techniques in binary analysis are

always too heavy to use, especially in CFI systems that have

already brought out high performance loss. To address the

problem, we propose a new algorithm basing on the fact that

the using of C/C++ functions follows the Application Binary
Interface (ABI).

The ABI specifies how parameters are passed when calling

a function at binary-level. Six registers, rdx, rcx, rdi, rsi, r8,
r9, are using as parameter registers in x86 64 Linux systems.

Parameters which no more than six are loaded into those six

registers in sequence, and used by the called functions in the

same way.

It is difficult to get semantics at indirect call-sites, but

functions are compiled and used in similar way. When calling

a function, parameters should be loaded and used. So if we

have the knowledge about the counts of parameters prepared

at call-sites and consumed in functions, incorrect transfers

can be limited. According to the thought, the parameter
counter matching based indirect-call targets reduction (PCM)

algorithm are proposed and designed.

C. Implementation

With the knowledge of ABI, we can get the call relations

approximately by parameter analysis between call-sites and

functions. We propose two algorithms to analyze the call-sites,

functions and one algorithm to match them.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

851

Algorithm 2 Backward analysis at callsites

Input: Instructions of Function Containing Callsites, Function,
Block

Output: States of parameters prepared before the callsites,
registerState

1: procedure BACKWARD ANALYSIS(F , CFG, block)
2: registerStatus ←Set(rdi, rsi, rdx, rcx, r8, r9)
3: instSet ←GetInstructions(block)
4: for all inst ∈ instSet do
5: readRegisters ←GetReadRegisters(inst)
6: UpdateState(registerStatus)
7: writeRegisters ←GetWriteRegisters(inst)
8: UpdateState(registerStatus)
9: end for

10: if block is Entry OR Counter equals 6 then
11: return Counter
12: end if
13: Edges ← GetIncomingEdges(block)
14: for all edge ∈ Edges do
15: if edge is indirect then
16: Continue
17: end if
18: sourceBlock ←GetSourceBlock(Edge)
19: if sourceBlock contains Loop then
20: if sourceBlock is NOT analyzed then
21: SetLoopBlockAnalyzed(sourceBlock)
22: prevState ←BackwardAnalysis(Function,

CFG, sourceBlock)
23: merge(registerState, prevState)
24: end if
25: end if
26: if sourceBlock is ExitBlock then
27: Continue
28: end if
29: prevState ←BackwardAnalysis(Function,CFG,

sourceBlock)
30: merge(registerState, prevState)
31: end for
32: return registerState
33: end procedure

The six registers are working with four states

including that Read(R), Write(W), Read-Before-Write(RW),

Write-Before-Read(WR). The first state of one register after

a function entry can decide that whether it is used to pass a

parameter because the parameters should be read from the

register. Similarly, how the parameters are prepared can be

learn from that the last state, R or W, of the six registers

before a call-site, as the parameter value must be loaded into

the registers. Basing on the idea, we achieves three processes

to realize PCM.

The first forward-analysis algorithm is designed to calculate

how many parameters are consumed in a function, and

each instruction which would be executed in the function is

analyzed as what done in algorithm 1. Parameter registers’

states of instructions from the entry to the exit points in each

function are calculated and merged lastly to analyze how many

parameters the function consumed. Detailed as follows.

1. All basic blocks in a function are extracted into a CFG.

2. Parameter registers’ states generated by instructions from

the entry blocks to the exit blocks in the function are analyzed

and collected with a depth-first traversal down to its next block

following its’ CFG.

Algorithm 3 Matching between callsites and functions

Input: Functions with counter of parameters consumed,
Functions. Callsites Set with counter of parameters prepared,
Callsites.

Output: Result of matching, result.
1: procedure MATCHING(Functions, Callsites)
2: for all callsite ∈ Callsites do
3: callTargetSet ← InitialSet()
4: for all func ∈ Functions do
5: if callsite.paramCount==0 then
6: if func.paramCount==0 then
7: callTargetSet.add(func)
8: end if
9: end if

10: if callsite.paramCount¿=func.paramCount AND
func.paramCount¿0 then

11: callTargetSet.add(func)
12: end if
13: end for
14: end for
15: return Result
16: end procedure

3. Merge all states generated by the instructions.

If state of a register is R or RW, it should be considered as

a parameter used by the function. If a register which locates

on the right side in the order of {rdi, rsi, rdx, rcx, r8, r9}
is used as parameter register but the one left of it is not

used, the maximum number of parameters will be returned.

For example, if a function takes r9 as parameter but null for

r8, rcx or other registers, the counter of parameters should be 6

other than a fewer one, considering that sometimes parameters

are passed to the called function but not used.

A backward-analysis recursion algorithm is implemented

to compute the count of parameters prepared at call-sites, as

shown in algorithm 2.

1. All basic blocks and indirect call-sites in a function are

extracted into a CFG.

2. Parameter registers’ states generated by instructions from

the call-sites back to the entry of functions are analyzed and

collected.

3. All states are merged to analyze the number of parameters

prepared before call-sites.

Basic blocks are analyzed start at call-sites along the reverse

direct of the blocks which are loaded when running. During the

backward analysis, blocks with loops and dynamic transfers

are specially handled for which loops and dynamic targets are

hard to decide.

At last, based on the comparison between call-sites and

functions, a simple match algorithm is implemented shown

in algorithm 3. Due to the approximate result calculated with

algorithm 1 and 2, we have to take a conservative approach to

match the targets of call-sites. If a call-site prepares parameters

is not less than that function could consume, the transfer is

allowed exclude the function consumes 0 parameters. It is legal

only if the count of parameter call-sites prepared and functions

consumed are both 0.

IV. RESULT

In this section, we will evaluate our PCM algorithm.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

852

At first, we use a small toy code to analyze the security of

PathArmor combined with our algorithms.

Then we choose some open-source C/C++ programs with

different size and complexity described as Table I. We

experiment our algorithms on UbuntuKylin14.04 x86 64

system with gcc version 4.8.4.

Programs were compiled in default way with their makefiles

and the compile information were saved.

A. Security

In order to make sure that whether the security is enhanced

by our algorithm, we make a demo program written in C,

which the main function is to execute the code from the

address accepted from the console.

Fig. 1 Indirect callsite in our demo program

Fig. 1 shows that two function pointers with different styles

are used in our demo program, and we have two indirect

call-sites in binary. It is worth to noting that two pointers are

assigned to the same value in the short section.

Fig. 2 describes some functions with different parameters

needed and their addresses in binary.

Fig. 2 Functions used in our demo program

At first we use the PathArmor to analyze the program and 5

addresses are taken totally including the entry of function foo,

foo1 main and other two function with the prefix libc. It is

allowed to be called at any indirect call-sites if the addresses

are taken by PathArmor. But in our demo program, the

function pointer p is defined with no parameter and the other

function pointer defined with one parameter. The function foo1
can be loaded in p as well as p1 and to execute.

In our algorithm, p is unable to execute with the address of

foo1 taken, for which the count of parameters prepared before

p is 0 but the function foo1 needs one parameter passed in.

The indirect targets are constrained by our algorithm.

From our analysis on the binaries of popular programs

shown in Table I, we find that function pointers are used

few and cautious. It is hard to get all targets of indirect

callsites precisely, all we can do is to use an approximate result

conservatively. In our policy for CCFI, when calling indirectly,

some occasional false positives are allowed and continuous

error are stopped to guarantee the security.

B. PCM Algorithm

1) Functions Consumed Parameters: With the help of

symbolic table generated when compiling, we analysis the

result of our experiments. At first, we evaluate algorithm 1

at all functions for each program. Results are shown in Fig.

3.

Fig. 3 Result on count of parameters functions consumed

In Fig. 3, it is considered as correct if the count of parameter

of functions consumed calculated with algorithm 1 is equal

to or greater than that of functions consumed actually. And

perfect is refer to that parameters count are strictly equal.

Fig. 3 shows that the correct rate our algorithm obtained is

good ranking with the worst which is little less than 80%

(bzip2) to the best which is nearly 100% (nginx), with a

geometric mean of 91.2%.

Some functions in C/C++ programs, like the start main
generated by glibc ending with jumps and without returns, are

often mistaken by our algorithm. In fact in the program bzip2,

a program for compressing and decompressing, the number of

incorrect parameters are less as it is too small.

The perfect rate are different from each other from best

greater than 95% to the worst less than 10%. But in this paper

what we need is to constrained the targets at indirect call-sites,

a precise result is expected but not necessary.

2) Call-Sites Prepared Parameters: In order to evaluate our

algorithm 2, we test it on all direct call-sites for each program.

The direct call-sites and functions are judged matched if the

conditions which described in algorithm 3 are satisfied. The

result are shown in Fig. 4.

As shown in Fig. 4, the rate of matched between direct

call-sites and its’ targets are all greater than 80% with a

geometric mean 90.2%. It indicates that our PCM algorithm



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

853

TABLE I
PROGRAMS USED AS TESTCASES

Programs version functions number direct callsites number indirect callsites number size

bzip2 1.0.6 81 468 22 190.6KB

vsftpd 3.0.2 602 2666 8 136.4KB

Lighttpd 1.4.33 314 2239 55 870.5KB

Apache Httpd 2.4.23 1209 5266 180 910.7KB

Nginx 0.8.54 1161 4895 281 2.3MB

redis-server 3.2.1 2557 5574 310 5.3MB

performance good when doing matching between callsites and

its target functions and the same to the situation at indirect

call-sites.

The number of indirect call-sites are far less than that of

direct call-sites, which means it is a great probability that

parameters matching by our algorithm would cover the real

facts.

Fig. 4 Result on parameters matching at direct call-sites

3) Reduction in Indirect Call-Sites’ Targets: Based on the

result taken by PathArmor depending on simple data-flow

analysis, we measure the effect of our algorithm. The result

is shown in Fig. 5.

Comparing to the origin set of indirect call targets used by

PathArmor, our algorithm achieves a good result. The set of

indirect call-sites’ targets is obviously smaller than PathArmor

with a geometric mean 56.8%. And the smaller, the better.

V. CONCLUSION

In this paper, we present a PCM algorithm, a method to

get a more precise CFG for CFI. PCM algorithm relies on

binary-level static analysis to detect the call relations between

indirect call-sites and functions.

To advanced CRAs like CFB and COOP, due to the

use of function pointers, the reuse of functions in binaries

are becoming popular. The targets of indirect call-sites

can be constrained a lot to stop the function-reuse attacks

combined with PathArmor. Gaps are still exists because of

our conservative policy, but CCFI is further enhanced with

our algorithm.

Fig. 5 Result on constraint analysis: the indirect call targets comparing to
PathArmor

ACKNOWLEDGMENT

We thank the open-source program of PathArmor and its

contributors. This work was supported by the National Natural

Science Foundation of China (61303191,6130319,61402504).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[2] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive cfi,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 927–940.

[3] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 337–352.

[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM
Transactions on Information and System Security (TISSEC), vol. 13,
no. 1, p. 4, 2009.

[5] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 559–573.

[6] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010, pp. 380–395.

[7] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[8] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks with
control-flow locking,” in Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 2011, pp. 353–362.

[9] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014, pp. 941–955.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:7, 2017

854

[10] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[11] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
161–176.

[12] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based
framework for control flow reconstruction from binaries,” in
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2009, pp. 214–228.

[13] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 463–469.

[14] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and
B. Thuraisingham, “Differentiating code from data in x86 binaries,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2011, pp. 522–536.

[15] S. Designer, “Getting around non-executable stack (and fix),” 1997.
[16] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,

“On the expressiveness of return-into-libc attacks,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2011,
pp. 121–141.

[17] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Proceedings of
the 14th ACM conference on Computer and communications security.
ACM, 2007, pp. 552–561.

[18] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,”
in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 559–572.

[19] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[20] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 401–416.

[21] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 901–913.

[22] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 952–963.

[23] I. P. Disassembler, “Debugger,” 2010.
[24] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.


