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Matrix Equation AXB −X = C and

Preconditioning
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Abstract—In this paper, we present the block generalized
minimal residual (BGMRES) method in order to solve the
generalized Sylvester matrix equation. However, this method may
not be converged in some problems. We construct a polynomial
preconditioner based on BGMRES which shows why polynomial
preconditioner is superior to some block solvers. Finally, numerical
experiments report the effectiveness of this method.

Keywords—Linear matrix equation, Block GMRES, matrix Krylov
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I. INTRODUCTION

CONSIDER the generalized linear sylvester equation

AXB −X = C, (1)

where A ∈ R
n×n, B ∈ R

s×s, C ∈ R
n×s, and X is the

unknown matrix in R
n×s. The matrix equation (1) plays an

important role in control and communication theory; see [3],

[4]. Also, the discrete -time time -invariant linear systems

xk+1 = Axk +Buk,

yk = cxk,

k = 0, 1, 2, ... and x0 is given. These systems are associated,

for instance, with the discrete -time Lyapunov equation

AXAT −X = −BBT .

It arises naturally in a wide variety of control applications

such as stability analysis [17] model order reduction [12],

[15], [18] and Newton’s method for discrete algebraic Riccati

equations [2]. The discrete-time Lyapunov equation is a special

case of matrix equation (1).
The analytical solution of the matrix equation (1) has been

considered by many authors; see [6]. They have proposed

the Bartels-Stewart algorithm for solving matrix equation (1).
The direct methods for solving the matrix equation (1) such

as those proposed in [6], [7] are attractive if the matrices

are of small size. These methods are based on the Schur’s

decomposition, by which the original equation is transformed

into a form that is easily solved by a forward substitution. In

recent years, several iterative methods based on the Arnoldi

process have been proposed to solve the matrix equation (1).
For example, in [1], Bao et al. proposed an iterative method

which allows us to construct an orthonormal basis of certain
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Krylov subspace and simultaneously reduce the order of the

generalized Sylvester equation (1). By the same token, in [3],

Bouhamidi et al. proposed the global generalized minimum

residual (GL - GMRES) to solve the following general linear

matrix equations:

p∑
j=1

AjXBj = C,

and then they applied ILU (incomplete LU factorization) and

SSOR preconditioning in order to solve the Sylvester equation

AX+XB=C. Here, we use ILU and SSOR preconditioning the

same as the methods that [3] were used.

In this paper, we generalize the GMRES method to obtain a

matrix iterative method to solve the matrix equation (1). Also,

we present a polynomial preconditioner. Then, we compare

these methods with BGMRES (ILU), BGMRES (SSOR) and

NSCG [19], squared Smith (SM) and restarted Krylov squared

Smith (RKSS) [10], [16] methods. Finally, we show that

PBGMRES is more effective than the other methods.

Let X = [x1, x2, . . . , xs], where xi, i = 1, 2, ..., s is ith

column of X . We define a linear operator

vec :Rn×s −→ R
ns

X �−→ [xT
1 , x

T
2 , . . . , x

T
s ]

T (2)

Hence, the linear matrix equation (1) can be written as the

following ns× ns linear system

Ax = c, (3)

where A = (BT ⊗A− Ins), x = vec(X), c = vec(C) and ⊗
denotes the Kronecker product, see [4]. This product satisfies

the properties

(A⊗B)(C ⊗D) = (AC ⊗BD), (A⊗B)T = AT ⊗BT .

Equation (3) has a unique solution if and only if the matrix

A is nonsingular.

Throughout this paper, we use the following notations:

Let X,Y ∈ R
n×p, the Frobenius inner product is defined

< X,Y >F= tr(XTY ), where tr(.) denotes the trace and

XT the transpose of the matrix X . The associated norm is

the well-known Frobenius norm denotes by ‖.‖F . A system of

matrices of Rn×p is said to be F-orthogonal, if it is orthogonal

with respect to the scalar product < ., . >F , that means

tr(XTY ) = 0. The Kronecker product of A ∈ R
m×n and

B ∈ R
p×q is defined by A ⊗ B := [aijB] ∈ R

mp×nq . We
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use the notation ∗ for the following product [8], [9], let Vm

denote the n × ms block matrix Vm = [V1, . . . , Vm], where

Vi ∈ R
n×s for i = 1, . . . ,m. If Dm = [d1, . . . , dm] ∈ R

m×m

and α = [α1, . . . , αm]T ∈ R
m, then we have

Vm ∗ α =
m∑
i=1

αiVi,

Vm ∗Dm = [Vm ∗ d1, . . . ,Vm ∗ dm].

If Hm ∈ R
m×m and α, β ∈ R

m, then the matrix product ∗
satisfies the following properties

Vm ∗ (α+ β) = (Vm ∗ α) + (Vm ∗ β),
(Vm ∗Hm) ∗ α = Vm ∗ (Hmα),

(Vm ∗ α)T = VT
m ∗ α.

The remainder of this paper is organized as follows: In

Section II, a description of the block generalized minimal

residual (BGMRES) is given. In Section III, we show how

to apply polynomial preconditioner in order to solve the

generalized Sylveter matrix equation AXB − X = C.

Section IV is devoted to some numerical experiments. Finally,

conclusion is given in Section V.

II. THE BLOCK GMRES METHOD

In this section, we define the mth generalized matrix Krylov

subspace and recall the modified global Arnoldi process, for

more details, see [11], [13].

Definition 1. Let V be any n×s matrix. Then, the generalized
matrix Krylov subspace is associated to (A, V,B) and an
integer m is defined as

GKm(A, V,B) = span{V,AV B, . . . , Am−1V Bm−1}.
The modified global Arnoldi process allows us to construct

an F-orthonormal basis for the generalized matrix Krylov

GKm(A, V,B), see [11], [13].

Algorithm 1 The Modified Global Arnoldi Algorithm

Require: A ∈ R
n×n, B ∈ R

s×s, m ∈ N and the nonzeros

matrix V ∈ R
n×s.

Ensure: The block vectors V1, V2, ..., Vm+1 and the semi

upper hessenberg matrix H̄m = (hij).
1: set V1 = V/‖V ‖F ;

2: for j = 1, ...,m do
3: W = AVj ;

4: W = WB;

5: for i = 1, ..., j do
6: hij =< Vi,W >F= tr(WTVi);
7: W = W − hijVi;

8: end for
9: Compute hj+1,j = ‖W‖F ; if hj+1,j = 0, stop

10: Compute Vj+1 = W/hj+1,j ;

11: end for

Since the modified Arnoldi algorithm involves the

Gram-Schmidt process, algorithm 1 builds an F-orthonormal

basis Vm = [V1, V2, . . . , Vm], Vi ∈ R
n×s for the generalized

Krylov subspace GKm(A, V,B) and a semi upper Hessenberg

matrix H̄m ∈ R
m+1×m. The following theorem can be easily

proved.

Theorem 1. Let Vm, H̄m and Hm be as defined above. The
global Arnoldi process satisfies the following

1) AVm(Im ⊗B) = Vm ∗Hm + Em+1,
where Em+1 = hm+1,m[On×s, . . . , On×s, Vm+1].

2) AVm(Im ⊗B) = Vm+1 ∗ H̄m.
3) For any (m+ 1)× s matrix G, we have

‖Vm+1 ∗G‖F = ‖G‖2.

Theorem 2. Let A ∈ R
n×n , B ∈ R

s×s, C ∈ R
n×s. Let

X0 ∈ R
n×s be an initial guess and R0 is its corresponding

residual. Then

Km(BT ⊗A, r0) = Km(A, r0),

where A = (BT ⊗ A − Ins), r0 = vec(R0) and Km(A, r0),
Km(BT ⊗A, r0) are the classic Krylov subspaces.

Remark 1. Suppose that

Km(BT⊗A, r0) = span{r0, (BT⊗A)r0, . . . , (B
T⊗A)m−1r0},

where r0 = vec(R0). The map

T : GKm(A,R0, B) −→ Km(BT ⊗A, r0)

given by Z −→ vec(Z) is an isomorphism. Hence, by theorem
2 and above discussion, the two subspace GKm(A,R0, B) and
Km(A, r0) are isomorph, i.e.

GKm(A,R0, B) � Km(A, r0).

Therefore, we can conclude that

AGKm(A,R0, B) � AKm(A, r0), (4)

where

AGKm(A,R0, B)B = span{AR0B,A2R0B
2, . . . , AmR0B

m},
and

AKm(A, r0) = span{Ar0,A2r0, . . . ,Amr0}.
Let X0 ∈ R

n×s be an initial guess and the corresponding

residual is

R0 = C − AX0B + X0. The block GMRES algorithm, at

the mth step, constructs the approximation solution Xm to the

solution of (1) such that

Xm = X0 + Zm s.t. Zm ∈ GKm(A,R0, B), (5)

with F-orthogonality relation

Rm = C −AXmB +Xm ⊥F AGKm(A,R0, B)B. (6)

In theorem 3, we show that F-orthogonality (6) is equivalent

to minimization problem (7).

Theorem 3. Let A and B be two arbitrary matrices. Let X0 be
an initial guess and R0 is its corresponding residual. Then a
matrix Xm is the result of an oblique projection method onto
GKm(A,R0, B) and F-orthogonal to AGKm(A,R0, B)B if
and only if it minimizes the F-norm of the residual matrix
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R = C −AXB +X over
X ∈ X0 + GKm(A,R0, B), i.e, if and only if

||Rm||F = min
X∈X0+GKm(A,R0,B)

||R||F ,

where Rm = C −AXmB +Xm.

Therefore, the F-orthogonality (6) is equivalent to

minimizing the Frobenius norm of the residual

‖Rm‖F = min
Z∈GKm(A,R0,B)

‖C −A(X0 + Z)B +X0 + Z‖F
(7)

i.e. Xm solves the minimization problem (7). Consider

the F-orthogonal basis Vm, constructed with algorithm 1.

Application of m steps of the algorithm 1 to the matrices A
and B with the nonzero residual matrix R0 yields theorem 1.

The least squares problem (7) can be reformulated as:

‖C −A(X0 + Z)B +X0 + Z‖F
= ‖C −A(X0 + Vm ∗ ym)B +X0 + Vm ∗ ym‖F
= ‖R0 −A(Vm ∗ ym)B + Vm ∗ ym‖F
= ‖R0 − (AVm(Im ⊗B)) ∗ ym + Vm ∗ ym‖F .

By ∗ product properties and theorem 1, we have

‖R0 − (AVm(Im ⊗B)− Vm) ∗ ym‖F
= ‖‖R0‖FV1 − (Vm+1 ∗ (H̄m −

(
Im

0s×m

)
)) ∗ ym‖F

= ‖Vm+1 ∗ (‖R0‖F e1 −
(

Hm − Im
hm+1,meTm

)
ym)‖F

= ‖‖R0‖F e1 −
(

Hm − Im
hm+1,meTm

)
ym‖2.

The above results are summarized in the following theorem.

Theorem 4. At step m, the approximation solution Xm

produced by the block GMRES method is given by Xm =
X0+Vm ∗ym where ym is the solution of the following small
least square problem

ym = arg min
y∈Rm

‖‖R0‖F e1 −
(

Hm − Im
hm+1,meTm

)
y‖2, (8)

where e1 is the first unit vector of Rm+1.

The minimization (8) can be solved by the QR factorization

of

(
Hm − Im
hm+1,meTm

)
with Givens rotations.

By algorithm 1 , the

(
Hm − Im
hm+1,meTm

)
is an unreduced semi

upper Hessenberg matrix and rank(

(
Hm − Im
hm+1,meTm

)
) = m.

Then, there is an orthogonal matrix Qm ∈ R
(m+1)×(m+1) and

an invertible upper triangular matrix R̄m ∈ R
(m)×(m) such

that (
Hm − Im
hm+1,meTm

)
= Qm

(
R̄m

0

)
(9)

With substitution (9) into (8), we obtain

‖Rm‖F = min
y∈Rm

‖‖R0‖F (QT
me1)−

(
R̄m

0

)
y‖2

for obtaining ym, we solve the following upper triangular

system:

R̄my = ‖R0‖F
(
Im, 0

)
(QT

me1).

Then, we get the BGMRES iterative solution to (1),

Xm = X0 + Vm ∗ ym.

It can be easily shown that the residual matrix form is as:

Theorem 5. The residual matrix at step m, Rm = C −
AXmB + Xm produced by the block GMRES for the linear
matrix equation satisfies the following properties

Rm = γm+1Vm+1 ∗
(
Qmem+1

)
,

and
‖Rm‖F = |γm+1|,

where γm+1 is the last component of the vector
gm = ‖R0‖FQT

me1 and
em+1 = (0, . . . , 0, 1)T ∈ R

m+1.

Finally, the previous results can summarized in the

following algorithm.

Algorithm 2 The block GMRES algorithm (BGMRES)

Require: A ∈ R
n×n, B ∈ R

s×s, an initial guess matrix

X0 ∈ R
n×s, m ∈ N and ε.

Ensure: The solution Xm.

1: Compute R0 = C −AX0B+X0, β = ‖R0‖F , V1 =
R0

β
;

2: Construct the F-orthonormal basis V1, V2, ..., Vm+1 and

the semi upper Hessenberg matrix H̄m by Algorithm 1;

3: Solve the least squares problem

ym = arg min
y∈Rm

‖‖R0‖F (QT
me1)−

(
R̄m

0

)
y‖2

4: Compute: Xm = X0 + Vm ∗ ym;
5: Compute the residual Rm = C − AXmB + Xm and

‖Rm‖F by using Theorem 1;

6:

7: if ‖Rm‖F < ε then
8: Stop;

9: end if
10: set X0 = Xm Go to 1;

In the next section, we construct the polynomial

preconditioned BGMRES based on BGMRES.

III. POLYNOMIAL PRECONDITIONING

Consider the generalized Sylvester matrix equation (1). In

Section II, we will show that this equation can be solved by

the block GMRES method, however this method may slow

down the convergence. In order to accelerate the convergence,

we construct a polynomial preconditioned BGMRES based

on BGMRES. Let X0 ∈ R
n×s be an initial guess and R0 =

C − AX0B + X0 is its corresponding residual. Define the

n×ms block matrix Km as:

Km =
[
R0, AR0B, . . . , Am−1R0B

m−1
]
. (10)
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Assume that Algorithm 1 does not stop before the mth step.

Then by relation 1 from the theorem 1, we get

Vm+1 = h−1
m+1,m

(
AVmB − Vm ∗H.,m

)
, (11)

where

H.,m = (h1m, . . . , hmm)T .

Since the space generated by the matrix Km is the same as

the space spanned by the matrix Vm. Therefore, we have

Vm = Km ∗ Sm, (12)

where Sm is an upper triangular matrix

Sm =

⎡
⎢⎣
s11 . . . s1m

. . .
...

0 smm

⎤
⎥⎦ .

By Kronecker and * product properties, we have

Vm ∗H.,m = (Km ∗ Sm) ∗H.,m

= Km ∗ (SmH.,m)

=
[
Km, AmR0B

m
] ∗

(
SmH.,m

0

)

= Km+1 ∗
(
SmH.,m

0

)
. (13)

Since AVm(Im ⊗B) = (AKm(Im ⊗B)) ∗ Sm, then

AVmB = (AKm(Im ⊗B)) ∗ S.,m

=
(
AR0B,A2R0B

2, . . . , AmR0B
m
) ∗ S.,m

= Km+1 ∗
(

0
S.,m

)
. (14)

By substitution (13) and (14) into (11), we obtain

Vm+1 = Km+1 ∗ (h−1
m+1,m[

(
0

S.,m

)
−
(
SmH.,m

0

)
]) (15)

Since Vm+1 = Km+1 ∗ Sm+1, then

Vm+1 = Km+1 ∗ S.,m+1. (16)

From relations (15), (16) and linearly independent columns

of the Km+1, we conclude

S.,m+1 = h−1
m+1,m

(
0

S.,m

)
− h−1

m+1,m

(
SmH.,m

0

)
. (17)

In the sequel, consider the approximation solution Xm that by

using BGMRES method is obtained

Xm = X0 + Vm ∗ ym.

Since Vm ∗ ym = Km ∗ (Smym) and

Rm = R0 −AXmB +Xm

= R0 −A(Vm ∗ ym)B + Vm ∗ ym
= R0 − (AKm(Im ⊗B)) ∗ Smym +Km ∗ Smym

= R0 − (AKm(Im ⊗B)−Km) ∗ Smym. (18)

Then by applying vec(.) operator on equation (18), we get

vec(Rm) = (19)

(Ins − (BT ⊗A− Ins)
m−1∑
j=0

aj((B
T )j ⊗Aj))vec(R0)

= P (BT ;A)vec(R0) (20)

where

(a0, . . . , am−1)
T = Smym, (21)

and the residual polynomial is as:

Pm(x, y) = 1− (xy − 1)Qm−1(x, y), (22)

where

Qm−1(x, y) =
m−1∑
j=0

ajx
jyj . (23)

From (22), we have Qm−1(x, y) = 1−Pm(x,y)
(xy−1) and (BT ⊗

A − Ins)
−1 ≈ Qm−1(B

T ;A). Therefore, we can apply

Qm−1(x, y) as the preconditioner polynomial. We must solve

the linear equation system:

Qm−1(B
T ;A)(BT⊗A−Ins)vec(X) = Qm−1(B

T ;A)vec(C),
(24)

by using BGMRES. The algorithm BGMRES, at the kth step,

constructs the approximate solution Xk to the solution (24)
such that

Xk = X0 + Zk s.t. Zk ∈ GKk(A,R0, B) (25)

and with F-orthogonality relation

Rk =
m−1∑
j=0

ajA
jCBj −

m−1∑
j=0

aj(A
j+1XkB

j+1 −AjXkB
j)

⊥F AGKk(A,R0, B)B.

The above F-orthogonal relation is equivalent to the following

relation:

‖Rk‖F = minZ∈GKk(A,R0,B)‖R‖F , (26)

where

R =

m−1∑
j=0

aj(A
jCBj−(Aj+1(X0+Z)Bj+1−Aj(X0+Z)Bj)).

Consider F-orthonormal basis Vk, which is constructed by

using algorithm 1. After kth step of algorithm 1 to the matrices

A and B with the nonzero residual matrix R0, we can rewrite
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the relation (26) as follows:

‖
m−1∑
j=0

ajA
jCBj−

m−1∑
j=0

aj(A
j+1(X0 + Z)Bj+1 −Aj(X0 + Z)Bj)‖F

= ‖
m−1∑
j=0

ajA
jCBj−

m−1∑
j=0

aj(A
j+1(X0 + Vk ∗ yk)Bj+1 −Aj(X0 + Vk ∗ yk)Bj)‖F

= ‖R0 −
m−1∑
j=0

aj(A
j+1(Vk ∗ yk)Bj+1 −Aj(Vk ∗ yk)Bj)‖F

= ‖R0 −
m−1∑
j=0

aj(A
j+1Vk(Ik ⊗Bj+1)−

AjVk(Ik ⊗Bj)) ∗ yk‖F .

By * product properties and theorem 1, we get

‖R0 − (−a0Vk + (a0 − a1)AVk(Ik ⊗B)+

(a1 − a2)A
2Vk(Ik ⊗B2) + ...+

(am−2 − am−1)A
m−1Vk(Ik ⊗Bm−1)+

am−1A
mVk(Ik ⊗Bm)) ∗ yk‖F

= ‖R0 − (−a0Vk + (a0 − a1)Vk+1(H̄k ⊗ Is)

+ (a1 − a2)Vk+2(H̄k+1H̄k ⊗ Is) + ...+

(am−2 − am−1)Vk+m−1(H̄k+m−2...H̄k ⊗ Is)

+ am−1Vk+m(H̄k+m−1...H̄k ⊗ Is)) ∗ yk‖F

Therefore, we obtain

= ‖Vm+k(‖R0‖F (e1 ⊗ Is)− (−a0(

(
Ik

0m,k

)
⊗ Is)+

(a0 − a1)(

(
H̄k

0m−1,k

)
⊗ Is)

+ (a1 − a2)(

(
H̄k+1H̄k

0m−2,k

)
⊗ Is) + · · ·+

(am−2 − am−1)(

(
H̄k+m−2...H̄k

01,k

)
⊗ Is)

+ am−1(H̄k+m−1...H̄k ⊗ Is)) ∗ yk‖F

= ‖‖R0‖F e1 − (−a0

(
Ik
0m

)
+

m−2∑
j=0

(aj − aj+1)

(
H̄k+j ...H̄k

0m−1−j,k

)

+ am−1(H̄k+m−1...H̄k)yk‖2.

The above results, we can summarize in the following

theorem:

Theorem 6. After kth step of the algorithm BGMRES, the
approximation solution Xk of (24) is given by Xk = X0 +

Vk ∗ yk, where

yk = argminy∈Rk‖‖R0‖F e1 − (−a0

(
Ik
0m

)
+

m−2∑
j=0

(aj − aj+1)

(
H̄k+j ...H̄k

0m−1−j,k

)
(27)

+ am−1H̄k+m−1...H̄k)yk‖2,
(28)

with e1 ∈ R
k+m.

The minimization problem (28) can be solved by the QR

factorization the matrix

− a0

(
Ik
0m

)
+

m−2∑
j=0

(aj − aj+1)

(
H̄k+j ...H̄k

0m−1−j,k

)

+ am−1H̄k+m−1...H̄k.

This matrix is transformed to an upper triangular matrix and

then by solving the upper triangular system, we can obtain the

vector yk.

Using the above results, the polynomial preconditioner, i.e.

PBGMRES algorithm based on the BGMRES algorithm is

summarized in algorithm 3:

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examples to

illustrate the potential of the new algorithm with polynomial

preconditioner for the solution of the generalized linear

Sylvester equation (1). In the following examples, we mainly

evaluate and compare the performance of the new method

against block GMRES with ILU and SSOR preconditioner [3],

NSCG [19], squared Smith and restarted Krylov squared Smith

[10], [16]. We use Matlab 2014a on a PC- Pentium(R), CPU

2.66GHz, 4.00 GB of RAM. We use the zero initial vector

and stopping criterion ‖Rk‖F < 1e − 9 for all the methods.

In examples 4, 5, C =

⎛
⎜⎝
1
...

1

⎞
⎟⎠(

1, · · · , 1) for all the solvers. In

Tables I and II, we note that Iter, Res.norm and cputime denote

iteration number, residual norm and cputime, respectively.

Example 1. In this example, we have tested the BGMRES,
BGMRES with polynomial preconditioning, squared Smith
(SM) and restarted Krylov squared Smith (RKSS) methods with
m = 5, k = 10 on selected numerical example from [10],
[16]. The convergence behavior of these methods are shown
in Table I .

From Table I , we can see that the PBGMRES is faster than
the other methods.

Example 2. ( [16]). We consider the continuous- time
Lyapunov equation TX + XTT = −EET , where T is the
matrix TUB10003 of order n=1000 representing the Jacobian
of a tabular rector model, and E is a one column vector such
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Algorithm 3 The PBGMRES algorithm

Require: A ∈ R
n×n, B ∈ R

s×s, X0 ∈ R
n×s, k, ε and degree

m of Qm−1(x, y).
Ensure: Xk

1: Compute polynomial preconditioner Qm−1(x, y).
2: for l = 1, · · · , until convergence do
3: ComputeR0 = C −AX0B +X0, β = ‖R0‖F ,

V1 =
R0

β
, S1 = (

1

β
).

4: for j = 1, ...,m do
5: W = AVj ;

6: W = WB;

7: for i = 1, ..., j do
8: hij =< W,Vi >F ;

9: W = W − hijVi;

10: end for
11: hj+1,j = ‖W‖F ; if hj+1,j = 0 stop;

12: Vj+1 = W
hj+1,j

;

13: set H.,j =

⎡
⎢⎣
h1j

...

hj,j

⎤
⎥⎦, Sj =

⎡
⎢⎣
s11 · · · s1j

. . .
...

sjj

⎤
⎥⎦ ;

14: Compute

⎡
⎢⎣

s1,j+1

...

sj+1,j+1

⎤
⎥⎦ =

h−1
j+1,j

[
0

S.,j

]
− h−1

j+1,j

[
SjH.,j

0

]
;

15: end for
16: Solve the least squares problem

ym = arg min
y∈Rm

‖‖R0‖F e1 −
(

Hm − Im
hm+1,meTm

)
y‖2.

17: Compute:Xm = X0 + Vm ∗ ym;
18: Compute:Rm = C −AXmB +Xm; if

||Rm||F < ε, stop
19: Compute polynomial preconditioner Qm−1(x, y):

Smym = (a0, · · · , am−1)
T ,

Qm−1(x, y) =
m−1∑
j=0

ajx
jyj .

20: Compute the solution of

Qm−1(B
T ;A)(BT ⊗A− Ins)vec(X)

=Qm−1(B
T ;A)vec(C);

by solving the least square problem (28) and

Xk = Xm + Vk ∗ yk;
21: Set X0 = Xk

22: end for

that E(K) = 1/k, k = 1, 2, · · · , n. The Lyapunov equation is
transformed to an equation AXAT −X = −BBT with

A = (1− T )−1(1 + T ), B =
√
2(1− T )−1(1 + T )E

see, e.g. [5]. Now, we compare BGMRES, PBGMRES, and

TABLE I
CONVERGENCE RESULTS FOR BGMRES, PBGMRES, SM, RKSS, WITH

m = 5, n = 500, α = 0.4.

BGMRES NSCG PBGMRES SM RKKS

Iter Res.norm Res.norm Res.norm Res.norm Res.norm

1 1.4142 1.4142 1.4142 0.1280 0.1280
2 1.9626e- 05 0.0121 2.2823e- 16 0.0275 0.0275
3 1.7228e- 05 0.0485 5.2886e- 18 0.0208e- 01 0.0208e- 01
4 6.0121e- 09 0.0350 1.2740e- 18 0.0239e- 03 0.0239e- 03
5 4.0623e- 11 0.1088 2.6130e- 19 0.0722e- 07 0.0834e- 04
6 4.9543e- 12 0.0350 1.7657e- 19 0.0168e- 14 0.0295e- 04

RKSS methods with m = k = 10 for solving equation
AXAT −X = −BBT . The results are summarized in Table
II .

TABLE II
CONVERGENCE RESULTS FOR BGMRES, PBGMRES, RKSS WITH

m = k = 10.

Method Res.norm Iter.

PBGMRES(10) 0.00763e- 09 9
BGMRES(10) 0.0247 450
RKSS 0.0997e- 09 443

Example 3. The purpose of this example is to illustrate the
numerical behavior of BGMRES and BGMRES with ILU,
SSOR and polynomial preconditioning and m = 5. The matrix
A ∈ R

n×n is a bidiagonal matrix with entries 2, 2, 3, 4, ..., 64
on the main diagonal, and super diagonal entries 1. The matrix
B is the same as A. Also, the right hand side of the generalized
linear Sylvester equation AXB−X = C is such that X = 1
is the exact solution. The numerical computations are carried
out with m = 6, k = 10. The convergence curves plotted in
Fig. 1. From Fig. 1, we can see that BGMRES with polynomial
preconditioning is faster than the other methods.

Figure 1 The convergence results of BGMRES with SSOR, ILU, polynomial
BGMRES and NSCG methods with m = 5

Example 4. In this example, we use the matrices A =
tridiag(1+d, 4, 1−d), B = A with d = 5 and n = s = 64 and
k = m = 25. We evaluate the performance of the four block
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solvers. In Fig. 2, we show that BGMRES with polynomial
preconditioning is faster convergence than the other methods.

Figure 2 The convergence result of BGMRES with SSOR, ILU, polynomial
preconditioning and BGMRES methods

Example 5. The matrices are the same as in Example 4,
but d=8, m=k=10. We compare the convergence behavior of
BGMRES, PBGMRES, PBGMRES (ILU, SSOR). The results
are summarized in Table III .

TABLE III
CONVERGENCE RESULTS FOR BGMRES, PBGMRES, PBGMRES (ILU,

SSOR)

Method Iter. Res.norm Cputime(seconds)

BGMRES 5000 0.8503 1.438e+03
PBGMRES(polynomial) 7 3.8132e- 10 14.235
PBGMRES(ILU) 19 5.6427e- 10 2.5800
PBGMRES(SSOR) 88 1.1340e- 10 1.789e+3
NSCG 218 NaN -

V. CONCLUSION

We have derived a polynomial preconditioning block

GMRES method for the generalized Sylvester matrix equation.

It is observed by examples that PBGMRES is faster than some

other block solvers.

APPENDIX A

PROOF OF THEOREM 2

Since

Ar0 = (BT ⊗A)r0 − r0.

Thus Ar0 is a combination of (BT ⊗A)r0 and r0 and

span{r0,Ar0} = span{r0, (BT ⊗A)r0}.
Next, we consider A2r0,

A2r0 = (BT ⊗A)2r0 − 2(BT ⊗A)r0 + r0.

Therefore,

span{r0,Ar0,A2r0} = span{r0, (BT ⊗A)r0, (B
T ⊗A)2r0}.

Continuing this, the two subspaces are the same. This

establishes the claim.

APPENDIX B

PROOF OF THEOREM 3

The proof of theorem 3 proceeds as:

minX∈X0+GKm(A,R0,B) ||R||F
= min

X∈X0+GKm(A,R0,B)
||C −AXB +X||F .

Let X∗ be the exact solution of the matrix equation (1),

therefore

= min
X∈X0+GKm(A,R0,B)

||A(X∗ −X)B − (X∗ −X)||F

since X ∈ X0 + GKm(A,R0, B), there exists a

Z ∈ GKm(A,R0, B) such that X = X0 + Z hence

= min
Z∈GKm(A,R0,B)

||A(Z∗ − Z)B − (Z∗ − Z)||F

by (4), we have

= min
Y ∈AGKm(A,R0,B)B

||Y ∗ − Y ||F ,

where Y = AZB − Z. By ( corollary 1.39, [14]),

min
Y ∈AGKm(A,R0,B)B

||Y ∗ − Y ||F = ||Y ∗ − Ym||F

if and only if{
Ym ∈ AGKm(A,R0, B)B,

Y ∗ − Ym ⊥F AGKm(A,R0, B)B.

Since Y ∗ − Ym = Rm, then Rm = C − AXmB + Xm ⊥F

AGKm(A,R0, B)B.
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