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Abstract—In this paper, we study a distributed control algorithm
for the problem of unknown area coverage by a network of robots.
The coverage objective is to locate a set of targets in the area and
to minimize the robots’ energy consumption. The robots have no
prior knowledge about the location and also about the number of the
targets in the area. One efficient approach that can be used to relax
the robots’ lack of knowledge is to incorporate an auxiliary learning
algorithm into the control scheme. A learning algorithm actually
allows the robots to explore and study the unknown environment
and to eventually overcome their lack of knowledge. The control
algorithm itself is modeled based on game theory where the network
of the robots use their collective information to play a non-cooperative
potential game. The algorithm is tested via simulations to verify its
performance and adaptability.

Keywords—Distributed control, game theory, multi-agent learning,
reinforcement learning.

I. INTRODUCTION

MULTI-AGENT Coverage Control (MCC) is concerned

with the design of rules for the action coordination of

a set of agents towards achieving a desired coverage objective.

MCC covers an extensive range of applications, both with

static and dynamic natures. A static study is often concerned

with efficient sensor placement for area coverage [1] or

parameter estimation [2]. On the other hand, the dynamic

version allows the agents to have a coordinated movement

within the environment [3]. The main focus in the dynamic

study is on optimal motion control of agents in various

applications such as tracking problems [4], odor detection [5],

search and rescue [6], and collision avoidance [7].

The major challenge in MCC is how to design an efficient

coordination between the agents such that the system’s

coverage objective is met. In the last few years, game theory

has drawn significant attention in providing such efficient

coordination between the agents in MCC systems. Most of the

studies done on MCC, within the game theory framework, are

in the class of potential games (e.g., [8]-[10]). Potential game

is a suitable class due to its useful features including finite

improvement property. By this property, players are able to

improve their decisions and to eventually reach a point beyond

which no improvement can be achieved. This point is called

potential game’s Nash equilibrium.
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The concept of “learning” in potential games is a critical

notion which can provide such improvement for agents when

the game is unknown. Learning schemes assume that players

learn over time about the environment and also about the

behavior of other players by constantly interacting with them.

Such learning mechanisms agree with the social and biological

situations in which players imitate, reinforce or update their

belief. There are a variety of approaches to learning in

games depending on the number of players, the information

players are expected to know and the importance of the

communication with other players [11].

In a game theoretic setup of MCC, it is common to assume

that the agents have a level of autonomy, i.e., the control

scheme is usually distributed. However, there are centralized

control approaches to solving the MCC problem (e.g. [12]).

In a centralized control method, a base unit controls agents

in their searching task and agents are assumed not to be

able to act autonomously. Although, a centralized scheme

may achieve the desired objective, a distributed approach

can demonstrate higher robustness, stability, adaptability, and

scalability.

Apart from game theory, there exist different

methods to solve the MCC problem. A decentralized

gradient-search-based algorithm that is proposed in [13]

is an example of such methods. In this method, a greedy

algorithm is used to associate agents with a set of targets in

the environment while the gradient-based algorithm provides

agents with an optimal motion planning with respect to the

targets’ positions. Alternatively, in [14] the search area is

divided into Voronoi regions and each region is assigned to

one agent. The partitions between the Voronoi regions will

change over time based on a probability map. This method is

further extended with limited sensing and communications in

[15] and limited power in [16].

In this paper, a network of robots is considered as a

set of agents whose coverage objective is to localize a

set of hidden targets while the robots’ movement energy

consumption is minimized. The set of targets are distributed

across a geographical area and it is assumed that each of them

emits a signal that is detectable by the robots. As an example,

consider the multi-robot search-and-rescue problem in which

a number of robots are employed to find a number of victims

in an area. The area could be unknown and the robots have to

trace any kind of signal emitted from the victims in order to

locate them. This signal, in this case, can be an audio signal

or other vital signs.
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In [10] the agents are assumed to know the approximate

location of the targets which limits practical applicability of

[10]’s results. Although this assumption is relaxed in [8],

one of the underlying assumptions of [8]’s method is agents’

knowledge about the number of targets. With this assumption

if there is more than one target in the area and if the targets

are dispersed then [8]’s algorithm may fail to find the targets.

The present work extends the results of [3], [8], [10] by

assuming a completely unknown search area. We use the

Akaike information criterion to develop an algorithm such that

even if the number of targets is unknown the robots are able

to estimate the number of the targets and efficiently locate the

targets.

The paper is organized as follows: In Section II, a game

theoretic solution is taken as the main control scheme.

Next, a Gaussian mixture model estimation algorithm is

introduced to estimate the targets’ distribution parameters.

Section III presents the Akaike information criterion which

is used to optimize the estimated number of the targets.

A communication mechanism is further investigated to let

the agents share their information about the environment.

In Section V simulation results are presented as well as a

discussion and comparison of the performance of different

methods.

II. PROBLEM FORMULATION

Consider a set of finite number of robots I modeled as a

network of agents that can move through a geographic area.

A two-dimensional grid is applied over this area and each cell

l in this grid has a square shape of unit dimensions. A cell l
has the center coordinates (lx, ly) ∈ L, where L is defined as

the collection of the centroid of all square cells. We may use l
to refer to the cell l’s coordinates (lx, ly). The agents can only

move between the centroids of the grid cells and the location of

agent i at time step n is denoted by αi(n) ∈ L, i = 1, ..., |I|.
We may refer to αi(n) as agent i’s action at time step n.

Let the set of agent i’s neighbor cells at time step n be

defined as N i
R(α

i(n)) = {l ∈ L s.t. |αi(n)− l| ≤ R} where

R is the neighborhood radius. The agent i’s available action set

at time step n is denoted by Ai
n ⊂ L, and is defined as Ai

n =
N i

δ(α
i(n)) where δ is the action selection radius. The total

available action set can be defined as An = A1
n×A2

n×...×A|I|
n

and the action profile of all agents is denoted by α(n) =
(α1(n), α2(n), ..., α|I|(n)). We may show the action profile

of all agents as α(n) = (αi(n), α−i(n)) where α−i(n) =
(α1(n), αi−1(n), ..., αi+1(n), α|I|(n)).

The worth of a cell l is defined as the probability that a target

exists in that cell and its distribution over L is denoted by f :
L �→ [0, 1]. The worth of each cell is directly proportional to

the strength of the sensed signal on that cell. The f distribution

over L is constant in time since we assume that targets are

stationary. An agent i ∈ I can determine the worth of a cell l
when it is over that cell. We also assume that each agent i is

able to determine the total worth over its neighborhood N i
δ . We

denote this sensed worth by Ci : Ai
n �→ R which is defined

as Ci(αi(n)) =
∑

l∈Ai
n
f(l). Thus, at each time step n, each

agent i can determine the worth of its current cell f(αi(n))

and also the “cumulative” worth of its sensing neighborhood

Ci(αi(n)). Note that other than its current location αi(n),
agent i can not determine the worth of other cells in Ai

n,

and Ci(αi(n)) is only a summation of the worth over Ai
n.

The coverage objective is to find the set of targets while the

energy consumption is minimized. Technically speaking this

means that the robot network has to maximize the total worth

of the covered cells and to minimize the energy consumption

due to movement.

Each agent i lays a flag at each cell once he observes that

cell and the set of its flags Υi are detectable by other agents.

The agents can detect these flags from the maximum distance

of 2δ. By using this technique, the agents do not need to have

access to each other’s observation memories and the observed

cells are locally detectable.

A limited communication setting is considered to let the

agents fuse their information. In this setting, each agent i
can communicate with its set of neighbor agents, defined as

N i
n = {j ∈ I \ i s.t. |αj(n) − αi(n)| ≤ Rcom} where

Rcom is communication radius. At each time step n agents

are picked pairwise to check if they are within each other’s

communication radius. Thus, all the neighbor robots have

the chance to make a contact with other robots in their

neighborhood and share their information.

A. Game Formulation

The first step to establish a game is to define an appropriate

utility function for each agent. Considering the coverage

objective in this work, the utility function should take the

reward of covering worthwhile cells into account and should

penalize the robots for the consumed energy. The energy

consumption of agent i due to its motion is denoted by

Ei
move = Ki(|αi(n) − αi(n − 1)|) where Ki > 0 is a

coefficient and αi(n − 1) is the location of agent i at time

step n−1. We now formulate the coverage problem as a game

by defining the following utility function which is inspired by

[8]:

ui(α(n), α(n− 1)) =�i[Ci(αi(n))− Ci
n(α

i(n))]−
Ki(|αi(n)− αi(n− 1)|), (1)

where Ci
n(α

i(n)) =
∑

j∈I\i
∑

l∈Nδ
j ∩Nδ

i
f(l) and �i is defined

as:

�i =

{
1 : αi /∈ Υj , ∀j ∈ I \ i
0 : otherwise

Note that Ci(αi(n))−Ci
n(α

i(n)) is actually the worth of the

cells that are only covered by agent i. Parameter �i prevents

players to pick their next actions from the cells that are

previously observed by other agents.

Lemma 1: The coverage game G = 〈I,L, ui〉 is a potential

game where the potential function is defined as:

Φ(α(n), α(n− 1)) =
N∑
j=1

uj(α(n), α(n− 1)). (2)

(see Appendix I)
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B. Learning Process

This section reviews Binary Log-Linear Learning (BLLL)

as a model-based learning scheme to provide the iterative

improvement in players’ utilities in the MCC problem. A

BLLL scheme, as used in [8], is a modified version of standard

log-linear learning which allows players to have a time-varying

action set (e.g. Ai
n) in a potential game. It can be shown that

in a potential game, if all players adhere to BLLL, the joint

action will stochastically converge to a steady state point. This

stable joint action maximizes the potential under the following

conditions [17]:

1. For any agent i ∈ I and for any action pairs αi(1), αi(η) ∈
L, there exists a sequence of actions from αi(1) to αi(η) for

all n = 2, ..., η such that αi(n) ∈ N i
δ(α

i(n− 1)).
2. For any agent i ∈ I and for any action pair αi

1 and αi
2, αi

1

is in the available action set of αi
2 if and only if αi

2 is in the

available action set of αi
1.

It is easy to show that that the above conditions hold for the

current problem and therefore stable joint actions in BLLL

scheme maximize the potential function.

In BLLL, at each time step n, one random agent i is selected

to change its action while other agents repeat their action

(i.e. α−i(n) = α−i(n − 1)). Without loss of generality we

assume that i = (n mod |I|) + 1. Thus, the agents do not

need to all agree on one random player since such agreement

needs a wide communication within the robot network. Next,

agent i chooses a trial action αi
T uniformly randomly from

its available action set Ai
n−1. Recall that in our case, the

available action set for player i is the set of his neighbor cells

N i
δ(α

i(n−1)). Finally, according to the following Boltzmann

sampling method, agent i either selects action αi
T as its next

action or remains on its previous action αi(n− 1):

P i
αi(n−1)(n) =

exp(
1

τ
ui(α(n− 1), α(n− 2)))

Di
n(α

i
T )

, (3)

P i
αi
T
(n) =

exp(
1

τ
ui(αi

T , α
−i(n), α(n− 1)))

Di
n(α

i
T )

, (4)

where Di
n(α

i
T ) = exp(1/τ ui(α(n − 1), α(n − 2))) +

exp(1/τ ui(αi
T , α

−i(n), α(n − 1))). P i
αi(n−1)(n) is the

probability that agent i repeats its action, P i
αi

T
(n) is the

probability that agent i selects αi
T as its next move, and the

coefficient τ (often referred to as the temperature coefficient)

specifies how likely it is that each agent i chooses a

sub-optimal action with respect to its utility function. Note

that each agent i must have a posteriori knowledge about

ui(αi
T , α

i(n − 1)) to be able to determine (3) and (4).

Although it may be impossible to determine the actual value

of ui(αi
T , α

i(n−1)), given the fact that some parts of the area

may be unobserved, an estimation algorithm can be used to

estimate the utility of the trial action αi
T and to enable players

to predict the probabilities in (3) and (4). In the following we

first introduce the Gaussian model which we have considered

to model the environment and then we move forward to the

estimation algorithm.

C. Gaussian Mixture Model

Recall that each target is assumed to emit a signal that is

detectable by the agents. It is reasonable to assume that the

shape of this signal is a symmetric Gaussian function whose

mean is on the target. Therefore, the worth distribution over

the area is basically a Gaussian Mixture Model (GMM). A

GMM is a probability density function defined as a weighted

sum of a number of Gaussian functions

GMM =

M∑
j=1

ωj g(x|μj ,Σj), (5)

where M is the number of components (i.e. targets), ωj is the

weight of jth component and

g(x|μj ,Σj) =
1

2π|Σj |1/2
exp[

−1

2
(x− μj)

TΣ−1
j (x− μj)]. (6)

g(x|μj ,Σj) is a two-variable Gaussian function where x is

the continuous-valued location vector, μj is the mean vector

(i.e. location of the target j) and Σj is the covariance matrix

of component j. The weights have to satisfy
∑M

j=1 ωj =
1. We summarize GMM’s parameters into the set λ =
{ωj , μj , σj |j = 1, ...,M}. Note that f(l) can be determined

by substituting l into the GMM, i.e.

f(l) = GMM
∣∣
x=l

=
M∑
j=1

ωj g(l|μj ,Σj). (7)

Therefore, by knowing (or estimating) the GMM, we are able

to determine (or estimate) the worth distribution over the area.

D. Estimation Scheme

During the search task, the robots keep their observations of

sensed regions in their memories. This aggregated memory can

be used to form an estimation of the worth distribution which

enables agents to take optimized actions once they encounter

undiscovered areas. Let agent i’s estimation of the mixture

parameters be λ̂i = {ω̂i
j , μ̂

i
j , σ̂

i
j |j = 1, ...,M}. We then denote

the estimation model by

̂GMM =

M∑
j=1

ω̂j g(x|μ̂j , Σ̂j). (8)

Agent i’s memorized observation vector at iteration n is a

sequence of its sensed cells from time step 1 to n denoted

by Oi = {Oi
1, O

i
2, O

i
3, ..., O

i
n} where Oi

n is the corresponding

coordinates of the sensed cell by agent i at time step n.

Expectation Maximization (EM) is an iterative algorithm

used to find maximum likelihood parameters of a statistical

model when there are missing data points from the model. The

EM algorithm is able to determine the parameter set λ̂i, i ∈ I
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through the following iterative algorithm [18]:

ω̂i
j =

1

n

n∑
η=1

P i(j|Oi
η, λ̂

i),

μ̂i
j =

∑n
η=1 P

i(j|Oi
η, λ̂

i)Oi
η∑n

η=1 P
i(j|Oi

η, λ̂
i)

,

(σ̂i
j)

2 =

∑n
η=1 P

i(j|Oi
η, λ̂

i)(Oi
η − μ̂i

j)(O
i
η − μ̂i

j)
T

∑n
η=1 P

i(j|Oi
η, λ̂

i)
,

P i(j|Oi
η, λ̂

i) =
ω̂i
j g(Oi

η|μ̂i
j , σ̂

i
j)∑M

k=1 ω̂
i
k g(Oi

η|μ̂i
k, σ̂

i
k)

(9)

where P i(j|Oi
η, λ̂

i) is often referred to as posteriori

probability of the observation vector Oi
η for the jth

component of Gaussian distribution. Through (9), given the

current estimated parameters, the EM algorithm estimates the

likelihood that each data point belongs to each component.

Next, the algorithm maximizes this likelihood with respect to

each parameter to find a new set of parameters.

Recall that Oi is the sequence of agent i’s observed

coordinates within the area. Since EM only considers Oi as

the input it actually disregards the sensed worth. This issue is

pointed out in [8] and the proposed solution as introduced

in [19] is to repeat the iterative algorithm for m times in

worthwhile cells. The parameter m is chosen as:

m =

⎧⎨
⎩

1 + V round(
f(l)

fmode
) : f(l) ≥ fmode

1 : f(l) < fmode

where f(l) is the worth at coordinate l, fmode is the threshold

above which the observation is considered worthwhile for EM

repetition and V is the correction factor which regulates the

number of algorithm repetitions for the worthy cells. The

algorithm will run once for cells with a worth value of less

than the threshold.

The variation rate of the estimation parameters λ̂i is

relatively low due to the rate of update of the observation

vector and the nature of the EM algorithm. The case of

slow variation of Gaussian distribution is investigated in [20].

By using BLLL and assuming a slow changing distribution,

[20] showed that the agents’ estimation error |λ̂(n) − λ(n)|
decreases as the observations vector expands; consequently,

the agents will stochastically converge to a Nash equilibrium.

If we assume that the number of the targets (M ) is a known

parameter, we can use the iterative algorithm discussed in this

section. We call this algorithm EM N and it is the algorithm

that is used in [8].

III. MERGE AND SPLIT MECHANISM

Recall that the agents do not have any prior knowledge

either about the worth distribution function over the area or

about the number of targets. As we discussed in Section II, we

need to know the number of the targets M in (9) in order to

use the EM algorithm. In this section we propose a modified

EM algorithm which lets the robots estimate the number of

the targets.

The Akaike information criterion (AIC) introduced in [21]

is considered as the main verification method to help the

agents select the best guess for the number of the targets. The

Akaike information criterion is a measure of the quality of a

distribution model for a set of data points. Given a collection

of models for a data set, AIC estimates the relative quality of

each model by

AIC = 2k − 2ln(L), (10)

where L is the maximized value of the likelihood and k is

the number of estimated parameters in the model. The Akaike

criterion considers the goodness of the fit as the likelihood

function L and penalty of complexity of the model as k (i.e. the

number of model parameters). Given a collection of statistical

models, the one with minimum AIC value is the best model

[21].

Let the estimated number of the targets at time step n each

robot i be denoted by M̂ i(n). In our proposed algorithm,

after each nAIC time steps, each agent i ∈ I randomly picks

a number TAIC from the set M(nAIC) = {M̂ i(nAIC) +
1, M̂ i(nAIC)−1} ⊂ N. If M̂ i(nAIC)−1 = 0 then M(nAIC)
reduces to {M̂ i(nAIC) + 1}. Next, player i decides between

its current estimated Gaussian component number M̂ i(nAIC)
and TAIC according to the following probabilities:

P i
M̂i(nAIC)

=
exp(

1

τ
IAIC(M̂ i(nAIC)))

exp(
1

τ
IAIC(M̂ i(nAIC))) + exp(

1

τ
IAIC(TAIC))

,

(11)

P i
TAIC

=
exp(

1

τ
IAIC(TAIC))

exp(
1

τ
IAIC(M̂ i(nAIC))) + exp(

1

τ
IAIC(TAIC))

,

(12)

where P i
M̂i(nAIC)

is the probability that player i keeps its

current estimation M̂ i(nAIC) and P i
TAIC

is the probability

that player i chooses TAIC as its estimation of the number of

the components. IAIC(M̂ i(nAIC)) is the inverse AIC value

for agent i’s estimation distribution when agent i’s estimated

number of the components is M̂ i(nAIC) and IAIC(TAIC) is

the inverse AIC value when agent i’s estimation is TAIC .

Since the number of the components changes every nAIC

iterations, the next step is to determine an appropriate

method for merging and splitting Gaussian components. The

method proposed in [22] incorporates the split and merge

operations into the EM algorithm for GMM estimations.

Moreover, efficient criteria are proposed in [22] to decide

which components have to be merged or split. In the following

the merge and split algorithms are briefly discussed.

A. Merge

In order to reduce the number of components in a Gaussian

mixture, some of the components should be merged together.

However, an effective criterion is needed to pick the optimal

pairs.

a) Criterion: The posteriori probability of a data point gives

a good estimation about to which Gaussian component that
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data point belongs. It can be concluded that if for many data

points, the posteriori probabilities are almost equal for two

components, then these two components can be merged. To

mathematically implement this, the following criterion for jth

and j′th Gaussian components is proposed in [22]:

Jmerge(j, j
′; λ̂) = Pj(λ̂)

T Pj′(λ̂), (13)

where Pj(λ̂) = (P (j|O1, λ̂), P (j|O2, λ̂), ..., P (j|On, λ̂))
T is

a n-dimensional vector consisting of posteriori probabilities

of all data points for jth Gaussian component. The criterion

Jmerge(j, j
′; λ̂) must be calculated for all possible pairs and

the pair with the largest value is selected to be merged. As

the next step, the selected pairs will be merged by a modified

EM algorithm.

b) Merging Procedure: In order to merge two Gaussian

components, the distribution model parameters must be

re-estimated. A modified EM algorithm is investigated in [22]

that re-estimates Gaussian parameters corresponding to former

distribution parameters (λ̂). If the merged Gaussian from the

pair of j and j′ is denoted by j′′ then the initial parameters

for the merged Gaussian would be [22]

ω0
j′′ = ωj + ωj′ ,

μ0
j′′ =

ωjμj + ωj′μj′

ωj + ωj′
,

Σ0
j′′ =

ωjΣj + ωj′Σj′

ωj + ωj′
.

(14)

After calculating the initial values, an EM iterative

algorithm will run to re-estimate the distribution parameters.

The main steps are the same as (9) except the posteriori

probability [22]:

P (j′′|Oη, λ̂) =
ω̂j′′ g(Oη|μ̂j′′ , σ̂j′′)

∑
k=j,j′ P (k|Oη, λ̂)∑

k=j′′ ω̂k g(Oτ |μ̂k, σ̂k)
.

(15)

By using this modified EM algorithm, the parameters of

j′′th Gaussian are re-estimated without affecting the other

Gaussian components. The initial parameter values calculated

by (14) are often poor. Hence, the newly generated Guassians

should be first trained by fixing the other Gaussians through

the modified EM.

B. Split
In case of a need to increase the number of components

in the estimation distribution, we use the split algorithm to

split one or more Gaussians. As for the merging process,

an appropriate criterion is necessary as well as an efficient

splitting method.

a) Criterion: As the split criterion of kth component, the local

Kullback-Leibler divergence is proposed in [22] as:

Jsplit(k; λ̂) =

∫
pk(x, λ̂)log(

pk(x, λ̂)

g(x|μ̂k, Σ̂k)
) dx, (16)

where pk(x, λ̂) is the local data density around kth component

and is defined as:

pk(x, λ̂) =

∑n
m=1 δ(x− xm)P (k|xm, λ̂)∑n

m=1 P (k|xm, λ̂)
. (17)

Equation (16) actually represents the distance between two

Gaussian components where the kth Gaussian is characterized

by μ̂k and Σ̂k. As for the merge criterion, Jsplit(k, λ̂) must be

applied on all candidates and the one with the largest criterion

value will be selected to be split; the larger the Jsplit(k, λ̂),
the worse the local density, the more appropriate candidate to

split.

b) Splitting Procedure: As in the merging process, a modified

EM algorithm is used to re-estimate the Gaussians parameters

after the initial process of split. If the split candidate is the

kth Gaussian component and the two resulting Gaussians are

denoted by j′ and k′ the initial conditions to start the modified

EM algorithm are calculated as follows:

ω0
j′ = ω0

k′ =
1

2
ωk,

Σ0
j′ = Σ0

k′ = det(Σk)
1/d Id,

(18)

where Id is the d-dimensional unit matrix and d is the

dimension of Gaussian function g(x|μk,Σk). The mean

vectors μ0
j′ and μ0

k′ are determined by applying random

perturbation vector εm, m = 1, 2 on μk as μ0
j′ = μk+ε1

and μ0
k′ = μk+ε2 where ||εm||�||μk|| and ε1 �=ε2. The

parameters re-estimation for j′ and k′ is done using a modified

EM algorithm similar to the merge EM algorithm where the

modified posteriori probability is:

P (m′|Oη, λ̂) =
ω̂m′ g(Oη|μ̂m′, σ̂m′)

∑
l=k P (l|Oη, λ̂)∑

l=j′,k′ ω̂l g(Oη|μ̂l, σ̂l)
,

(19)

where m′ = j′, k′. The parameters of j′ and k′ are

re-estimated without affecting other Gaussians. By means of

AIC and split-merge technique, the agents are able to estimate

the number of targets. We call this new integrated algorithm

EM SM.

IV. COMMUNICATION

In this section a mutual information-sharing mechanism is

proposed to improve the robot network knowledge about the

environment. The communication cost between agent i and

agent i′ is defined as:

Jcom = Kcom Dtrans(i, i
′, n) (|αi(n)− αi′(n)|), (20)

where Kcom is the regulation coefficient and Dtrans(i, i
′, n)

is the volume of transmitted data between agent i and agent

i′ at time step n. This communication cost is modeled as the

power consumption needed to transmit data between the robot

network nodes in a wireless communication setting. At each

iteration, agents that are in each other’s communication radius

(Rcom) are able to contact each other. In order to make a more

efficient communication mechanism, a robot pair (i and i′)
are allowed to communicate with each other if the following

conditions are satisfied:

1. Agent i is within agent i′ communication range.

2. One of the agents (i) has a larger cumulative covered

worth (with a certain ratio) than the other member of the
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communication pair (i′). In other words:

n∑
η=1

f(Oi
η) ≥ K ′

com

n∑
η=1

f(Oi′
η ), (21)

where K ′
com is a pre-set coefficient (ratio).

3. The length of the observation vector of agent i is larger

than that of agent i′ with an specified ratio

numi ≥ K ′′
com numi′ , (22)

where K ′′
com is the ratio coefficient and numl is the frequency

with which agent l selected a trial action up to time step n
where l = i, i′ (i.e. number of unique observations of agent

l). Clearly, based on these conditions we may assume that

agent i is more experienced than agent i′ in the network

and a communication between i and i′ could improve the

knowledge of agent i′ about the area which results in an

enhancement in the overall performance of the whole system.

During communication, agent i′ that is inexperienced and

possesses a lower data volume, transmits its observation

vector along with its distribution estimation parameters (i.e.

ω̂i′ ,μ̂i′ and Σ̂i′ ) to agent i. Hence, in this scenario, agent i
carries out the computation burden. The computation consists

of re-estimation of the Gaussian distribution based on the

observation vectors of agent i and agent i′ together; the

aggregated vector of Oi and Oi′ is denoted by Oi+i′ . The

re-estimation algorithm is basically an EM algorithm with the

following initial condition:

Θ̂r
0 =

EiΘ̂i + Ei′Θ̂i′

Ei + Ei′ , (23)

where Θ̂ could be ω̂, μ̂ or σ̂, and El is defined as:

El = numl
n∑

η=1

f(Ol
η), l = i, i′. (24)

Equation (23) actually represents a weighted average of the

estimation parameters of agent i and agent i′ which takes the

experience of each agent into account. In order to re-estimate

the Gaussian parameters an EM algorithm is used with iterative

steps as discussed in (9). However it should be noted that the

initial conditions are calculated based on (23) and the training

vector which is fed into the algorithm is Oi+i′ . Finally, the

resulting parameters ω̂r, μ̂r and σ̂r will replace old estimation

parameters of both agent i and agent i′. In this study, the

communication cost is not implemented in the agents’ utility

function and is only considered as a performance comparison

mean between different methods.

V. SIMULATION AND DISCUSSION

In this section we provide a numerical example to verify the

performance of the proposed algorithm. A 40×40 square area

is considered as the environment. The Gaussian distribution

in this area is chosen randomly with different but reasonable

weight, mean and covariance values (Fig. 1). The number of

the targets (Gaussian components) is between 1 to 5 and the

robot network has no prior knowledge about this number.

Fig. 1 Worth distribution over the area

A group of five robots (|I| = 5) scatters in the area to

maximize their utility function. Note that the number of the

targets could be higher than the number of the robots but in

that case the robots need more time to explore the area and

gather enough data.

The simulation parameters are chosen as Ki = 3×10−5 for

i = 1, ..., |I|, τ = 5×10−4, fmode = 10−5, V = 0.1, δ = 1.5,

nAIC = 100, Kcom = 1, K ′
com = K ′′

com = 1.5 and Rcom = 5.

An increase in Ki results in agents not to significantly deviate

from their current location. Parameter τ controls how rational

the robots are, in their learning process. The importance of

worth distribution from agents’ point of view is regulated by

fmode and V . The parameter nAIC controls the split and

merge process and its computation burden on the agents.

Communication parameters Kcom, K ′
com, K ′′

com and Rcom

can be regulated according to the on-board power limitations.

However, it is obvious that the wider the communication the

more accurate the estimation.

The worth of the covered area using a normal EM algorithm

(EM N, Section II) and our proposed algorithm (EM SM,

Section III) is illustrated in Fig. 2. In EM N, and as in [8],

the agents do not have a prior knowledge about the location

of the targets but the number of the targets is known to the

agents. In EM SM, the number of the targets is unknown.

As in Fig. 2, EM SM outperformed EM N in terms of the

coverage worth. However, the convergence rate of EM N is

slightly better. The fluctuation in real-time covered worth is

due to the robots’ exploration attempts.

Fig. 3 shows the final configuration of the robots for both

EM N and EM SM. In EM N, the robots failed to locate all

the targets while in EM SM all the targets are successfully

located. This actually explains the difference between the

covered worth in EM N and EM SM in Fig. 2.

The real-time estimated value of the number of Gaussian

components in EM SM is shown in Fig. 4. As in Fig. 4, the

estimated number of components oscillates between 3, 4 and

5 where the initial value is a random number between 1 and

5.

Unlike most of previous studies, in which the mobile sensors

start their searching task from a completely random or from a

pre-specified initial locations, here, an optimized and dynamic

initialization is proposed. In order to initialize the robots, a

10×10 square box at the middle of the environment is defined
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Fig. 2 Evolution of the real-time covered worth

Fig. 3 Final configuration of the robots in EM N and EM SM

where the agents pick their initial locations randomly inside

this box. Agents are not allowed to exceed the borders of this

square while they are searching for the targets. However, the

square is continuously expanding with respect to time until it

reaches to the size of the mission space (40× 40).

The slope of trending of total covered worth is considered

as the main tool to optimize the expansion rate. Fig. 5

demonstrates the expansion concept in which S1 is the slope

of the trend line of total cumulative worth versus total time

and S2 is the slope of trend line of last β% of cumulative

worth versus last β% of time. If S2 is lower than S1 then, it

means that the worthwhile points of the area is covered (or

the area’s worth is low) so the expansion rate of searching

area would be increased (β is currently 5 and in the case

of expansion, the area expansion rate will be multiplied by

S1/S2). On the other hand, if S1 is lower than S2, which means

the area is worthwhile, the expansion rate would be decreased

(multiplied by S1/S2). The expansion algorithm will start after

20 iterations and will stop if the borders reach the 40× 40.

The communication cost of both methods (EM N and

EM SM) is shown in Fig. 6. In EM SM, agents attempted

to communicate with each other 45 times while in EM N

it was 54. One interpretation is that all the agents gained a

uniform average experience through EM SM; so the number

of communication attempts is less than EM N. Furthermore,

the amount of data bits transferred in EM SM is less than

EM N upto 45th attempt which means the agents consume

less energy to send data bits in EM SM while maintained their

level of collaboration (data sharing) in an acceptable range.

VI. CONCLUSIONS

In this paper, a mobile sensor coverage problem is

investigated in which a finite number of robots seek to cover

the areas with the highest probability of existence of a set

of targets. The robots have no familiarity with the area as

they do not have any information either about the location

or the number of the targets. A state-based potential game

is formulated to relate the robots together and to control

the robots’ actions. The reward of sensing valuable areas is

considered in the utility function as well as the penalty of

energy consumption due to the agents’ movement. Update of

agents’ action profile is based on BLLL in which the agents

need to know an estimation of the outcome of their future

actions. Hence, an estimation algorithm has been utilized to

assist the agents in anticipating the probability of the targets’

existence in undiscovered areas. A modified EM algorithm is

introduced to estimate the number of the targets as well as

other parameters of the probability distribution. Furthermore,

a dynamic and restricted search zone is proposed to force the

agents to remain in worthwhile areas as much as possible.
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Fig. 4 Online estimation of number of the Gaussian components

Fig. 5 Online expansion of initialization square

Fig. 6 Cumulative communication cost
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Lastly, we discussed a communication scheme that allows the

agents to fuse their knowledge of the unknown environment

which presumably improves system’s overall performance.

APPENDIX

Proof of Lemma 1: We have to show that for any agent

i ∈ I, for every α−i(n) ∈ A−i:

Φ(αi
2(n), α

−i(n), α(n− 1))− Φ(αi
1(n), α

−i(n), α(n− 1)) =

ui(αi
2(n), α

−i(n), α(n− 1))− ui(αi
1(n), α

−i(n), α(n− 1)),

(25)

By (2) we have:

Φ(αi
2(n), α

−i(n), α(n− 1)) =

[ΣN
j=1,j �=iu

j(αj(n), αj(n− 1))] + ui(αi
2(n), α

i(n− 1)) =[
ΣN

j=1,j �=i�
j [Cj(αj(n))− Cj

n(α
j(n))]− ΣN

j=1,j �=i[K
i(|αj(n)

− αj(n− 1)|)]
]
+

[
�i[Ci(αi

2(n))− Ci
n(α

i
2(n))]−Ki(|αi

2(n)

− αi(n− 1)|)
]
,

and

Φ(αi
1(n), α

−i(n), α(n− 1)) =

[ΣN
j=1,j �=iu

j(αj(n), αj(n− 1))] + ui(αi
1(n), α

i(n− 1)) =[
ΣN

j=1,j �=i�
j [Cj(αj(n))− Cj

n(α
j(n))]− ΣN

j=1,j �=i[K
i(|αj(n)

− αj(n− 1)|)]
]
+

[
�i[Ci(αi

1(n))− Ci
n(α

i
1(n))]−Ki(|αi

1(n)

− αi(n− 1)|)
]
,

Hence,

Φ(αi
2(n), α

−i(n), α(n− 1))− Φ(αi
1(n), α

−i(n), α(n− 1)) =

�i[Ci(αi
2(n))− Ci

n(α
i
2(n))]−Ki(|αi

2(n)− αi(n− 1)|)−
�i[Ci(αi

1(n))− Ci
n(α

i
1(n))]−Ki(|αi

1(n)− αi(n− 1)|) =
ui(αi

2(n), α
−i(n), α(n− 1))− ui(αi

1(n), α
−i(n), α(n− 1)),

�
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