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   
Abstract— A side weir is a hydraulic structure set into the side of 

a channel. This structure is used for water level control in channels, 
to divert flow from a main channel into a side channel when the 
water level in the main channel exceeds a specific limit and as storm 
overflows from urban sewerage system. Computation of water 
surface over the side weirs is essential to determine the flow rate of 
the side weir. Analytical solutions for water surface profile along 
rectangular side weir are available only for the special cases of 
rectangular and trapezoidal channels considering constant specific 
energy. In this paper, a rectangular side weir located in a combined 
(trapezoidal with exponential) channel was considered. Expanding 
binominal series of integer and fraction powers and the using of 
reduction formula of cosine function integrals, a general analytical 
formula was obtained for water surface profile along a side weir in a 
combined (trapezoidal with exponential) channel. Since triangular, 
rectangular, trapezoidal and parabolic cross-sections are special cases 
of the combined cross section, the derived formula, is applicable to 
triangular, rectangular, trapezoidal cross-sections as analytical 
solution and semi-analytical solution to parabolic cross-section with 
maximum relative error smaller than 0.76%. The proposed solution 
should be a useful engineering tool for the evaluation and design of 
side weirs in open channel. 

 
Keywords—Analytical solution, combined channel, exponential 

channel, side weirs, trapezoidal channel, water surface profile.  

I. INTRODUCTION 

SIDE weir is a hydraulic structure, installed at one side of 
channel to divert flow from a main channel into a side 

channel when the water level in the main channel exceeds a 
specific limit. Such structures are widely used for water level 
control in hydraulics, irrigation and drainage canal system and 
environmental engineering applications, for flood protection 
works. 

Flow over side weir is a typical case of spatially varied 
flow, the behavior of flow over side weir has been the subject 
of many investigations. Most of the previous theoretical 
analysis and experimental research are limited to the flow over 
side weirs in rectangular main channels [among them: [1], [4], 
[6], [7], in circular main channels [8], [9], in triangular main 
channels [10], in trapezoidal main channels [11], in parabolic 
main channels [12], and in U- shaped main channels. 

In spite of numerous investigations for the water surface 
profile along the side weir, the above literature review reveals 
that there are analytical and semi-analytical solutions only for 
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specific channel shapes. In practice a channel shape which is a 
combination of trapezoidal and exponential channel allows the 
modeling of a natural channel and man-made channel shapes. 
Most of irrigation and drainage channels have rectangular, 
triangular, trapezoidal and parabolic cross sections, and they 
are special cases of a combined channel. Therefore, 
investigation of the water surface profile is important for a 
combined cross section for proper estimation of discharge 
over side weir. 

In the present study, general formula for the water surface 
profile along the side weir in the combined (trapezoidal and 
exponential) main channel is derived by making use of energy 
relationships. 

II. PROPOSED SOLUTION 

A. Geometric Properties of a Combined Cross Section 

A cross sectional shape of combined channel is shown in 
Fig. 1. The flow width 

yT  at any height y  above the channel 

bed, and the cross sectional area A  are considered to be given 
by: 
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In which, y -Bottom width and c  and n are constants 

which define the channel shape. 

B. Flow Equation for Side Weirs 

 

Fig. 1 Definition sketch for rectangular side weir in combined 
trapezoidal and exponential channel 

 
Referring to Fig. 1, at any section x , for small bottom slope 

and hydrostatic pressure distribution, the specific energy E  
can be written as 
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where y is the flow depth at a distance x  from upstream of 

the weir,   is the velocity distribution coefficient, Q  is the 

discharge of the main channel at a distance x , A  is cross-
sectional area and g is gravitational acceleration. 

Differentiating both sides of (3) with respect to x gives 
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in which T  is width of the channel at water surface and x is 
horizontal distance from upstream of the weir. Neglecting the 
effect of variation of specific energy )0/( dxdE  along the 

side weir, the water surface slope dxdy /  can be expressed as 
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For a short side weir, the hypothesis of constant specific 

energy, which is equivalent to assuming 
0SS f   or 

00fS  

and 00 S ( fS ) is friction loss and 
0S  is bed slope of the 

channel), is acceptable [5]. 
Although the direction of the side weir is parallel to the 

flow, the equation of a weir is assumed for discharge along the 
side weir [2], [3], 
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where sq  discharge per unit width of the weir is, p is the 

weir height and mC  is the discharge coefficient. A 

conventional weir equation for discharge per unit length is 
assumed and this assumption is approximately valid [10]. 

Assuming that the specific energy E  is constant along the 
length of the side weir, the discharge in the main channel Q  

can be obtained by solving (3) for Q as 
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Using (7) and knowing the flow depth y , the discharge 

over the side weir sQ  can be determined as QQQs  1
 in 

which 
1Q  is the discharge at section 1 in the main channel. As 

noted earlier, determination of the water surface profile along 
the side weir is essential to estimate the discharge over the 
side weir. Substituting the variation of discharge over the side 
weir )/( dxdQ  from (6) and the discharge Q  of the main 

channel at a distance x from (7)"into (5) yields: 
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Substituting yT  and A  from (1) and (2) into (8) yields 
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Equation (9a) can be transformed into dimensionless form 
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where Exx / , Ebb / , Eyy / , Epp / , 
represents the discharge coefficient of  the side weir flow and 

is equal to 3/4 2/1
mC  . Integrating (9b) gives: 
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III. GENERAL PROPOSED ANALYTICAL SOLUTION FOR WATER 

SURFACE PROFILE 

Let duuupdy
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Equations (10a)-(10d) then become 
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Integrants 42 , II  can be evaluated by expansion in 

Binomial series as:  
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where: 
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IV. SPECIAL CASES 

The general solution developed in this study may be applied 
to channels of different cross sections shapes  

A. Solution for Trapezoidal Channel 

For a side weir in a trapezoidal channel of side slope m (1 
vertical to m horizontal), the constants of channel shape are 

,2mc   2n . Substituting into (12a), (13), (12b) and (14): 
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Integrating each of (15a) and (15b) is made by using the 

following reduction formulae 
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Substituting (11a), (16a), (11c) and (16b) into (9c) yields  
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Noting that: 
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Equation (17) gives the length of the side weir for 

trapezoidal channel when the water depth varies from 1y  to 

2y along the side weir at the main channel axis in the flow 

direction". Equations (7) and (17) are used to determine the 
discharge over the side weir". These equations can be used for 
designing a side weir pass a certain discharge into a side 
channel. 

The integration constant in (17) can be eliminated as 
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B. Exponential Channels 

1) Rectangular Cross-Section 

The shape constants are: ,0c  1n , 042  II , 
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Substituting into (9c), yields 
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The integration constant in (20) can be eliminated as 
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2) Triangular Cross-Section

 For triangular channel of side slopes 1m  and 2m the shape 

constants are mmmc  21 , 2n , 0b 031  II  
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Substituting into (9c), yields 
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The integration constant in (22) can be eliminated as 
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and )( y  is defined as 
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3) Parabolic Cross-Section 

A channel section with function: 
 

  2kXY                                        (26) 
  

where Y  is ordinate, X  is abscissa and k is a parameter for 
which the function takes different shapes (narrow or flat). For 
purposes of this study, it is convenient to express the parabolic 

function in X  and Y coordinate system, where the X -axis 
is horizontally located at the channel bed Y - axis is placed at 
the center of the channel bed.  Since the section is 
symmetrical, the half top width of the water surface, 2/T , is 
obtained by substituting the flow depth y  for Y in (26). 

The top width and section area which correspond to the 
flow depth y are required for water surface computations.  

Top width of the water surface, T , can be expressed as 
 

2/12
y

k
T                                       (27) 

 

The flow area of the channel, A , for the flow depth y , can 

be computed as 
 

 
2/

0

2 )(2
T

dXkXyA                             (28) 

 
So, the shape constants for parabolic section are: 0b , 

2/3n , kc /2 031  II . 

Since 2/3n , integrants 2I  and 4I can’t be evaluated 

exactly and we should seek the domain of its convergence. 
Checking the convergence of binominal series nx)1( 

indicated that this series converges for 1x .This means that 






 p

y

p*)1(

2 . 

 
Hence the solution for parabolic section is applicable for the 

interval 
2

*1 p

y

p 



. 

Taking the first four terms and putting them into the 

integrants 2I  and 4I , one obtains 
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Noting that: 
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Substituting (29) and (30) into (9c) yields 
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, the maximum percentage errors 

of this approximation are less than 0.76%.  

The integration constant in (31) can be eliminated as 
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in which L is the length of the side weir and )( y  is 
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(32)

 

V. VERIFICATION 

To verify the proposed analytical solution, a comparison 
between analytical solution for water surface profile over side 
weir in rectangular, triangular and trapezoidal cross-sections 
proposed by Vatankhah [9], [10] and the analytical solution 
proposed by author is performed. The results show identical 
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solutions were obtained by both authors. Also another 
comparison was made for parabolic section solved by 
Vatankhah using incomplete elliptic integrals and forth order 
Runge –Kutta method [11] and the solution proposed by the 
author, the results of comparison approximately are the same. 
Noting that the proposed solution is limited for the range 

2

*1 p

y

p 



 and it is a direct (semi-analytical) solution.  

VI. CONCLUSION 

General, analytical formula for calculating water surface 
profiles along a rectangular side weir in a combined channel 
has been derived. The proposed solution is an exact analytical 
one for rectangular, triangular, trapezoidal sections and semi 
analytical solution for parabolic section that involves 
expanding binominal series of power 3/2 and 1/2. The 
maximum percentage error of neglecting terms of powers 
more than 3 doesn’t exceed 0.76% for 

2

*1 p

y

p 


 . The 

proposed solution is based on the constant specific energy, 
constant weir coefficient and constant velocity distribution 
coefficient along the side weir and allow for computing 
wholly subcritical or wholly supercritical water surface in 
rectangular, triangular, trapezoidal channels, and partially for (

** pp

y






1

2 ) for parabolic channel. The efficient analytical and 

semi-analytical tool presented in this study will hopefully be 
useful in evaluating and designing side weirs in combined 
open channel. 
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