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CompPSA: A Component-Based Pairwise RNA
Secondary Structure Alignment Algorithm

Ghada Badr, Arwa Alturki

Abstract—The biological function of an RNA molecule depends
on its structure. The objective of the alignment is finding the
homology between two or more RNA secondary structures. Knowing
the common functionalities between two RNA structures allows
a better understanding and a discovery of other relationships
between them. Besides, identifying non-coding RNAs -that is not
translated into a protein- is a popular application in which RNA
structural alignment is the first step A few methods for RNA
structure-to-structure alignment have been developed. Most of these
methods are partial structure-to-structure, sequence-to-structure, or
structure-to-sequence alignment. Less attention is given in the
literature to the use of efficient RNA structure representation and the
structure-to-structure alignment methods are lacking. In this paper,
we introduce an O(N2) Component-based Pairwise RNA Structure
Alignment (CompPSA) algorithm, where structures are given as
a component-based representation and where N is the maximum
number of components in the two structures. The proposed algorithm
compares the two RNA secondary structures based on their weighted
component features rather than on their base-pair details. Extensive
experiments are conducted illustrating the efficiency of the CompPSA
algorithm when compared to other approaches and on different real
and simulated datasets. The CompPSA algorithm shows an accurate
similarity measure between components. The algorithm gives the
flexibility for the user to align the two RNA structures based on
their weighted features (position, full length, and/or stem length).
Moreover, the algorithm proves scalability and efficiency in time and
memory performance.

Keywords—Alignment, RNA secondary structure, pairwise,
component-based, data mining.

I. INTRODUCTION

IDENTIFYING the similarities and functionalities of two or

more RNAs is an essential part of understanding biological

processes. This is done by aligning the RNAs according to

their structures. There are two ways to align RNA structures

based on their representations, which can be: primary or

secondary. For the primary structure, the sequence of the RNA

is aligned, while for secondary structure, the RNA structure is

aligned. Whether the alignment is sequential or structural, it

can be classified as either global or local, and it can be either

gapped or ungapped [1]. In this paper, we focus on structural

alignment that is pairwise, global, and gapped. RNA sequence

alignment is the process of matching similar regions of two

or more RNA sequences. It depends on the assumption that

similar sequences should have similar structures. The problem

can be solved using different optimization techniques,
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such as dynamic programming [1], exact string matching

and heuristic sequence alignment [2]. The Needleman and

Wunsch algorithm [3] is one of the best-known dynamic

programmingbased alignment algorithms for finding the

global optimal alignment between two sequences. Smith

and Waterman [4] updated Needlman-Wunsch so it can

find the local optimal alignment. In general, the dynamic

programming technique serves as a fundamental approach

for other alignment techniques. RNA structure alignment

algorithms whose approaches are developed using dynamic

programming as a basic technique fall into three main

categories: sequence-to-structure, structure-to-sequence,

and structure-to-structure. FOLDALIGN [5]–[9]

and LARA [10] are well-known examples of the

sequence-to-structure approach. Many algorithms fall

under the structure-to-sequence category: ExpaRNA [11],

R-PASS [12], SCARNA [13], and RNASAlign [14]. The

number of algorithms that do structure-to-structure alignment

is limited. One of these algorithms is RNA-forester [15],

which represents the structure of each sequence as rooted,

ordered, and node-labeled trees; the collection of trees

forms a forest. A tree contains both paired and unpaired

bases; these bases are structured as parents and siblings

based on how the base pairs, the order of 5′ and 3′ RNA

molecular components, are nested. A pairwise local structure

alignment is conducted using dynamic programming to nd

the maximum similarity between two substructures. Some

of these algorithms use special representations, such as

the stem-representation algorithm introduced in [16]. The

time and memory complexity of this work is relatively

high, reaching S4 , where S is the number of stems in

the RNA structure pattern. Another tree-based algorithm

developed for this purpose is RSmatch [17], which aligns

the structures based on the details of their base pairs and

does not utilize any other representation. ERA [18], a third

complete structure-to-structure tree-based algorithm, which

is also based on dynamic programming, has a complexity

estimation of O(N3); it also aligns on the base-pair level.

The paper outline is as follows: Section I contains

an explanation of the fundamental background for

components-based representation for RNA structures, a

definition of the problem, and the proposed solution. The

proposed similarity measures are introduced in Section II.

The proposed CompPSA algorithm is introduced in details

in Section III. Section IV presents the experiments that

have been conducted in order to validate and check the

performance of CompPSA. Finally, Section V concludes the

paper.
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A. Component-Based Representation of RNA Secondary
Structure

A component-based representation of RNA secondary

structure was developed in 2011 [19] and was proven to

perform well in secondary structures-localization algorithms

[20]. The representation can be used to define interacting

and non-interacting patterns for RNA secondary structures.

A pattern P = p1, p2, ..., pm is uniquely defined by its

sub-patterns Pi, 0 < i > m. Each sub-pattern is defined by

its inter-molecular component (INTERM), its intra-molecular

component (INTRAM), and its length. There are no INTERM

components in non-interacting patterns. Each component is

defined by its opening brackets (OB), closing brackets (CB),

length, and relative locations within the sub-patterns. In the

INTRAM component, OB and CB are located in the same

sub-pattern. This means that there needs to be [± at least] one

sub-pattern for INTRAM to exist. OB and CB are located in pi,
where 1 ≤ i ≥ m. OB and CB both are dened by their location

and length; thus, INTRAM = {OB, CB, len}. In the INTERM

component, OB and CB have to be in different sub-patterns.

OB is located in pi and CB is located pj , where j > i and

1 ≤ j ≥ m. OB and CB are both defined by their distance

from pi the beginning of pi and length, thus; INTERM = {OB,

CB, j, len}. The representation extracts the main features for

every RNA structure, showing the main components of each

structure without going in details about the nucleotides that

are found in each of them. Fig. 1 shows an example of an

RNA structure with two non-interacting INRAM components

in graphical [21] and dot-bracket representations [22].

B. Problem Definition

In this paper, we propose a component-based pairwise

structure-alignment (CompPSA) algorithm. Given two

different RNA structures, a and b, the proposed algorithm has

the following input:

• Two RNA secondary structures.

• Measure weights, gap penalty, and threshold (defined

below).

The output is the pairwise gapped alignment for the two

RNA structures. Alignment is given between components and

is based on the similarity measure between single components.

C. Contributions

The efficiency of a structural alignment algorithm depends

on its representation of the RNA structure. CompPSA

is a novel pairwise structure alignment algorithm (for

non-interacting structures). It compares the similarity between

two RNA structurs based on their extracted features instead

using their base pairs. In addition, we propose suitable

similarity measures for the two RNA secondary structures

to reflect the similarity between their components, and

we introduce two ordering techniques during the alignment

process.

(a) Graphic representation

(b) Dot-bracket representation

(c)
Component-based

representation

Fig. 1 An example of a component-based representation for a given
graph and dot-bracket representations of the same RNA structure.

The structure consists of two components: the first appears in blue,
the second in red on the graphic representation

II. THE PROPOSED SIMILARITY MEASURES

The proposed algorithm focuses on the alignment of pure

RNA structures, where the RNA sequences may be not

available. We propose that the similarity between any two

given structures will depend on three similarity measures

between any two components Cai and Cbj :

• Component position.

• Component full length (henceforth ”length”).

• Component stem length.

Our measures are inspired by the R-PASS algorithm [12]

equations, but we use the extracted components features. Our

measures are different as follows:

• They do not distinguish between different types of

components (motifs).

• There are no sequences; the sequence length is replaced

by the pattern length (lena).

• The start position is mapped with the opening bracket

offset (OB).

• End position is equivalent to the closing bracket offset

plus the length of the component minus one (CB +
lenai − 1).

• The end position of the first half of the stem can be

represented by the opening bracket offset plus the length

of the component minus one (OB + lenai − 1).

• The start position of the second half is mapped to the

closing bracket offset (CB).
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A. Component Position Similarity

The similarity of the positions of the two components Cai
and Cbj is the maximum value of the opening bracket (OBai)

position and the closing bracket position (CBai) position.

Opening bracket position is calculated by considering the

minimum value between the position of the first opening

bracket (OBai) and the position of the last opening bracket

(OBai + lenai − 1), where lenai is the stem length. In the

same way, the closing bracket position is the minimum value

between the first closing bracket (CBai) and the last closing

bracket position (CBai + lenai − 1). Since our algorithm

seeks to maximize the similarity measure, we subtract the

position distance from one after weighting it by Wp, with

a value ranging from zero to one. The position weight here

indicates the importance of position similarity between the

two components during the alignment. For instance, setting

the Wp value to zero means that the position similarity is not

considered during the alignment process. By applying (1), we

have the position distance between two components Cai and

Cbj :

Position(fai, fbj) = 1−Wp ×max (OpeningPosition, ClosingPosition) ,Where

OpeningPosition = min

(
| OBai

lenpa
− OBbj

lenpb
|, | OBai + lenai − 1

lenpa
− OBbj + lenbj − 1

lenpb
|
)

ClosingPosition = min

(
| CBai

lenpa
− CBbj

lenpb
|, | CBai + lenai − 1

lenpa
− CBbj + lenbj − 1

lenpb
|
)

(1)

B. Component Length Similarity

The component length similarity is the difference between

the first opening bracket (OBai) and the first closing bracket

(CBai) plus the stem length (lenai). By multiplying this length

by weight -Wcl- we show how important the similarity of

component lengths is to the alignment process. Equation (2)

gives us the component length similarity of two components

Cai and Cbj :

ComponentLength(fai, fbj) = 1−Wcl×
| (CBai −OBai + lenai)− (CBbj −OBbj + lenbj)

(CBai −OBai + lenai) + (CBbj −OBbj + lenbj)
| (2)

C. Component Stem Length Similarity

The stem length similarity can be found directly by using

lenai. Again, we are weighting the similarity between the

stems by Wsl to indicate its contribution of it in the final

similarity measure between the two components Cai and Cbj :

StemLength(fai, fbj) = 1−Wsl× | lenai − lenbj

lenai + lenbj
| (3)

D. Component Similarity

Based on the three metrics just introduced, the similarity

measure between two components Cai and Cbj can be

calculated by (4):

d(fai, fbj) = Position(fai, fbj)·
ComponentLength(fai, fbj) · StemLength(fai, fbj)

(4)

Because the proposed CompPSA algorithm is concerned

with global gapped alignment and seeks to maximize the

similarity measure between the components, it is important to

introduce the cost of aligning a component with a gap. This

gap penalty, to be determined through experiments, is denoted

as λ and needs to be a negative value.

III. THE PROPOSED COMPPSA ALGORITHM

A. Feature Extraction

We extract the feature vector of each intra-molecular

component from the component-based representation of that

component. A component Cai in Pa is fully defined by its

feature vector = (OBai, CBai, lenai); the same holds true for

Cbj in Pb.

B. Dynamic Programming Application

The components of the two structures are arranged in a

two-dimensional matrix F of size (n + 1)(m + 1), where

n is the number of intra-molecular components of the first

RNA structure and m is the number of intra-molecular

components of the second one. In addition to the dynamic

programming matrix, the algorithm constructs another matrix,

the direction matrix, to preserve the directions of computing

the solution. By ”directions” we mean the location of the

neighbor who participates in the calculation of the similarity

between each two components in the matrix. Two different

ordering techniques are considered for the components in each

RNA structure, one is based on the opening bracket offset, the

other is based on the closing bracket offset.

The process of filling the dynamic programming matrix

is based on the gapped-alignment algorithm [1] developed

by Needleman and Wunsch. Entries in the matrix F are

calculated based on the dynamic programming equation

that was proposed by Needleman and Wunsch [3] with

a modification. The modification is that if the similarity

measure between two components Cai and Cbj is less than

a pre-defined threshold (the ”pairwise component similarity

threshold”), then the corresponding distance is set to the gap

penalty. This is equivalent to inserting a gap in both structures.

Thus, the dynamic programming formula is shown in (5).

Where d(fai, fbj) is the distance (similarity) between two

feature vectors fai and fbj calculated using (4), λ is the gap

penalty, and ε is the threshold. Both λ and ε are parameters

that need to be empirically adjusted. The final alignment

score between the two structures a and b, Score(a, b), is the

summation of the similarities between the aligned components.

If a component is aligned with a gap, then the similarity is

considered as zero. The alignment score is calculated as in

(6).

In order to measure the similarity score percentage of two

RNA secondary structures, a and b, two metrics are used,

Score(a, b) and Max(a, b) [16]. Score(a, b) indicates the

alignment of a and b. Max(a, b) is the maximum score

between Score(a, a) and Score(b, b), which is used for

normalization. The similarity of the structures of the two

RNAs is calculated as in (7).
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F (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F (i− 1, j − 1) + d(fai, fbj), if d(fai, fbj) > ε

F (i− 1, j − 1) + λ, if d(fai, fbj) < ε

F (i− 1, j) + λ

F (i, j − 1) + λ

(5)

Score(a, b) =

{∑n
i=1

∑m
j=1 d(fai, fbj), if Cai is aligned with Cbj

0, otherwise
(6)

ScorePercentage(a, b) =
Score(a, b)

Max(a, b)
,Where

Max(a, b) = max {Score(a, a), Score(b, b)}
(7)

As the dynamic programming matrix is calculated, the

direction matrix is also populated. The following notations

are used to express the direction to the participating neighbor

from which the cell value is calculated: D or S from a diagonal

neighbor, H from the horizontal neighbor, and V from the

vertical neighbor.

C. Construction of the Solution

The alignment with the highest score can be found by

tracing the scores back from the bottom-right cell in the

dynamic programming matrix to the top-left cell. Table I

shows how this process works. Each step of the trace back

can be one of the following:

• If the cell contains the letter D, align Cai with Cbj and

proceed to cell (i− 1, j − 1).
• If the cell contains the letter S, skip both Cai and Cbj

and insert a gap in both structures. This is the case where

the distance d(fai, fbj) is equal to λ.

• If the cell contains the letter H, align Cbj with a gap and

step back to cell (i, j − 1).
• If the cell contains the letter V, align Cai with a gap and

return to (i− 1, j).

IV. EXPERIMENTAL ANALYSIS

Extensive experiments are conducted to test and validate

the CompPSA algorithm. For experimental purposes, a special

datasets is collected from different sources. The datasets

consist of: (1) a comparison dataset, (2) a performance

accuracy dataset and (3) a scalability dataset.

A. Dataset

The experiments are conducted using three different

datasets. Each dataset serves a specific purpose. In this

section, we explain the three datasets in more detail. (Another

real dataset, taken from Rfam dataset [23] along with its

results, is omitted from the paper due to space limitations.

However, the authors can be contacted for full results). Two

of these datasets, the NCBI GenBank dataset [24] and the

Genomic tRNA dataset [25], are real data. The third is a

TABLE I
FOUR CASES FOR DIRECTIONS. THE SHADED CELL REPRESENTS THE

CELL THAT WE MOVE TO IN EACH DIRECTION

(TABLE I.A)
DIAGONAL NEIGHBOR

- Cb1 Cb2 Cb3 Cb4
-

Ca1
Ca2
Ca3 D or S

(TABLE I.B)
HORIZONTAL NEIGHBOR

- Cb1 Cb2 Cb3 Cb4
-

Ca1
Ca2
Ca3 H

(TABLE I.C)
VERTICAL NEIGHBOR

- Cb1 Cb2 Cb3 Cb4
-

Ca1
Ca2
Ca3 V

Fig. 2 First RNA structure (denoted as a)

simulated dataset based on a structure that is selected from

NCBI. The third dataset is used to test the performance of

CompPSA with different RNA structure lengths.

1) NCBI GenBank Dataset: The NCBI GenBank dataset is

used to validate the CompPSA similarity measure and compare

it with the results of [16]. According to RNA secondary
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Fig. 3 Second RNA structure (denoted as b)

Fig. 4 Third RNA structure (denoted as c)

structure alignment based on stem representation [16], there

are two cases in which RNA is similar:

• Case 1: the RNA structures are common, but the

sequences are different.

• Case 2: the RNA sequences are similar, but the structures

are dissimilar

The work done in [16] proves that case 1 has a higher

similarity. Our objective is to validate the score of the measure

TABLE II
STRUCTURE a FEATURE VECTORS

Component OB CB Len
Ca1 1 62 6
Ca2 7 39 5
Ca3 13 36 3
Ca4 16 30 1
Ca5 17 28 1
Ca6 18 24 3
Ca7 31 35 1
Ca8 44 56 6
Ca9 51 55 1

TABLE III
STRUCTURE b FEATURE VECTORS

Component OB CB Len
Cb1 1 63 6
Cb2 7 38 6
Cb3 14 34 3
Cb4 17 29 4
Cb5 21 26 1
Cb6 44 55 8

TABLE IV
STRUCTURE c FEATURE VECTORS

Component OB CB Len
Cc1 1 62 7
Cc2 8 60 1
Cc3 11 59 1
Cc4 12 19 1
Cc5 13 17 1
Cc6 20 56 3
Cc7 24 45 1
Cc8 25 43 1
Cc9 26 40 2
Cc10 28 37 2
Cc11 31 35 1
Cc12 46 54 2
Cc13 49 53 1

Fig. 5 E. coli tRNA for leucine

we used in our algorithm for the same cases. For this purpose,

in this dataset, we select three RNA structures from the NCBI

GenBank [24]. The first RNA structure, a, has a length of

68 nucleotides and 9 components, as shown in Fig. 2, with

vectors as shown in Table II. It is used for comparison in both

cases.

Case 1, Similar Structure and Dissimilar Sequences: The

first RNA structure is compared with a is b (see Fig. 3

and Table III), which has a length of 69 nucleotides and 6
components.

Case 2, Similar Sequences and Dissimilar Structures: The

second RNA structure is compared with a is c (see Fig. 4

and Table IV), which has a length of 69 nucleotides and 13
components.

2) Genomic tRNA Dataset: We also consider two real and

simple RNA structures from the tRNA Genomic Database

[26]. The first RNA structure is for leucine E.coli tRNA (see

Fig. 5 and Table V), the second is for alanine E.coli tRNA
(see Fig. 6 and Table VI). We denote them as a and b. As

can be seen, structure a has a length of 85 and consists

of 5 components; b has a length of 76 and consists of 4
components.
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Fig. 6 E. coli tRNA for alanine

TABLE V
LEUCINE TRNA FEATURE VECTORS

Component OB CB Len
Ca1 5 79 7
Ca2 12 24 5
Ca3 31 38 3
Ca4 42 54 5
Ca5 60 74 3

3) Simulated Dataset: The purpose of the third simulated

dataset is to test the scalability of the time and memory

performance of the CompPSA algorithm against the base-pairs

algorithm. This dataset contains 11 RNA structures based on

RNA structure a (see Table II). The second RNA structure is a

duplication of the first one, the third structure is a duplication

of the second one, and so on. Table VII represents the lengths

and component numbers for the 11 RNA structures in this

dataset.

B. Setup of Experiments

Three different experiments are conducted:

1) Gap penalty and threshold adjustment are adjusted using

the comparison dataset.

2) Four Weight variation experiments are conducted to

compare the datasets using the adjusted parameters: (1)

alignment based on component position, length, and

stem length; (2) alignment based on component position

only; (3) alignment based on component length only;

and (4) alignment based on component stem length

only. For each weight variation, the same experiment

is conducted as in [16] and is used as a benchmark.

3) Time and memory performance experiments are

conducted on all 11 RNA structures in the scalability

TABLE VI
ALANINE TRNA FEATURE VECTORS

Component OB CB Len
Cb1 5 70 7
Cb2 12 24 5
Cb3 34 46 5
Cb4 52 64 4

dataset, as explained in Section IV.A. The results of the

CompPSA algorithm are compared with the results of

the base-pairs based alignment algorithm using the same

experiments.

All experiments are conducted using the two proposed

ordering techniques for the components: (1) order based on

opening brackets, and (2) order based on closing brackets.

Due to similarity of results, only the results for the ordering

by opening brackets are presented in this paper.

C. Results

This section summarizes the results for all experiments.

1) Gap Penalty λ and Pairwise Component Similarity
Threshold ε Values: Special experiments are conducted [25]

using the comparison dataset. We find that the gap value that

fit best is 0.3, so the gap penalty λ is equal to−0.3. The

results show that 0.5 is the best choice for the similarity

threshold. By setting threshold value ε to 0.5 we are directing

the proposed CompPSA algorithm to align only components

with similarity more than or equal to 50%. In base pairs

dynamic programming alignment, a match between any base

pair is counted as 1, while the mismatch is counted by −1.

2) RNA-Forester Comparision Experiment: The

RNA-forester comparison experiment is conducted on

the second dataset, real genomic tRNA, which contains

two simple RNA structures. This experiment is presented

in details to clearly demonstrate the proposed algorithm. In

order to combine the three similarity metrics (component

position, component length, and component stem length),

we need to adjust the three weights to one. Accordingly, the

weighting adjustments are as follows: Wp = 1, Wcl = 1 and

Wsl = 1. The result of this case is validated by comparing

with the results from the RNA-forester tool [15].

3) Feature Extraction: The first step of the algorithm

extracts the RNA structure features by representing them as a

component-based. As we can see from Figs. 5 and 6, the first

structure consists of 5 components while the second one has

only 4 components. The resulting feature vectors are shown

in Table V and VI, and the component-based representation is

written as the follows:

• Pa = (85, INTERM = {}, INTRAM =
{Ca1 = (5, 79, 7), Ca2 = (12, 24, 5), Ca3 =
(31, 38, 3), Ca4 = (42, 54, 5), Ca5 = (60, 74, 3)})

• Pb = (76, INTERM = {}, INTRAM =
{Cb1 = (5, 70, 7), Cb2 = (12, 24, 5), Cb3 =
(34, 46, 5), Cb4 = (52, 64, 4)})

4) Dynamic Programming Application: As mentioned

previously, the first RNA structure in this example has 5
intra-molecular components; so n = 5; the second one has 4,

so m = 4. On that basis we create two 6×5 matrices, one for

dynamic programming scores and one for directions through

the process. Since we are considering gapped alignment, there

is one additional row and one additional column for the gap.

The components can be ordered based either on their opening
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TABLE VII
THE 11 RNA STRUCTURES WITH THEIR SIZES AND NUMBER OF COMPONENTS

RNA Structure # 1 2 3 4 5 6 7 8 9 10 11
Size (length) 68 136 272 544 1088 2176 4352 8704 10336 20672 41344

Components # 9 18 36 72 144 288 576 1152 1368 2736 5472

brackets or on their closing brackets. The similarities between

the two components are then calculated based on the proposed

similarity measurement equations, with numbers (1)-(4). The

resulting similarities are shown in Table VIII.

The score matrix has been calculated and lled in based on the

dynamic programming technique in (5). At the same time, the

direction matrix was also lled in according to the neighbor

that contributed to the cell value, as described previously.

Tables IX and X show the resulting score and direction

matrices.

5) Construction of the Solution: Based on the direction

matrix computed in Table X, we will trace back in the

dynamic programming score matrix and the direction matrix

from respective the bottom-right cells to the respective

upper-left cells. For example, in the case of b, where the

components are arranged according to their closing bracket

offset, the bottom-right cell in the score matrix has the value

3.38; D is associated with the same cell in the direction

matrix. This means Ca1 and Cb1 are aligned with each other,

and we should move to cell (i1, j1). There we nd 2.45 in the

score matrix and D associated with it; that is, the component

Ca5 is aligned to Cb4, to we move to (i1, j1). There we find

the alignment score 1.63 and the direction indicator D; we

then align Ca4 with Ca3 and move to cell (i1, j1). There we

find V, which denotes that Ca3 is aligned with a gap that

has a score of 0.67. The result of the alignment from the

completed trace back is shown in Fig. 7.

If an alignment, of this example, that is based on only the

position similarity is desired, this can be achieved by setting

the position weight Wp to 1 and the other weights Wcl

and Wsl to 0. This will align the two structures based on

their components full length only and discard other features.

Similarly, setting Wsl to 1 and the other two weights to 0
results in an alignment of the structures that is based on

component stem length. In our example, all of three cases

produce an alignment similar to the one produced when all

similarity features are included (i.e. Wp = Wcl = Wsl = 1;

see Fig. 7). This leads us to believe that (1) all three features

have similar effect on the alignment process, and (2) the two

RNA structure are highly similar to each other.

We compared results of the alignment by CompPSA

with those from RNA-forester, and they match. As a final

summary of the alignment process and results, Table XI

shows the aligned components, the measure of the similarity

between them considered in the dynamic programming

process, and the structure score percentages.

TABLE VIII
SIMILARITY FOR ORDERING BY OPENING BRACKET

Cb1 Cb2 Cb3 Cb4
Ca1 0.93 0.11 0.18 0.1
Ca2 0.12 0.97 0.68 0.39
Ca3 0.08 0.46 0.47 0.4
Ca4 0.19 0.67 0.96 0.69
Ca5 0.1 0.36 0.57 0.82

TABLE IX
SCORES FOR ORDERING BY OPENING BRACKET

- Cb1 Cb2 Cb3 Cb4
- 0.0 -0.3 -0.6 -0.9 -1.2

Ca1 -0.3 0.93 0.63 0.33 0.03
Ca2 -0.6 0.63 1.9 1.6 1.3
Ca3 -0.9 0.33 1.6 1.6 1.3
Ca4 -1.2 0.03 1.3 2.56 2.29
Ca5 -1.5 -0.27 1.0 2.26 3.38

TABLE X
DIRECTION FOR ORDERING BY OPENING BRACKET

- Cb1 Cb2 Cb3 Cb4
- * H H H H

Ca1 V D H H H
Ca2 V V D H H
Ca3 V V V S H
Ca4 V V V D D
Ca5 V V V V D

6) Weighting Variation Experiments: The goal of the

weighting variation experiments is to clarify and emphasize

on the role of the three weights in our algorithm: component

position weight Wp, component length weight Wcl and

component stem length Wsl. According to [16], the alignment

percentage of the structure pairs in case 1, where the RNA

structures are the same but the sequences are different, should

be higher than the alignment percentage in case 2, and that

is what our results confirmed. Here we present the results of

the alignment of the two structures based on the order of the

opening brackets only.

Case 1, Similar Structure and Dissimilar Sequences: The

alignment of the two structures is different when different

weight variations are used. The results of this experiment are

shown in Table XII. The higher the similarity between two

components the more similar they are. When a component is

aligned with a gap, or when two components are skipped, the

similarity between them is set to the gap penalty λ, which is

−0.3. In the same way, skipping two components instead of

aligning them set the similarity to λ. According to the results

in Table XII, the component position is the most important

feature, more so than length and stem length, with a similarity

score percentage of 66%. The second-most important feature is

the component length. Because alignment based on component

stem length gives results similar to those based on component

position, alignment based on component stem length is the

least important feature. Moreover, the following two situations

reveal the results more clearly:

• When Wsl is set to 1, the alignment is the same when
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TABLE XI
SUMMARY OF THE ALIGNMENT PROCESS FOR LEUCINE E. COLI TRNA AND ALANINE E. COLI TRNA

(TABLE XI.A)
ALIGNMENT BASED ON COMPONENT POSITIONS, COMPONENT LENGTH,

AND COMPONENT STEM LENGTH

Weighting Setup Wp Wcl Wsl

1 1 1

Alignment Ca1 Ca2 Ca3 Ca4 Ca5
Cb1 Cb2 - Cb3 Cb4

Similarity 0.93 0.97 -0.3 0.96 0.82
Score(a, b) = 3.68 ScorePercentage = 74%

(TABLE XI.B)
ALIGNMENT BASED ON SIMILARITY OF COMPONENT POSITION ONLY

Weighting Setup Wp Wcl Wsl

1 0 0

Alignment Ca1 Ca2 Ca3 Ca4 Ca5
Cb1 Cb2 - Cb3 Cb4

Similarity 0.99 0.97 -0.3 0.96 0.99
Score(a, b) = 3.91 ScorePercentage = 78%

(TABLE XI.C)
ALIGNMENT BASED ON SIMILARITY OF COMPONENT LENGTH ONLY

Weighting Setup Wp Wcl Wsl

1 0 0

Alignment Ca1 Ca2 Ca3 Ca4 Ca5
Cb1 Cb2 - Cb3 Cb4

Similarity 0.94 1.0 -0.3 1.0 0.97
Score(a, b) = 3.68 ScorePercentage = 78%

(TABLE XI.D)
ALIGNMENT BASED ON SIMILARITY OF COMPONENT LENGTH ONLY

Weighting Setup Wp Wcl Wsl

1 0 0

Alignment Ca1 Ca2 Ca3 Ca4 Ca5
Cb1 Cb2 - Cb3 Cb4

Similarity 1.0 1.0 -0.3 1.0 0.86
Score(a, b) = 3.86 ScorePercentage = 77%

one or both of Wp and Wcl are set to 1.

• When Wp, Wcl, and Wsl are set to 1, 1, and 0,

respectively, the alignment is different.

Case 2, Similar Sequences and Dissimilar Structures:
The experiments conducted on case 1 RNA structures were

repeated with case 2. The results are presented in Table XIII,

which shows that component length and component position

are the dominant similarities, 63% and 62%, respectively.

As a result of this situation, the alignment that is based on

component length is similar to the alignment that is based on

component position:

• When Wsl is set to 0, the alignment of case 2 structures

is the same when one or both of Wp and Wcl are set to

1.

• When the two dominant similarities, component

position and length, are combined in one alignment and

component stem length is discarded (i.e., Wsl is set to

0), the result is a new alignment.

According to the stem representation method in [16],

the score percentage for case 1 alignment, where dissimilar

sequences are considered, should be higher than that for case

2 alignment. Our results confirmed the results in [16]: When

all three similarities are measured, the scores are 55% for case

1 (see Table XII) and 41% for case 2 (see Table XIII). The

scores are almost the same when only component position or

only component length is measured: the scores are 63% for

case 1 and 55% for case 2. The different score for component

stem length in case 2 is a result of similarities in component

stem length that was not detected in the previous work.

7) Time and Memory Performance: In this experiment,

we tested the empirical performance and scalability of the

proposed CompPSA algorithm. Results from this set of

experiments are shown in Table XIV. (Table XIV is plotted

as a graph in Fig. 8.) As can be seen, time consumption in

the proposed method is significantly less than in the base

pairs method. This reduction in time comes because the

number of components (N) is much lower than the structure

length (P ). This confirms our theoretical analysis. If the

number of blocks is S, the time consumption of the stem

representation method in [16] is O(S4), higher than O(N2)
for our method. Also, the number of blocks S is larger than

N . We thus conclude that the proposed CompPSA algorithm

is more conservative in time than both base pairs and stem

representation methods.
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TABLE XII
CASE 1 ALIGNMENT PROCESS SUMMARY FOR THE FOUR WEIGHTING VARIATIONS

(TABLE XII.A)
ALIGNMENT BASED ON COMPONENT POSITION, COMPONENT LENGTH, AND COMPONENT STEM LENGTH

Weighting Setup Wp Wcl Wsl

1 1 1

Alignment Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cb1 Cb2 Cb3 - - Cb4 Cb5 Cb6 -

Similarity 0.99 0.9 0.9 -0.3 -0.3 0.58 0.77 0.83 -0.3
Score(a, b) = 4.97 ScorePercentage = 55%

(TABLE XII.B)
ALIGNMENT BASED ON COMPONENT POSITION SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

1 0 0

Alignment Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cb1 Cb2 Cb3 - Cb4 Cb5 - Cb6 -

Similarity 1 0.99 0.96 -0.3 0.99 0.99 -0.3 0.99 -0.3
Score(a, b) = 5.92 ScorePercentage = 66%

(TABLE XII.C)
ALIGNMENT BASED ON COMPONENT LENGTH SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

0 1 0

Alignment Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cb1 Cb2 Cb3 Cb4 - - Cb5 Cb6 -

Similarity 0.99 1 0.94 0.97 -0.3 -0.3 0.91 0.97 -0.3
Score(a, b) = 5.78 ScorePercentage = 64%

(TABLE XII.D)
ALIGNMENT BASED ON COMPONENT STEM LENGTH SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

0 0 1

Alignment Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cb1 Cb2 Cb3 - - Cb4 Cb5 Cb6 -

Similarity 1 0.91 1 -0.3 -0.3 0.86 1 0.86 -0.3
Score(a, b) = 5.63 ScorePercentage = 64%

We also compared the memory performance of our

algorithm with base pairs and stem-representation methods.

The proposed algorithm and base-pairs method utilize two

matrices of size N2 and P 2 respectively, one for the dynamic

programming score and one for trace-back directions. This

means the memory complexity for the proposed method

is O(2N2) ∼ O(N2), and for the base pairs method it is

O(2P 2) ∼ O(P 2). Recall that P is much larger than N ; as a

consequence, the memory requirement for base pairs method

is much larger than that of the proposed method. Table XV

presents the memory performance for both methods, and

the information is plotted on the graph in Fig. 9. The stem

representation method has a four-dimensional matrix; the

maximum number of each dimension is S, so the memory

complexity is O(S4), higher than the memory complexity of

the CompPSA algorithm.

V. CONCLUSION

Comparing RNA sequences is a fundamental procedure

in biology. Similar RNA sequences have similar structures

and similar functionalities. Great efforts has been devoted

to developing efficient RNA sequence alignment algorithms.

The case is not the same for RNA structural alignment

problems, where a limited number of algorithms have been

developed. Most RNA structure alignment algorithms are

not structure to structure; they also usually neglect the

efficiency of representing the RNA structure. In this paper,

we introduced a novel pairwise structure alignment algorithm

that can efficiently calculate secondary structure similarities

based on their components rather than just their nucleotide

details. We also proposed three measures that enabled us to

define the priority of similarities between two given RNA

structures based on given weights. These measures are based

on: component position, length, and stem length. This gives

more flexibility to users of our algorithm in comparing RNA

structures: they can compare them as components rather

than just comparing them as wholes. Moreover, two ordering

techniques were introduced that can be used in calculating

the similarities between two RNA structures using dynamic

programming: opening bracket offset ordering and closing

bracket offset ordering.

In order to adjust the parameters and to test the

validity, accuracy, and performance of the proposed algorithm,

extensive experiments were conducted, and parameters were

adjusted and to test accuracy and scalability in time

and memory performance. The results were compared to

those of other available approaches: a base pairs dynamic
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TABLE XIII
CASE 2 ALIGNMENT PROCESS SUMMARY FOR THE FOUR WEIGHTING VARIATIONS

(TABLE XIII.A)
ALIGNMENT BASED ON COMPONENT POSITION, COMPONENT LENGTH, AND COMPONENT STEM LENGTH

Weighting Setup Wp Wcl Wsl

1 1 1

Alignment Ca1 - - - - Ca3 Ca4 Ca5 - Ca6 Ca7 - Ca9
Cc1 - Cc3 Cc4 Cc5 Cc6 Cc7 Cc8 Cc9 Cc10 Cc11 - Cc13

Scalability 0.92 -0.3 -0.3 -0.3 -0.3 0.57 0.64 0.61 -0.3 0.6 0.99 -0.3 0.96
Score(a, b) = 5.29 ScorePercentage = 41%

(TABLE XIII.B)
ALIGNMENT BASED ON COMPONENT POSITION SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

1 0 0

Alignment Ca1 - - - - Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cc1 Cc2 Cc3 Cc4 Cc5 Cc6 Cc7 Cc8 Cc9 Cc10 Cc11 Cc12 Cc13

Scalability 1 -0.3 -0.3 -0.3 -0.3 0.79 0.87 0.82 0.83 0.83 0.99 0.96 0.96
Score(a, b) = 8.5 ScorePercentage = 62%

(TABLE XIII.C)
ALIGNMENT BASED ON COMPONENT LENGTH SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

0 1 0

Alignment Ca1 - - - - Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cc1 Cc2 Cc3 Cc4 Cc5 Cc6 Cc7 Cc8 Cc9 Cc10 Cc11 Cc12 Cc13

Scalability 0.99 -0.3 -0.3 -0.3 -0.3 0.97 0.92 0.88 0.86 0.9 1 0.71 1
Score(a, b) = 8.23 ScorePercentage = 62%

(TABLE XIII.D)
ALIGNMENT BASED ON COMPONENT STEM LENGTH SIMILARITY ONLY

Weighting Setup Wp Wcl Wsl

0 0 1

Alignment Ca1 - - - - Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9
Cc1 Cc2 Cc3 Cc4 Cc5 Cc6 Cc7 Cc8 Cc9 Cc10 Cc11 Cc12 Cc13

Scalability 0.92 -0.3 -0.3 -0.3 -0.3 0.75 0.5 1 0.67 0.8 1 0.5 1
Score(a, b) = 7.14 ScorePercentage = 55%

TABLE XIV
TIME FOR BASE PAIRS ALIGNMENT AND COMPPSA ALIGNMENT FOR

OPENING BRACKETS (OB)

Size Time (Seconds)
Base Pair CompPSA

68 0.13683509 0.018515662
136 0.182785867 0.032867564
272 0.286313291 0.080643647
544 0.6906022 0.155576236
1088 2.313445951 0.217882314
2176 6.623397349 0.358658094
4352 21.68938905 0.897526949
8704 81.4371613 2.983446382

10336 116.1859366 4.080809364
20672 472.4879804 11.44168366
41344 Out of memory after 1200 41.98851963

programming method and a stem-representation method. The

results confirmed the results of the stem representation method.

We found that our outperforms both algorithms in time and

memory usage. Also, it provides high flexibility for users in

comparing RNA structures with respect to component position,

full length, and stem length.

In the future, we would like to extend the algorithm to

interacting RNA structures and to generalize it so it can handle

multiple RNA structure alignments. We anticipate that our

technique is general enough to be applied to other structured

TABLE XV
MEMORY PERFORMANCE FOR BASE PAIRS ALIGNMENT AND COMPPSA

ALIGNMENT FOR OPENING BRACKETS (OB)

Size Memory Space (MB)
Base Pair CompPSA

68 0 0
136 0 0
272 61.44 1.28
544 245.76 5.75

1088 1013.76 24.28
2176 1022.43 1.73
4352 229.71 40.01
8704 2419.96 156.77
10336 1732.75 162.57
20672 1924.12 244.29
41344 Out of memory after 1200 1279.04

data, such as chemical structures, where components can be

extracted and compared. We would also like to investigate

other component-ordering techniques.
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