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Finite Element Modeling of Stockbridge Damper
and Vibration Analysis: Equivalent Cable Stiffness

Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract—Aeolian vibrations are the major cause for the
failure of conductor cables. Using a Stockbridge damper reduces
these vibrations and increases the life span of the conductor
cable. Designing an efficient Stockbridge damper that suits the
conductor cable requires a robust mathematical model with minimum
assumptions. However it is not easy to analytically model the complex
geometry of the messenger. Therefore an equivalent stiffness must be
determined so that it can be used in the analytical model. This paper
examines the bending stiffness of the cable and discusses the effect
of this stiffness on the natural frequencies. The obtained equivalent
stiffness compensates for the assumption of modeling the messenger
as a rod. The results from the free vibration analysis of the analytical
model with the equivalent stiffness is validated using the full scale
finite element model of the Stockbridge damper.

Keywords—Equivalent stiffness, finite element model, free
vibration response, Stockbridge damper.

NOMENCLATURE

d Diameter of messenger
E Young’s modulus
I Area moment of inertia
J Rotational inertia
L Length of cable
m Mass of messenger per unit length
M Mass of counterweight
T Kinetic energy
V Potential energy
W Transverse displacement
Eeq Equivalent Young’s modulus
fc Frequency with messenger as cable
fr Frequency with messenger as rod
Ic Area moment of inertia of the cable
Ir Area moment of inertia of the rod
mc Mass of messenger as a cable
mr Mass of messenger as a rod
ω Natural frequency

I. INTRODUCTION

POWER lines are often exposed to winds with speeds

up to 7 m/s, which cause vortex shedding [1]. The

continuous force exerted by the wind causes the conductor

to vibrate at a frequency of 3 to 150 Hz. Such vibrations

are characterized by small amplitudes [2] and are referred

to as ”Aeolian Vibration”. Uncontrolled Aeolian vibrations

might lead to catastrophic failure of power lines [3] as

continuous vibration causes bending and tensile stresses

in the conductor [4]. Stockbridge dampers are used to
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Fig. 1 Schematic of a cantilever beam with a tip mass

control these vibrations.The Stockbridge damper was first

developed by George H. Stockbridge in 1925 [5]. The damping

mechanism is observed as the vibrations of the conductor are

transferred to the Stockbridge damper, and the energy of the

conductor is imparted to the oscillating counterweights [6],

[7]. The symmetric Stockbridge damper exhibits two resonant

frequencies while the asymmetric Stockbridge damper has four

[8], [9]. Conventional mathematical models of the Stockbridge

damper assume the system to be a 2 DOF system [10], [11]

with the counterweight to be a lumped mass and the messenger

to be a massless beam. Other nonlinear models [12], [13]

use the energy method to model the system. However the

latest approach by Barry et.al considers the counterweight

as a mass with rotational inertia and employs the bending

stiffness of the messenger [14]. A similar mathematical model

is developed in this this work using Hamiltons principle to

derive the governing system equations.

II. SYSTEM DESCRIPTION

The Stockbridge damper consists of two masses connected

by a messenger with a clamp in its mid-span. For mathematical

simplicity, the half model of the Stockbridge damper is

analyzed. This model behaves as a cantilever beam with a tip

mass. The messenger is a bunch of metal strands knit together

to form a cable [8]. The cable is made of galvanized steel.

Grey cast iron is used for the counterweight, while aluminum

alloy is used for the clamp to reduce its weight [15]. The

schematic of the system is depicted in Fig. 1.

III. EQUATION OF MOTION

The reference frame is attached to the clamp, since it is

considered as the fixed end of the cantilever beam. The kinetic

and potential energies of the system are given by (1) and (2).

T =
1

2
m

L∫

0

Ẇ 2(x, t)dx+
1

2
MẆ 2(L, t) (1)

V =
1

2
EI

L∫

0

W ′′2(x, t)dx (2)
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Fig. 2 Model of the counterweight

Here the primes represent differentiation with respect to the

axial coordinate x and dots denote the differentiation with

respect to time. Using Hamilton’s principle, the equation of

motion of the system is obtained as the following:

EIW IV +mẄ = 0 (3)

Assuming the system exhibits harmonic motion,

W (x, t) = y(x)eiωt (4)

Substituting (4) into (3), the following non dimensional

equation is obtained:

Y IV (ξ)− Ω4Y (ξ) = 0 (5)

where, y = Y L, x = ξL, Ω4 = mω2

EI L4 and the shape function

of the system is written as the following:

Y = c1 sinΩξ + c2 cosΩξ + c3 sinhΩξ + c4 coshΩξ (6)

The boundary conditions are given as:

Y (0) = Y ′(0) = 0;

Y ′′(ξ) = γΩ4Y (ξ); Y ′′′(ξ) = −αΩ4Y ′(ξ)

where γ = J
mL3 ; α = M

mL , the characteristic equation of the

system is obtained by substituting the boundary conditions in

the shape function

γαΩ4(cch−1)+γΩ3(sch+cch)+αΩ(sch−csh)−1−csh = 0
(7)

where s = sinωξ, c = cosωξ, sh = sinhωξ, ch = coshωξ.

IV. FINITE ELEMENT MODELING

A half model of Stockbridge damper is developed using

SolidWorks. The counterweight, messenger, clamp, and

bushing are modeled independently and the assembly is

meshed. Two models are developed: one with the messenger

as a stranded cable and the other with the messenger as a rod.

The stranded messenger is modeled as a 1x19 cable, and it is

ensured that there is frictionless contact between the surfaces

of individual strands [8]. The messenger is made of galvanized

steel with Young’s modulus 2.00E+11 N/m2, Poisson’s ratio

0.29 and mass density 7870 kg/m3.The Young’s modulus of

the counterweight is 6.62E+10 N/m2 and its Poisson’s ratio

was 0.27 with a mass density 7200 kg/m3.

The modeled parts are assembled and meshed using

a curvature based mesh with four Jacobian points. The

Fig. 3 Model of the cable

Fig. 4 Meshed model

TABLE I
FIRST 10 FREQUENCIES OF TWO MODELS WITH d = 5.04mm

Mode No. Strand(rad/s) Rod(rad/s) Ratio(fc/fr)
1 18.801 3.817 0.147547
2 20.204 3.938 0.147693
3 56.103 11.480 0.152579
4 78.952 15.324 0.150305
5 89.126 17.169 0.150216
6 487.920 266.230 0.405206
7 902.770 266.370 0.274766
8 984.950 266.400 0.247847
9 1093.100 266.420 0.205202
10 1538.000 266.430 0.163470

maximum element size is 1.09424 mm while the minimum

element size is 0.218848 mm. The total nodes are 1,712,657

and total elements are 1,111,750.

The rotational moment of inertia of the counterweight is

0.002087 kgm2 and its mass is 1.1298 kg. The length of

the messenger is 0.130 m. A frequency response analysis is

conducted on both of the models, and the results are tabulated

in Table I.

V. RESULTS

The frequency ratio for each model is calculated. In the

first case (Case 1), the diameter of the messenger is 5.04

mm. The other four cases are obtained by increasing the

diameter of the messenger by 2.5 mm for each case. All the

other parameters (counterweight mass and messenger length)

are kept the same. The average of the ratios are presented

in Table II. These ratios were used to conduct regression

analysis and to calculate the equivalent Young’s modulus of

the stranded cable.

The frequency ratios are plotted against the diameter of

the messenger in Fig. 9. Using regression analysis, a relation

between the frequency ratio and the diameter of the messenger

is obtained as:

fratio = −0.0005d2 + 0.0067d+ 0.1222 (8)

The area moment of inertia of a circular cross section is

simple to calculate, but the area moment of inertia of the cable

with complex cross sectional area is more difficult to calculate.
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Fig. 5 First mode shape: f =1.96Hz

Fig. 6 Second mode shape: f = 2.02Hz

The moment of inertia of cable and rod of different diameters

is presented in Table III. It is observed that the moment of

inertia of the cable was proportional to moment of inertia of

the rod and the relation is presented by (9).

0.71Ir = Ic (9)

The equivalent Young’s modulus is obtained in terms of the

diameter and it is presented in (10).

Eeq = 3.24
E

Iratio
(−0.0005d2 + 0.0067d+ 0.1222)2 (10)

where Iratio is the ratio of Ic and Ir. This ratio is equal to

0.71 as given in (9). E is the Young’s modulus of the material

(2E+11 N/m2). The deduced equivalent stiffness is used in the

analytical model to calculate the natural frequencies, which are

then compared with the numerical model. Fig. 10 shows that



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:6, 2017

1193

Fig. 7 Third mode shape: f =5.57Hz

Fig. 8 Fourth mode shape: f =7.87Hz

the results from the analytical model are in good agreement

with the results from the numerical model.

VI. CONCLUSION

The observations from this paper will enable designers

to obtain the equivalent stiffness of a stranded cable with

reference to a rod with equal diameter. This would save a

lot of energy that is put into experiments for determining

messenger bending stiffness, which is both uneconomical and

time consuming. The equivalent stiffness could be used in

the conventional model and the natural frequencies of the

Stockbridge damper could be calculated precisely.
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TABLE II
AVERAGE FREQUENCIES OF TWO MODELS AND THEIR RESPECTIVE

RATIOS

Diameter(mm) Average Ratio (fc/fr)
5.04 0.143822
6.29 0.145150
7.54 0.150216
8.79 0.144408
10.04 0.145914
11.29 0.139029
12.54 0.133327
13.79 0.124206
15.04 0.122413

Fig. 9 Regression analysis

TABLE III
COMPARISON OF MOMENT OF INERTIA OF MESSENGER

Case Ir(m4) Ic(m4) Ratio (Ic/Ir)
Case 1 3.16E-11 2.26E-11 7.14E-01
Case 2 1.58E-10 1.14E-10 7.22E-01
Case 3 4.98E-10 3.58E-10 7.19E-01
Case 4 1.21E-10 8.71E-11 7.18E-01
Case 5 2.51E-09 1.80E-09 7.17E-01

Fig. 10 Comparison between the first two modes for different diameters
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