
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:1, 2017

117


Abstract—Test data compression is an efficient method for

reducing the test application cost. The problem of reducing test data
has been addressed by researchers in three different aspects: Test
Data Compression, Built-in-Self-Test (BIST) and Test set
compaction. The latter two methods are capable of enhancing fault
coverage with cost of hardware overhead. The drawback of the
conventional methods is that they are capable of reducing the test
storage and test power but when test data have redundant length of
runs, no additional compression method is followed. This paper
presents a modified Run Length Coding (RLC) technique with
Multilevel Selective Huffman Coding (MLSHC) technique to reduce
test data volume, test pattern delivery time and power dissipation in
scan test applications where redundant length of runs is encountered
then the preceding run symbol is replaced with tiny codeword.
Experimental results show that the presented method not only
improves the test data compression but also reduces the overall test
data volume compared to recent schemes. Experiments for the six
largest ISCAS-98 benchmarks show that our method outperforms
most known techniques.

Keywords—Modified run length coding, multilevel selective

Huffman coding, built-in-self-test modified selective Huffman
coding, automatic test equipment.

I. INTRODUCTION

N advanced VLSI technology, the system design contains
huge number of transistors on a single chip, which leads to

enlarge in volume of needed test pattern to test the circuits.
The inefficient functionality and increasing the integration size
of VLSI chips make testing for these chips more troublesome.
The most two essential sources of the test cost are test data
volume and test compression ratio.

If the size of test sets circuits increases, both the size of the
VLSI architecture and its complexity also increases. The
standard testing systems of advanced digital circuits need test
patterns application which is done by a test pattern generator
(TPG) to the circuit under test (CUT) then it is compared the
results with known correct results. The increase in test data
volume increases time to transport data from Automatic Test
Equipment (ATE) to CUT. To conquer this issue, a few
techniques have been proposed [1], [2]. Test data compression
based on coding techniques are mostly used because it is

Ms. C. Kalamani is with the ECE Department, Dr.Mahalingam College of

Engineering and Technology, Coimbatore, Tamilnadu, India (e-
mail:kalamec18@gmail.com).

Dr. K. Paramasivam is with the ECE Department, Kumara guru College
of Technology, Coimbatore, Tamilnadu, India (kp_sivam@yahoo.com).

independent of structural information
The coding techniques can be separated into five sorts [3]-

[5]. Dictionary based coding [6] and LFSR-based reseeding
coding [7] use fixed-length (FL) codeword length to code the
FL symbol in the original test data. Huffman-based coding [8]
uses variable length (VL) codeword to code the FL symbol in
the original test data. Traditional run-length-based coding [9]
uses FL codeword to code the VL symbol in the original test
data. VIHC coding [10], Golomb coding [11], Frequency-
Directed Run-length (FDR) coding [12], Alternating Run-
length coding [13], [14], Extended Frequency-Directed Run-
length (EFDR) coding [15] use VL codeword to code the VL
symbol in the original test data. Equal Run Length Coding
(ERLC) [18] is based on runs of 0's and 1's and discovers the
relationship between two consecutive runs. A shorter
codeword is used to represent the whole second run of two
equal length consecutive runs. The benefit of these
classifications of compression systems is that they can
productively misuse correlations in the predefined bits and are
usable on any set of test data. Consequently, they are powerful
for IP cores for which no auxiliary data is available.
Conversely, they are not as viable in misusing don’t-care bits
as linear methods and they necessitate more complex control
logic.

The presented method is a combination of Modified Run
Length coding (MRLC) [22] and Modified Selective Huffman
Coding (MSHC) [17] with Multilevel Huffman Coding
(MHC) [16]. To reduce test data volume by redundant length
of runs is encountered then the preceding run symbol is
replaced with tiny code word and gives better compression
results techniques and necessitate less complex control logic.

The sections are organized as follows: Section II examines
a modified RLC with the MLSHC. Section III portrays
encoding algorithm and decoding architecture of the presented
method. Section IV discusses implementation results. Finally,
Section V summarizes the conclusion of the paper.

II. PROPOSED TECHNIQUE

A. MRL Based MLSHC

The presented technique has done a few modifications in
run length encoding scheme, which is extraordinarily designed
in counter. The MRL gives a better compression ratio than
conventional run length encoding. The MRL technique is
experienced to excess the redundant run length then the
preceding run symbol is replaced with tiny codeword. MRL

A Modified Run Length Coding Technique for Test
Data Compression Based on Multi-Level Selective

Huffman Coding
C. Kalamani, K. Paramasivam

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:1, 2017

118

technique is very similar to the EFDR technique except that
the MRLC code for run-length	݅, the EFDR code for run-
length	݅ ൅ 1.

Let a test set comprising of three 12 bit lengths of the test
bits, which has the pattern block size	ܾ௛ 	ൌ 	4. Hence forth,
the three 12bit length test data are split into a set of nine 4-bit
blocks,	

	ܤ ൌ 	 ሼ10X1; 	XX10; 	1XXX; 	X011; 	10X1; 	10X1; 	0X10; 	101X; 	1XXXሽ

Every unspecified block can contain from 1 to 2ସ ൌ 16

conceivable minterms binary combinations.
In the MRL technique, the most regularly occurred

unspecified block is distinguished. It is then compared with
the following most regularly occurred unspecified block to
check whether there is a conflict in any bit position such as,
one has a 1 and the other has a 0. If there is no conflict, it is
the length of the Huffman codeword of the each encoded
distinct block 	 ௜ܾ 	, ݅	 ∈ 	 ሾ1,݉ሿ and 	݈௕ is the length of the
original unencoded data block.

Note that the weights of the neighbor nodes ݌஺ and ݌஻ can
be written conflict, then by identifying all bit positions
whether block has a predetermined value, they are merged.

The Multilevel Huffman is defined in Two Main Points as:
1. The utilized Huffman code is specified by taking into

account the occurrence frequency of multiple kinds of
information and not only that of the data blocks. As a
consequence, the compression scheme is more
sophisticated and hence much more effective.

2. The unencoded data blocks are indicated by using a
separate Huffman codeword instead of appending an extra
bit to every block either encoded or not. This separate
codeword precedes only each unencoded block.

The modified selective Huffman code is generated as
follows. Consider that D1 and D2 are two datasets.

The number of distinct blocks (m) is same for both the set.
For the first set ܦଵ ∶ 	 ,ଵ݌ ,ଶ݌ … . . , ௠, are the occurrence݌
frequencies of m distinct blocks ଵܾ, ܾଶ, . . . , ܾ௠	. ሺ݌ଵ 	൒ ଶ݌	 	൒
	. . . ൒ 	 .௠ሻ݌ ݈௜	, ݅	 ∈ 	 ሾ1,݉ሿ is the length of the Huffman
codeword of the each encoded distinct block	ܾ௜	, ݅	 ∈ 	 ሾ1,݉ሿ
for set ܦଵ. For the another set ܦଶ ∶ 	 ଵᇱ݌ , ଶ݌

ᇱ , … . . , ௠ᇱ݌ , ௠ାଵ݌
ᇱ 	, are

the occurrence frequencies of ݉ ൅ 1 distinct blocks

ଵܾ
ᇱ , ܾଶᇱ , … . . , ܾ௠ᇱ , ܾ௠ାଵ

ᇱ . ݈௜
ᇱ	, ݉,ሾ1	ߝ	݅ ൅ 1ሿ is the length of the

Huffman codeword of the each encoded distinct block

௜ܾ
ᇱ	, ݅	 ∈ 	 ሾ1,݉ ൅ 1ሿ for set ܦଶ. It is observed that the length of

first ݉ െ 1 codewords for both the data set is same
irrespective of their frequency of occurrence.

݈௜ ൌ ݈௜

ᇱ	݂ݎ݋	݅	 ൏ 	݉

For ݉௧௛ codeword, the length is different by 1 bit for both

the data set.

݈௜ ൅ 1 ൌ ݈௜
ᇱ	݂ݎ݋	݅ ൌ ݉

The ݉൅ 1௧௛ codeword length in set ܦଶ is same as ݉௧௛
codeword length in set ܦଶ.

݈௠ᇱ ൌ ݈௠ାଵ
ᇱ

The average block length of the presented encoding, which

is the average length of the codeword and the unencoded data
blocks in the compressed test set is given by the relation

ெܹௌିு௨௙௙௠௔௡ ൌ ሾ݈ଵ݌ଵ ൅ ݈ଶ݌ଶ ൅ ⋯൅ ݈௠ିଵ݌௠ିଵሿ௟೘௣೘ ൅ ௨݌௕ܫ

where	݈௜, ݅ ∈ ሾ1.݉ሿas

஺݌ ൅ ஻݌ ൅ ௨݌ ൌ 1
஺݌ ൅ ஻݌ ൌ 1 െ ௨݌ ൌ ଵ݌ ൅ ଶ݌ ൅⋯൅ ௠݌

If the encoding is equivalent if and only if ݌௨ ൒ ஺ and݌

௨݌ ൒ .஻݌

III. PROPOSED ALGORITHM

A. Encoder Algorithm
Input: Test	vector	tvሾIሿwith	0	 ൑ 	I	 ൏ 	L, L	length	of	the	vector	

and	pattern	block	size	k.
Output: encoded output sequence encୱୣ୯
1. encୱୣ୯ ← mെ bit	binary	expansion	of	b୦ ,
B଴ ൌ 	initial	specified	bit
2. tv	 ← 	tv ∥ N Where the number of N is k െ lengthሺtvሻmod	k
3. for	i	 ← 1,… . N	
 for	j	 ← b୫୧୬to	b୫ୟ୶		
 if	ሺtv୨ ൌ B଴	or	tv୨ ൌ ′X′ሻ
 cp ← tvሾ1ሿtvሾ2ሿ… tvሾNሿ
 ind_v ← NULL
else
 j ← j ൅ ۂlogଶሺNሻہ ൅ 	1
 B଴ ൌ B଴തതത
 i ൌ 1
 end	if 	
 end	for 	
 end	for 	
4.	 Encode	the	elements	of	each	block
for	1 ൑ n ൑ ሺlengthሺtvሻmod	kሻ/k	
 puc ← tvሾNkሿtvሾNk െ 1ሿ… tvሾNk ൅ k െ 1ሿ

for	1 ൑ i ൑ k
 if	cpሾiሿ ൌ pucሾiሿ ് X
 indሾiሿ ൌ 0
 else	if	ሺcpሾiሿ 	് pucሾiሿ	and		cpሾiሿ ് X	and		pucሾiሿ ് Xሻ
 indሾiሿ ൌ 1
 encୱୣ୯ ൌ encୱୣ୯ ∥ 0
 else
 indሾiሿ ൌ X
 end	if 	
 end	for
ifሺindሾiଵሿ	and	indሾiଶሿ ് X	and	indሾiଵሿ 	് 	indሾiଶሿሻ	
 for	1 ൑ iଵ 	് iଶ ൑ k
 encୱୣ୯ ← encୱୣ୯ ∥ cp ∥ ind_v ∥ 0
 cp ← puc
 ind_v ← NULL
 else ifሺindሾi଴ሿ ് Xሻ
 cpሾiሿ ← pucሾiሿ ⊕ indሾi଴ሿ
 else	cpሾiሿ ← pucሾiሿ
 pucሾiሿ ് X
 ind_v ← ind_v ∥ 1 ∥ indሾi଴ሿ

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:1, 2017

119

 end	if 	
 end	if 	
end	for 	

IV. DECODING ARCHITECTURE

The compressed test data should be decoded utilizing on-
chip hardware before being connected to the scan-chain. Fig. 1
demonstrates the decompression architecture utilized to
decompress the encoded data. It comprises of multilevel
selective Huffman finite state machine (MSH-FSM), ATE,
look up table (LUT), counter, two multiplexers, and decoder
controller. In this decoder architecture, MSH-FSM can be

obtained simply by adding a counter indicating the effect of
parameter, decoder controller block, counter, multiplexers
(MUXes), and LUT.

Fig 1 represents the block diagram of the test decoder
architecture. The technique involves measurable coding for
compression of data to be stored on ATE. The compressed
data from the ATE will be serially transferred to chip utilizing
a single scan-in input. The tester channel ܦ௜௡ is equivalent to
encoded blocks of length in serial fashion. ܧ/ܰ shows the
status of the bit-stream on ܦ௜௡ channel. The loaded data ܦ௜௡ is
applied to a multiplexer. The selection line of this multiplexer
is connected to ܧ/ܰ signal.

Scan_en

en

Done

 Data_in

Sel
MUX

Load

Encoded
Data

Din
ATE

Compressed test
data

ATE Clock

Multilevel
Selective
Huffman

FSM

MUX

E/N

Decoder controller

ATE Sync

HSync

K bit

Counter

Look-Up
Table

Scan Chain

CSync

Sys Clock
0 1

Fig. 1 Decoder architecture

S1

S2

S3

S4

S6

S5

S7

1/xxx, 0

0/0011, 1

1/xxxx, 0

1/xxxx, 0

1/xxxx, 0

1/xxxx, 0

0/1000, 1
1/xxxx, 0

0/1011, 1

0/1001, 1
0/0111, 1

1/1000, 1

0/0001, 1,

1/1111, 1

Fig. 2 FSM

If the data bits of ܦ௜௡channel match to codewords of

relating blocks, ܧ/ܰ is active high. If the data bits on ܦ௜௡
match to unencoded data blocks, ܧ/ܰ is active low. If ܧ/ܰ is
low, the data on ܦ௜௡ are applied directly to serializer bypassing
the decoder. If the ܧ/ܰ is high, the data on ܦ௜௡ are coded and
connected to decoder that decodes the data bits. The MSH-
FSM receives the new codeword for decoding. At the point
when the value of the counter and the output of the lookup

table will be equivalent, ݈݁ݏ value is stopped, and offers sign
to the MSH-FSM for next process in LUT. The output of the
LUT selects the data depending ݈݁ݏ value of the MSH-FSM.
The state diagram utilized for proposed decoder is appeared in
Fig. 2. The number of states is identical to the total number of
branches in the multilevel selective Huffman tree minus one.
The MSH-FSM starts from state ଵܵ, and changes its state based
on ܦ௜௡ bit from ATE. Subsequent to detecting a codeword,
decoding starts at the frequency of system clock and MSH-
FSM back to its default state i.e. S1 state.

V. RESULTS AND DISCUSSION

The compression and decompression techniques were
utilized to compress test sets for the ISCAS’89 benchmark
circuits. The compression technique is implemented utilizing
MATLAB7.0 language, and Verilog code. Most of the parts
on test data compression utilize the same circuits for
experiments.

The compression ratio is computed as

݋݅ݐܽݎ	݀݁ݏݏ݁ݎ݌݉݋ܥ

ൌ 	
ܽݐܽ݀	݈ܽ݊݅݃݅ݎܱ	݂݋	݄ݐ݃݊݁ܮ െ ܽݐܽ݀	݀݁ݏݏ݁ݎ݌݉݋ܥ	݂݋	݄ݐ݃݊݁ܮ

ܽݐܽ݀	݈ܽ݊݅݃݅ݎܱ	݂݋	݄ݐ݃݊݁ܮ
ൈ 100

Block size used in this algorithm is one of the important

parameter which decides the efficiency of compression. This

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:1, 2017

120

algorithm is experimented with various block size as shown in
Table I.

TABLE I

COMPRESSION RATIO FOR DIFFERENT BLOCK SIZES IN A MRLMHC

ALGORITHM
Benchmark

Circuit
No. of

bits
Compressed bits

Block Size (݉௛)

4 5 6 7 8

s5378 20758 5507 5055 5810 5959 5150

s9234 25935 8750 8160 8327 8224 8020

s13207 163100 21388 20746 21424 21438 21170

s15850 57434 12382 12975 12096 12368 12681

s38417 113152 24386 24589 24546 24089 23966

s38584 161040 39987 40561 40634 38730 39084

Table II compares the compression ratio of the proposed

method with other compression techniques with Huffman as in
[20], Selected Huffman, RLHC, Optimal Huffman as in [21],
Multilevel Huffman, Modified Selected Huffman techniques
for ISCAS’89 benchmark circuits.

The presented method gets better compression ratio as
compared with other compression techniques. For s5378
benchmark circuits, the technique gets better (75.19%)
compression ratio, and multilevel huffman gets (28.8%)
compression ratio as compared with other techniques. For
s9234, s13207, s15850, s38417, s38584 benchmark circuits,
the presented method gets better (69.04%, 87.02%, 77.9%,
78.83%, and 75.73%) compression ratio, and multilevel
Huffman gets less compression ratio as compared with
proposed compression techniques.

TABLE II

PERCENTAGES OF COMPRESSED-DATA REDUCTION OF THE PRESENTED

METHOD WITH OTHER COMPRESSED TECHNIQUES
Bench
mark

Circuit

Huff
man
[20]

S H
[8]

RLH
C

[19]

O H
[21]

MH
[16]

M
SH
[17]

Proposed

s5378 54.6 37.5 71.9 37.8 28.8 54.2 75.19

s9234 42.9 26.7 66.5 24.9 15.1 55.5 69.08

s13207 60 40.6 86.3 17.8 22.7 70.3 87.02

s15850 54.2 32.6 77.1 28.7 6.9 64.2 77.92

s38417 63.6 36.2 73.8 33.1 26.7 59.9 78.82

s38584 57.2 33.7 76.2 31.2 14.1 61.9 75.73

VI. CONCLUSION

MRL with multilevel selective Huffman compression
technique reduced the test data volume and better compression
ratio in this paper. It was demonstrated that the technique
gives better compression compared to existing methods like
Huffman, selective Huffman, RLHC, optimal Huffman,
multilevel selective Huffman compression techniques. It was
verified and established with experimental results that the
proposed technique not only enhances the test data
compression but also reduces the general test data volume
compared to recently implemented techniques. Tests for the
six biggest ISCAS-98 benchmarks demonstrate that presented
technique outperforms well known techniques.

REFERENCES
[1] V. Iyengar, K. Chakrabarty and B. T Murray, “Built-in Self-Testing of

Sequential Circuits Using Precomputed Test Sets”, Proc. VTS., pp.418-
423, 1998.

[2] Jas, J. Ghosh-Dastidar and N. A. Touba, “Scan Vector
Compression/Decompression Using Statistical Coding”, Proc. VTS,
pp.114-120, 1999.

[3] N.A. Touba, “Survey of test vector compression techniques”, IEEE
Design and Test of Computers 23 (4) (2006) 294–303.

[4] Kalamani, C & Paramasivam, K, “Survey of Low Power Testing Using
Compression Techniques”, International Journal of Electronics &
Communication Technology, vol. 4, no. 4(2013), pp. 13-18.

[5] Wenfa Zhan, Huaguo Liang, Feng Shi, “Test data compression scheme
based on variable-to-fixed-plus-variable-length coding”, Journal of
Systems Architecture 53 (11) (2007) 877–887.

[6] L. Lei, K. Chakrabarty, “Test data compression using dictionaries with
fixed-length indices”, in: Proceedings of the VLSI Test Symposium,
2003, pp. 219–224.

[7] Al-Yamani, E. McCluskey, “Seed encoding for LFSRs and cellular
automata”, in: Proceedings of the Design Automation Conference, 2003,
pp. 560–565.

[8] Jas, J. Ghosh-Dastidar, N.A. Touba, “An efficient test vector
compression scheme using selective Huffman coding”, IEEE
Transactions on Computer- Aided Design 23 (6) (2003) 797–806.

[9] Jas, N.A. Touba, “Test vector decompression via cyclical scan chains
and its application to testing core-based designs”, in: Proceedings of the
International Test Conference, 1998, pp. 458–464.

[10] T. Paul, B. Al-Hashimi, N. Nicolici, “Variable-Length input huffman
coding for system-on-a-chip test”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22 (6) (2003) 783–796.

[11] Chandra, K. Chakrabarty, “System-on-a-chip test data compression and
decom- pression architectures based on Golomb codes”, IEEE
Transitions on Computer-Aided Design of Integrated Circuits and
System 20 (3) (2001) 355–368.

[12] Chandra, K. Chakrabarty, “Test data compression and test resource
partitioning for system-on-a-chip using frequency-directed run-length
(FDR) codes”, IEEE Transactions on Computers 52 (8) (2003) 1076–
1088.

[13] Chandra, K. Chakrabarty, “Reduction of SOC test data volume, scan
power and testing time using alternating run-length codes”, in:
Proceedings of the IEEE/ACM Design Automation Conference, 2002,
pp. 673–678.

[14] Wuertenberger, C.S. Tautermann, S. Hellebrand, “A hybrid coding
strategy for optimized test data compression”, in: Proceedings of the
International Test Conference, 2003, pp. 451–459.

[15] Aiman El-Maleh, “Test data compression for system-on-a-chip using
extended frequency-directed run-length code”, IET Computers and
Digital Techniques 2 (3) (2008) 155–163.

[16] Kavousianos, Xrysovalantis, Emmanouil Kalligeros, and Dimitris
Nikolos. "Multilevel Huffman coding: an efficient test-data compression
method for IP cores", Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 26.6 (2007): 1070-1083.

[17] Mehta, Usha Sandeep, Kankar S. Dasgupta, and Nirnjan M.
Devashrayee. "Modified selective Huffman coding for optimization of
test data compression, test application time and area overhead", Journal
of Electronic Testing 26.6 (2010): 679-688.

[18] W. Zhan, A. El-Maleh, “A new scheme of test data compression based
on equal- run-length coding (ERLC)”,, Integr. VLSI Journal. 45(1)
(2012) 91–98.

[19] M. Nourani, M. H. Tehranipour, “RL-Huffman encoding for test
compression and Power reduction in scan applications”, ACM Trans.
Design Autom. Electron.Syst. 10(1)(2005)91–115.

[20] D. Huffman, “A method for the construction of minimum-redundancy
codes”, Proc. IRE40 (9) (1952) 1098–1101.

[21] X. Kavousianos, E. Kalligeros, D. Nikolos, “Optimal selective Huffman
coding for test-data compression”, IEEETrans.Comput.56 (8)(2007)
1146–1152.

[22] M. VidyaSagar, J.S. Rose Victor, “Modified Run Length Encoding
Scheme for High Data Compression Rate’’, International Journal of
Advanced Research in Computer Engineering & Technology
(IJARCET) 2(12), (2013) 3238-3241.

