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 
Abstract—Test data compression is an efficient method for 

reducing the test application cost. The problem of reducing test data 
has been addressed by researchers in three different aspects: Test 
Data Compression, Built-in-Self-Test (BIST) and Test set 
compaction. The latter two methods are capable of enhancing fault 
coverage with cost of hardware overhead. The drawback of the 
conventional methods is that they are capable of reducing the test 
storage and test power but when test data have redundant length of 
runs, no additional compression method is followed. This paper 
presents a modified Run Length Coding (RLC) technique with 
Multilevel Selective Huffman Coding (MLSHC) technique to reduce 
test data volume, test pattern delivery time and power dissipation in 
scan test applications where redundant length of runs is encountered 
then the preceding run symbol is replaced with tiny codeword. 
Experimental results show that the presented method not only 
improves the test data compression but also reduces the overall test 
data volume compared to recent schemes. Experiments for the six 
largest ISCAS-98 benchmarks show that our method outperforms 
most known techniques. 

 
Keywords—Modified run length coding, multilevel selective 

Huffman coding, built-in-self-test modified selective Huffman 
coding, automatic test equipment. 

I. INTRODUCTION 

N advanced VLSI technology, the system design contains 
huge number of transistors on a single chip, which leads to 

enlarge in volume of needed test pattern to test the circuits. 
The inefficient functionality and increasing the integration size 
of VLSI chips make testing for these chips more troublesome. 
The most two essential sources of the test cost are test data 
volume and test compression ratio. 

If the size of test sets circuits increases, both the size of the 
VLSI architecture and its complexity also increases. The 
standard testing systems of advanced digital circuits need test 
patterns application which is done by a test pattern generator 
(TPG) to the circuit under test (CUT) then it is compared the 
results with known correct results. The increase in test data 
volume increases time to transport data from Automatic Test 
Equipment (ATE) to CUT. To conquer this issue, a few 
techniques have been proposed [1], [2]. Test data compression 
based on coding techniques are mostly used because it is 
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independent of structural information 
The coding techniques can be separated into five sorts [3]-

[5]. Dictionary based coding [6] and LFSR-based reseeding 
coding [7] use fixed-length (FL) codeword length to code the 
FL symbol in the original test data. Huffman-based coding [8] 
uses variable length (VL) codeword to code the FL symbol in 
the original test data. Traditional run-length-based coding [9] 
uses FL codeword to code the VL symbol in the original test 
data. VIHC coding [10], Golomb coding [11], Frequency-
Directed Run-length (FDR) coding [12], Alternating Run-
length coding [13], [14], Extended Frequency-Directed Run-
length (EFDR) coding [15] use VL codeword to code the VL 
symbol in the original test data. Equal Run Length Coding 
(ERLC) [18] is based on runs of 0's and 1's and discovers the 
relationship between two consecutive runs. A shorter 
codeword is used to represent the whole second run of two 
equal length consecutive runs. The benefit of these 
classifications of compression systems is that they can 
productively misuse correlations in the predefined bits and are 
usable on any set of test data. Consequently, they are powerful 
for IP cores for which no auxiliary data is available. 
Conversely, they are not as viable in misusing don’t-care bits 
as linear methods and they necessitate more complex control 
logic. 

The presented method is a combination of Modified Run 
Length coding (MRLC) [22] and Modified Selective Huffman 
Coding (MSHC) [17] with Multilevel Huffman Coding 
(MHC) [16]. To reduce test data volume by redundant length 
of runs is encountered then the preceding run symbol is 
replaced with tiny code word and gives better compression 
results techniques and necessitate less complex control logic. 

The sections are organized as follows: Section II examines 
a modified RLC with the MLSHC. Section III portrays 
encoding algorithm and decoding architecture of the presented 
method. Section IV discusses implementation results. Finally, 
Section V summarizes the conclusion of the paper. 

II.  PROPOSED TECHNIQUE 

A. MRL Based MLSHC 

The presented technique has done a few modifications in 
run length encoding scheme, which is extraordinarily designed 
in counter. The MRL gives a better compression ratio than 
conventional run length encoding. The MRL technique is 
experienced to excess the redundant run length then the 
preceding run symbol is replaced with tiny codeword. MRL 
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technique is very similar to the EFDR technique except that 
the MRLC code for run-length	݅, the EFDR code for run-
length	݅ ൅ 1.  

Let a test set comprising of three 12 bit lengths of the test 
bits, which has the pattern block size	ܾ௛ 	ൌ 	4. Hence forth, 
the three 12bit length test data are split into a set of nine 4-bit 
blocks,	 

 
	ܤ ൌ 	 ሼ10X1; 	XX10; 	1XXX; 	X011; 	10X1; 	10X1; 	0X10; 	101X; 	1XXXሽ 

 
Every unspecified block can contain from 1 to 2ସ ൌ 16 

conceivable minterms binary combinations.  
In the MRL technique, the most regularly occurred 

unspecified block is distinguished. It is then compared with 
the following most regularly occurred unspecified block to 
check whether there is a conflict in any bit position such as, 
one has a 1 and the other has a 0. If there is no conflict, it is 
the length of the Huffman codeword of the each encoded 
distinct block 	 ௜ܾ 	, ݅	 ∈ 	 ሾ1,݉ሿ and 	݈௕ is the length of the 
original unencoded data block. 

Note that the weights of the neighbor nodes ݌஺ and ݌஻ can 
be written conflict, then by identifying all bit positions 
whether block has a predetermined value, they are merged. 

The Multilevel Huffman is defined in Two Main Points as:  
1. The utilized Huffman code is specified by taking into 

account the occurrence frequency of multiple kinds of 
information and not only that of the data blocks. As a 
consequence, the compression scheme is more 
sophisticated and hence much more effective.  

2. The unencoded data blocks are indicated by using a 
separate Huffman codeword instead of appending an extra 
bit to every block either encoded or not. This separate 
codeword precedes only each unencoded block. 

The modified selective Huffman code is generated as 
follows. Consider that D1 and D2 are two datasets.  

The number of distinct blocks (m) is same for both the set. 
For the first set ܦଵ ∶ 	 ,ଵ݌ ,ଶ݌ … . . ,  ௠, are the occurrence݌
frequencies of m distinct blocks ଵܾ, ܾଶ, . . . , ܾ௠	. ሺ݌ଵ 	൒ ଶ݌	 	൒
	. . . ൒ 	 .௠ሻ݌ ݈௜	, ݅	 ∈ 	 ሾ1,݉ሿ is the length of the Huffman 
codeword of the each encoded distinct block	ܾ௜	, ݅	 ∈ 	 ሾ1,݉ሿ 
for set ܦଵ. For the another set ܦଶ ∶ 	 ଵᇱ݌ , ଶ݌

ᇱ , … . . , ௠ᇱ݌ , ௠ାଵ݌
ᇱ 	, are 

the occurrence frequencies of ݉ ൅ 1 distinct blocks 

ଵܾ
ᇱ , ܾଶᇱ , … . . , ܾ௠ᇱ , ܾ௠ାଵ

ᇱ . ݈௜
ᇱ	, ݉,ሾ1	ߝ	݅ ൅ 1ሿ is the length of the 

Huffman codeword of the each encoded distinct block 

௜ܾ
ᇱ	, ݅	 ∈ 	 ሾ1,݉ ൅ 1ሿ for set ܦଶ. It is observed that the length of 

first ݉ െ 1 codewords for both the data set is same 
irrespective of their frequency of occurrence. 

 
݈௜ ൌ ݈௜

ᇱ	݂ݎ݋	݅	 ൏ 	݉  
 
For ݉௧௛ codeword, the length is different by 1 bit for both 

the data set. 
 

݈௜ ൅ 1 ൌ ݈௜
ᇱ	݂ݎ݋	݅ ൌ ݉ 

The ݉൅ 1௧௛ codeword length in set ܦଶ is same as ݉௧௛ 
codeword length in set ܦଶ. 

 

݈௠ᇱ ൌ ݈௠ାଵ
ᇱ  

 
The average block length of the presented encoding, which 

is the average length of the codeword and the unencoded data 
blocks in the compressed test set is given by the relation 

 

ெܹௌିு௨௙௙௠௔௡ ൌ ሾ݈ଵ݌ଵ ൅ ݈ଶ݌ଶ ൅ ⋯൅ ݈௠ିଵ݌௠ିଵሿ௟೘௣೘ ൅   ௨݌௕ܫ
 
where	݈௜, ݅ ∈ ሾ1.݉ሿas  

஺݌ ൅ ஻݌ ൅ ௨݌ ൌ 1 
஺݌ ൅ ஻݌ ൌ 1 െ ௨݌ ൌ ଵ݌ ൅ ଶ݌ ൅⋯൅  ௠݌

 
If the encoding is equivalent if and only if ݌௨ ൒  ஺ and݌

௨݌ ൒   .஻݌

III. PROPOSED ALGORITHM 

A. Encoder Algorithm 
Input: Test	vector	tvሾIሿwith	0	 ൑ 	I	 ൏ 	L, L	length	of	the	vector	

and	pattern	block	size	k.  
Output: encoded output sequence encୱୣ୯ 
1. encୱୣ୯ ← mെ bit	binary	expansion	of	b୦ ,  
B଴ ൌ 	initial	specified	bit  
2. tv	 ← 	tv ∥ N Where the number of N is k െ lengthሺtvሻmod	k 
3. for	i	 ← 1,… . N	 
       for	j	 ← b୫୧୬to	b୫ୟ୶		  
 if	ሺtv୨ ൌ B଴	or	tv୨ ൌ ′X′ሻ 
 cp ← tvሾ1ሿtvሾ2ሿ… tvሾNሿ 
 ind_v ← NULL 
else  
 j ← j ൅ ۂlogଶሺNሻہ ൅ 	1 
 B଴ ൌ B଴തതത 
                i ൌ 1  
 end	if 	
         end	for 	
   end	for 	
4.	 Encode	the	elements	of	each	block 
for	1 ൑ n ൑ ሺlengthሺtvሻmod	kሻ/k	  
       puc ← tvሾNkሿtvሾNk െ 1ሿ… tvሾNk ൅ k െ 1ሿ  
 
for	1 ൑ i ൑ k  
 if	cpሾiሿ ൌ pucሾiሿ ് X  
  indሾiሿ ൌ 0  
 else	if	ሺcpሾiሿ 	് pucሾiሿ	and		cpሾiሿ ് X	and		pucሾiሿ ് Xሻ  
  indሾiሿ ൌ 1  
                        encୱୣ୯ ൌ encୱୣ୯ ∥ 0  
 else  
  indሾiሿ ൌ X  
           end	if 	
         end	for  
ifሺindሾiଵሿ	and	indሾiଶሿ ് X	and	indሾiଵሿ 	് 	indሾiଶሿሻ	  
 for	1 ൑ iଵ 	് iଶ ൑ k  
                         encୱୣ୯ ← encୱୣ୯ ∥ cp ∥ ind_v ∥ 0  
  cp ← puc  
  ind_v ← NULL  
 else ifሺindሾi଴ሿ ് Xሻ 
  cpሾiሿ ← pucሾiሿ ⊕ indሾi଴ሿ  
 else	cpሾiሿ ← pucሾiሿ  
  pucሾiሿ ് X  
  ind_v ← ind_v ∥ 1 ∥ indሾi଴ሿ  
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 end	if 	
         end	if 	
end	for 	

IV. DECODING ARCHITECTURE 

The compressed test data should be decoded utilizing on-
chip hardware before being connected to the scan-chain. Fig. 1 
demonstrates the decompression architecture utilized to 
decompress the encoded data. It comprises of multilevel 
selective Huffman finite state machine (MSH-FSM), ATE, 
look up table (LUT), counter, two multiplexers, and decoder 
controller. In this decoder architecture, MSH-FSM can be 

obtained simply by adding a counter indicating the effect of 
parameter, decoder controller block, counter, multiplexers 
(MUXes), and LUT. 

Fig 1 represents the block diagram of the test decoder 
architecture. The technique involves measurable coding for 
compression of data to be stored on ATE. The compressed 
data from the ATE will be serially transferred to chip utilizing 
a single scan-in input. The tester channel ܦ௜௡ is equivalent to 
encoded blocks of length in serial fashion. ܧ/ܰ shows the 
status of the bit-stream on ܦ௜௡ channel. The loaded data ܦ௜௡ is 
applied to a multiplexer. The selection line of this multiplexer 
is connected to ܧ/ܰ signal. 
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Fig. 1 Decoder architecture 
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Fig. 2 FSM 
 
If the data bits of ܦ௜௡channel match to codewords of 

relating blocks, ܧ/ܰ is active high. If the data bits on ܦ௜௡ 
match to unencoded data blocks, ܧ/ܰ is active low. If ܧ/ܰ is 
low, the data on ܦ௜௡ are applied directly to serializer bypassing 
the decoder. If the ܧ/ܰ is high, the data on ܦ௜௡ are coded and 
connected to decoder that decodes the data bits. The MSH-
FSM receives the new codeword for decoding. At the point 
when the value of the counter and the output of the lookup 

table will be equivalent, ݈݁ݏ value is stopped, and offers sign 
to the MSH-FSM for next process in LUT. The output of the 
LUT selects the data depending ݈݁ݏ value of the MSH-FSM. 
The state diagram utilized for proposed decoder is appeared in 
Fig. 2. The number of states is identical to the total number of 
branches in the multilevel selective Huffman tree minus one. 
The MSH-FSM starts from state ଵܵ, and changes its state based 
on ܦ௜௡ bit from ATE. Subsequent to detecting a codeword, 
decoding starts at the frequency of system clock and MSH-
FSM back to its default state i.e. S1 state. 

V. RESULTS AND DISCUSSION 

The compression and decompression techniques were 
utilized to compress test sets for the ISCAS’89 benchmark 
circuits. The compression technique is implemented utilizing 
MATLAB7.0 language, and Verilog code. Most of the parts 
on test data compression utilize the same circuits for 
experiments. 

The compression ratio is computed as 
 
݋݅ݐܽݎ	݀݁ݏݏ݁ݎ݌݉݋ܥ

ൌ 	
ܽݐܽ݀	݈ܽ݊݅݃݅ݎܱ	݂݋	݄ݐ݃݊݁ܮ െ ܽݐܽ݀	݀݁ݏݏ݁ݎ݌݉݋ܥ	݂݋	݄ݐ݃݊݁ܮ

ܽݐܽ݀	݈ܽ݊݅݃݅ݎܱ	݂݋	݄ݐ݃݊݁ܮ
ൈ 100 

 
Block size used in this algorithm is one of the important 

parameter which decides the efficiency of compression. This 
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algorithm is experimented with various block size as shown in 
Table I.  

 
TABLE I 

COMPRESSION RATIO FOR DIFFERENT BLOCK SIZES IN A MRLMHC 

ALGORITHM 
Benchmark 

Circuit 
No. of 

bits 
Compressed bits 

Block Size (݉௛) 

4 5 6 7 8 

s5378 20758 5507 5055 5810 5959 5150 

s9234 25935 8750 8160 8327 8224 8020 

s13207 163100 21388 20746 21424 21438 21170 

s15850 57434 12382 12975 12096 12368 12681 

s38417 113152 24386 24589 24546 24089 23966 

s38584 161040 39987 40561 40634 38730 39084 

 
Table II compares the compression ratio of the proposed 

method with other compression techniques with Huffman as in 
[20], Selected Huffman, RLHC, Optimal Huffman as in [21], 
Multilevel Huffman, Modified Selected Huffman techniques 
for ISCAS’89 benchmark circuits. 

The presented method gets better compression ratio as 
compared with other compression techniques. For s5378 
benchmark circuits, the technique gets better (75.19%) 
compression ratio, and multilevel huffman gets (28.8%) 
compression ratio as compared with other techniques. For 
s9234, s13207, s15850, s38417, s38584 benchmark circuits, 
the presented method gets better (69.04%, 87.02%, 77.9%, 
78.83%, and 75.73%) compression ratio, and multilevel 
Huffman gets less compression ratio as compared with 
proposed compression techniques. 

 
TABLE II 

PERCENTAGES OF COMPRESSED-DATA REDUCTION OF THE PRESENTED 

METHOD WITH OTHER COMPRESSED TECHNIQUES 
Bench
mark 

Circuit 

Huff
man 
[20] 

S H 
[8] 

RLH
C 

[19] 

O H 
[21] 

MH 
[16] 

M 
SH 
[17] 

 
Proposed 

s5378 54.6 37.5 71.9 37.8 28.8 54.2 75.19 

s9234 42.9 26.7 66.5 24.9 15.1 55.5 69.08 

s13207 60 40.6 86.3 17.8 22.7 70.3 87.02 

s15850 54.2 32.6 77.1 28.7 6.9 64.2 77.92 

s38417 63.6 36.2 73.8 33.1 26.7 59.9 78.82 

s38584 57.2 33.7 76.2 31.2 14.1 61.9 75.73 

VI. CONCLUSION 

MRL with multilevel selective Huffman compression 
technique reduced the test data volume and better compression 
ratio in this paper. It was demonstrated that the technique 
gives better compression compared to existing methods like 
Huffman, selective Huffman, RLHC, optimal Huffman, 
multilevel selective Huffman compression techniques. It was 
verified and established with experimental results that the 
proposed technique not only enhances the test data 
compression but also reduces the general test data volume 
compared to recently implemented techniques. Tests for the 
six biggest ISCAS-98 benchmarks demonstrate that presented 
technique outperforms well known techniques.  
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