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Terrain Classification for Ground Robots Based on
Acoustic Features

Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract—The motivation of our work is to detect different
terrain types traversed by a robot based on acoustic data from the
robot-terrain interaction. Different acoustic features and classifiers
were investigated, such as Mel-frequency cepstral coefficient and
Gamma-tone frequency cepstral coefficient for the feature extraction,
and Gaussian mixture model and Feed forward neural network for the
classification. We analyze the system’s performance by comparing
our proposed techniques with some other features surveyed from
distinct related works. We achieve precision and recall values between
87% and 100% per class, and an average accuracy at 95.2%. We also
study the effect of varying audio chunk size in the application phase
of the models and find only a mild impact on performance.

Keywords—Terrain classification, acoustic features, autonomous
robots, feature extraction.

I. INTRODUCTION

WHEN using autonomous ground robots, e.g, in disaster

area exploration tasks, detecting the terrain type the

robot is currently operating on has many useful applications,

such as the adaptation of motion control, avoiding hazardous

areas, and also autonomous report generation for a human

surveillance person to support decision making.

In the robotics literature, there are several approaches to

terrain detection based on a variety of sensors, such as

motor slip measurement [1], velocity and acceleration features

[2], [3], visual detection [4]-[6], vibration [7]-[9], sound

[10], or a mixture of several sensors [11], [12]. Many of

the aforementioned approaches are unsupervised and aim at

automatically acquiring models to improve, e.g., the accurate

navigation of the robot, or its autonomy.

Not all sensors are reliable in every situation. Visual

sensors are quite sensitive to different lighting conditions,

fog, vegetation, or other factors that change or obscure the

appearance of objects. Exploiting as much information sources

as possible will therefore result in a more robust and usable

system.

The TRADR project [13], which gave rise to this study,

works on robots for disaster response scenarios. The goal is

to create persistent environment models of the disaster area,

which are useful to robots and humans. One aspect in this

mission is the description of the area that a robot explores.

Aside from the use of vibration, there is not that much work

exploiting sound for the recognition of different terrain types.

In this paper, we are studying the recognition of the terrain
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based on the sound that a robot generates when moving, and

use a supervised approach with humanly labelled data for

training the classifiers for five different terrain types. These

choices were made because the module was primarily intended

for the generation of human-readable reports. While this may

limit the use of the method for sensor fusion or the avoidance

of hazardous terrain, the results strongly suggest that the sound

features used here may also be useful for other applications.

II. HARDWARE SETUP AND DATA COLLECTION

The robot used in our experiments is a version of

Bluebotics’ Absolem platform [18], with two side tracks and

front and rear flippers on each side for operation in difficult

terrain, to surmount uneven surfaces or small crevices, and

also climb stairs. The robot is equipped with several sensors,

such as a laser scanner and omnicam, but we will not go into

details because they are not used in the experiments described

here.
For the sound recording, we mounted a laptop onto the

robot, equipped it with a small USB sound card (a Sennheiser

USB adapter) and used an onmidirectional electret capacitor

microphone (Elecom table microphone), which was placed

next to the left rear motor and relatively close to the ground,

as shown in Fig. 1. The recording was done with standard

Linux software (audacity). All audio was recorded in 16 bit

mono pulse-code modulation (PCM) with a sampling rate of

11025Hz.

Fig. 1 Microphone Setup on the Robot

The data collection was performed at the campus of the

Saarland University, Saarbrücken, piloting the robot manually

with a wireless joystick. The recordings were done in different

parts of the campus, with different locations for each terrain

type. The robot ran with varying speed and also performed

several turning manoeuvres, in flat as well as ascending and

descending places.
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We distinguish four outdoor terrain types (gravel, pavement,

grass and sand) and carpet (indoor), as shown in Fig. 2.

The terrain also varied inside the classes, e.g., from dense

structured gravel to dirt road with wet crushed stones mixed

with varying level of mud, or from wholesome grassland to

grass covered with leaves or mixed with stones or sandy

patches.

The recordings for the sand class had to be stopped

prematurely because the sand entered between the belt of

the main track and the driving wheel and dislocated the belt.

Therefore, the amount of data available for the sand class is

much lower than for the other terrain types. For all types

except sand, we recorded around 24 minutes of audio, for

sand, only a bit more than two minutes.

(a) Gravel (b) Grass

(c) Gravel in hilly surface (d) Grass with leaves

(e) Pavement (f) Sand

Fig. 2 Examples of various environments for the four outdoor terrain types

III. FEATURE EXTRACTION AND CLASSIFIERS

A. Feature Extraction

We divided the original files into chunks of four seconds

length, resulting in 315 chunks for each class except for

the sand class where we ended up with only 31 chunks.

To evaluate the spectrogram for each chunk, we use frames

of 256 samples with 60% overlap, starting the next frame

100 samples after the current one. This amounts to a frame

duration of about 25 ms each. We then compute a FFT with

256 coefficients, applying a Hamming window beforehand. In

order to decrease the execution time, we only keep the first

128 coefficients. Finally, the power spectrum is computed by

squaring the absolute value of the FFT coefficients.

To be able to compare our results with that of [10], we

used a 6D feature vector proposed in [14], comprised of zero

crossing rate (ZCR), short time energy (STE), energy entropy,

spectral centroid, spectral rolloff, and spectral flux, and a 9D

feature vector by adding three more shape features, i.e., the

spectral moments (standard deviation, skewness and kurtosis)

[15]. They use a support vector machine (SVM) classifier and

a k nearest neighbour classifier to separate benign interactions

of the robot, like driving on grass, pavement or gravel from

hazardous ones like driving into water, hitting hard objects

or driving on slippery ground. When looking at all six

interactions, their average accuracy is 92%. Since they are

more interested in the hazardous interactions, they collapsed

the benign classes into one class, and achieve an average

accuracy of 96% for the resulting four classes.

Furthermore, we implemented a Gamma-tone frequency

cepstral coefficients (GFCC) and a Mel-frequency cepstral

coefficients (MFCC) feature extraction. For these, after

applying the Gamma-tone resp. Mel filter banks, an additional

discrete cosine transform is applied to convert the spectrum

back into the time domain. In both cases, the lowest coefficient

is dropped because it does not contain useful information.

To build the GFCC models, we use 23 linear phase

Gammatone filters of order 4 and use all but the first for the

classification task. Lastly, we created a MFCC feature vector

using 26 filters, with the first and last triangle filters are centred

at 100Hz and 5512.5Hz, respectively. For classification, we

only used the coefficients 2–23 from the DCT output.

B. Classifiers

We also experimented with two different classifiers, namely

a gaussian mixture model (GMM), and a feed-forward neural

net (FFNN).

1) GMM: We trained our system using the GMM model

and training algorithm in Matlab’s Statistics ToolboxTM

software using the gmdistribution class. This class fits

the data using an expectation maximization algorithm. We

conducted experiments with the different numbers of Gaussian

components, getting best results with a mixture of at most

three Gaussians.

In rare cases, the gmdistribution converged to a solution

with an ill-conditioned singular or close-singular covariance

matrix for one or more gaussian components, which could be

overcome by using slightly different initial values.

A separate GMM is trained for every class; in the

application phase, the extracted features of the test item are

applied to every model, which returns a probability, and

the one with the highest confidence is then taken as result.

Comparing the probabilities the models return can provide a

confidence measure for the classification, an added value of

the GMM method.

2) FFNN: We use the Matlab R2013a neural network

pattern recognition toolbox for classification. The number of

inputs corresponds to the number of features, in the output

layer there is one neuron for each class. We used a two layer

FFNN with 11 neurons in the hidden layer, with a tanh sigmoid

activation function. The training algorithm used was scaled

conjugate gradient back-propagation (Trainscg), with a mean

square error training criterion.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:6, 2017

628

IV. EXPERIMENTAL RESULTS

A. Using GMM as Classifier

In the first experiment, we evaluated the feature sets using

a GMM classifier with a 5-fold cross-validation, splitting the

315 audio chunks for the four major classes into a training set

of 140 items and a test set of 175 items. For the sand class,

we used 20 training and 11 test items.

We trained GMMs using the different feature sets described

in the previous section. The optimal number of Gaussians for

the MFCC, 6D and 9D features was two, for the GFCC, a

single Gaussian gave the best results. The mean results are

summarized in Table I.

TABLE I
PRECISION AND RECALL FOR THE GMM CLASSIFIER WITH DIFFERENT

FEATURE SETS

Precision 6D 9D GFCC MFCC
grass 76.0 72.3 78.0 99.4

pavement 64.9 65.9 82.5 92.4
gravel 79.1 62.8 80.2 100
carpet 56.2 66.5 67.6 100
sand 47.6 47.6 12.7 35.7

Recall 6D 9D GFCC MFCC
grass 73.3 73.1 89.1 100

pavement 65.9 55.4 64.9 100
gravel 30.1 46.2 59.4 81.8
carpet 88.3 89.7 70.3 100
sand 90.1 90.1 72.7 90.0

Due to the little amount of data available for the sand class,

the results for sand are not very reliable, and that the 6D

and 9D vectors outperform the MFCC features for this class

might be due to an overfitting or ceiling effect. We report this

class only for sake of completeness, and will drop it in the

forthcoming experiments.

It is also possible that the 6D and 9D features would

generally profit from audio preprocessing such as noise

reduction, or larger FFT window sizes, but we did not test this

due to time limitations. For the best feature set, the MFCC,

Table II shows the detailed confusion matrix, which may give

an insight into which classes are harder to separate.

TABLE II
MFCC CONFUSION MATRIX WITH 95.2% ACCURACY. THESE ARE

ABSOLUTE NUMBERS OF TEST SAMPLES CLASSIFIED CORRECT OR

WRONG

Actual label
Grass Pavement Gravel Carpet Sand

Predicted
Grass 175 0 1 0 0

Pavement 0 175 14 0 1
Gravel 0 0 142 0 0
Carpet 0 0 0 175 0
Sand 0 0 18 0 10

1) Varying Training Data Size: To check the influence of

the training data size on the performance of the classification,

we conducted two experiments with GFCC and MFCC and

GMM as classifier. In one the test data size was fixed to 175

samples, in the other we took all data that was not used for

training to test the model.

The number of training samples varied from 20 to 140. The

results are shown in Fig. 3. When using the MFCC features,

Fig. 3 Accuracy with fixed and variable test data size. The x axis shows the
number of training samples, the y axis the average accuracy

the accuracy varies from 88.9% to 95.6%, for the GFCC

features from 49.6% to 71%.

The second experiment reveals change in accuracy

perceived by varying both training data size and testing data

size. In this experiment, we used the data removed from

training for test. As can be seen from Fig. 3, in MFCC the

accuracy varies from 86.4% to 95.6%, while in GFCC the

variation is significant which ranges from 52.8% to 71%. We

can deduce that, in MFCC more than 60 training samples

and in GFCC more than 120 training samples are enough to

achieve a satisfactory performance.

2) Varying Duration of Test Samples: Since in an

application scenario fast response times decide about the

usability of an approach, we also studied the effect of reducing

the duration of the audio chunks on the recognition accuracy.

Shorter test chunks mean less latency, which can be crucial

when the robot enters hazardous terrain. We took the audio

test set and created chunks of one and two seconds from the

four second chunks.

TABLE III
VARYING TEST AUDIO LENGTH FOR GFCC AND MFCC FEATURES AND

GMM CLASSIFIER

1 sec 2 sec 4 sec
GFCC 65.6 69 71
MFCC 93 94.1 95.6

Table III gives the result for the MFCC and GFCC features

with a GMM classifier. Especially for the MFCC features, the

drop in accuracy is acceptable in the light of a four times faster

response time.

B. FFNN Classifier

For the neural network experiments, we reduced the test

sample size to one second. For the GFCC and MFCC feature

sets, we also tried two different ways to feed the set of feature

vectors to the network. Firstly, we averaged over the vectors

of all frames of a sample and used that as input, and secondly,

we appended all vectors into one large input vector, creating

an input vector of size nr_features × nr_frames, resulting
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in 12×109 = 1308 inputs. As already said before, the network

uses one hidden layer of 11 nodes, four output nodes (for the

classes), a tanh sigmoid transfer function and mean squared

error as training criterion for the scaled conjugate gradient

descent learning method. In the experiment 300 samples for

each class were used, which is 1200 samples altogether for

all classes. Of these, 70% were taken for training, 15% for

testing and 15% for validation. The results of this experiments

are summarized in Table IV.

TABLE IV
PRECISION AND RECALL FOR THE FFNN WITH DIFFERENT FEATURE

SETS. GFAVG AND MFAVG ARE THE AVERAGED VECTORS OF GFCC AND

MFCC, RESPECTIVELY

Precision 6D 9D GFCC MFCC GFavg MFavg
grass 88.24 87.76 60.78 97.87 68.00 87.23

pavement 61.90 71.79 89.13 91.67 91.11 100
gravel 75.00 64.71 55.56 92.11 77.50 90.91
carpet 97.83 94.83 78.57 93.62 95.56 100
Recall 6D 9D GFCC MFCC GFavg MFavg
grass 90.91 79.63 73.81 92.00 85.00 93.18

pavement 68.42 82.35 87.23 100 89.13 97.22
gravel 69.86 61.11 34.88 83.33 64.58 86.96
carpet 95.74 98.21 91.67 100 93.48 100

The MFCC features gave the best accuracy also in case of

the neural network classifier, with 93.9% for the large input

vector, and 94.4% for the averaged input vector.

To compare these results with the GMM classifier, we

repeated the GMM / MFCC experiment with audio chunks

of one second, and obtained an accuracy of 93.03%. Table V

shows the confusion matrices for the neural network with

averaged MFCC features and the GMM classifier with MFCC.

The number of samples for MFCC & GMM differ from those

in Table II because the sample duration used in this experiment

is one second instead of four, giving us more training and test

samples.

Still, due to differing test and training data sizes, the result

are not absolutely comparable. Which method performs better

in practice certainly has to be explored.

TABLE V
CONFUSION MATRICES FOR THE BEST NEURAL NETWORK AND GMM

CLASSIFIER RESULTS IN ABSOLUTE NUMBER OF SAMPLES

Actual label
MFCC avg. & FFNN Grass Pavement Gravel Carpet

Predicted
Grass 41 0 3 0

Pavement 0 35 1 0
Gravel 6 0 40 0
Carpet 0 0 0 54

MFCC & GMM

Predicted
Grass 609 3 12 0

Pavement 3 625 46 0
Gravel 3 0 476 0
Carpet 0 0 1 628

V. CONCLUSION AND OUTLOOK

We have studied the usefulness of audio features for

supervised human-labelled terrain recognition on ground

robots. We tried several feature sets, including the 6D and

9D features proposed in a very similar setting [10], and

two classifier methods, namely Gaussian mixture models and

feed-forward neural networks. We showed that, at least in our

setting, the very traditional approach using MFCC and GMM

performed astonishingly well. Another interesting finding was

that GMM and FFNN performed comparably for the MFCC,

but that the 6D and 9D features performed much better with

the FFNN classifier. An advantage of the GMM over the

FFNN classifier, although its performance is slightly worse, is

the comparability of the probabilities of the single outcomes,

making it possible to judge if the given result is more or

less reliable. The recordings and Matlab code we used in our

experiments are available for download [16].

It has to be noted that it is quite likely that our method

works so well because of the kind of robot we used. A

wheeled robot will certainly produce less distinctive sound

patterns given different terrain types. What is still missing

are field recordings to confirm the results of the experimental

recordings. Especially the effect of a lot of different driving

speeds and the differing motion patterns of an autonomous

robot on the classification is still untested.

We did not take special measures to record the data in a

quiet environment; there is some background noise on the

recordings, but it is so much lower than the noise coming

from the motors due to the carefully chosen position of the

microphone, that it does not seem to pose a problem for the

classifier. Also the noise from cooling fans and other sound

sources of the robot is insignificant. Thus, we did not see the

need for elaborate noise reduction techniques.

In the future, we would like to study the fusion of other

sensors with the audio features, e.g., to improve odometry, as

in [17]. This would also be of importance because the audio

can only capture the current terrain, which is not very helpful

to completely avoid hazardous areas.

Also, there is a wide range of research possibilities from

multi-channel recording to noise reduction which may become

necessary to achieve good results if the number of classes

increases or the mechanical setting is different.
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