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Four Positive Almost Periodic Solutions to an
Impulsive Delayed Plankton Allelopathy System

with Multiple Exploit (or Harvesting) Terms
Fengshuo Zhang, Zhouhong Li

Abstract—In this paper, we obtain sufficient conditions for the
existence of at least four positive almost periodic solutions to an
impulsive delayed periodic plankton allelopathy system with multiple
exploited (or harvesting) terms. This result is obtained through the
use of Mawhins continuation theorem of coincidence degree theory
along with some properties relating to inequalities.
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I. INTRODUCTION

THE study of large fluctuations in the population size and

density of phytoplankton communities is an important

subject in aquatic ecology. Workers have attributed these

fluctuations to several factors, such as physical factors,

variation of necessary nutrients, and a combination of the two.

Another important observation made is that, by the production

of allelopathic toxins or stimulators, the increased population

of one species might affect the growth of another species, thus

influencing seasonal succession [7].

Maynard Smith [17] incorporated the effect of toxic

substances in a two-species Lotka-Volterra competitive system

by considering that each species produces a substance that is

toxic to the other but only when the other is present. The

model was⎧⎪⎪⎨
⎪⎪⎩

y
′
1(t) = y1(t)[r1 − α1y1(t)− β1y2(t)−

γ1y1(t)y2(t)],

y
′
2(t) = y2(t)[r2 − α2y2(t)− β2y1(t)−

γ2y1(t)y2(t)],

(1)

However, Mukhopadhyay et al. [1] suggested that a species

needs some time to mature to produce a substance that will

be toxic (or stimulatory) to another; i.e., the production of a

toxic substance by the competing species is not instantaneous.

Therefore, a delay term in the system is necessary to capture

the time lag required for such a maturity. They studied the

revised model⎧⎪⎪⎨
⎪⎪⎩

y
′
1(t) = y1(t)[r1 − α1y1(t)− β1y2(t)−

γ1y1(t)y2(t− τ2)],

y
′
2(t) = y2(t)[r2 − α2y2(t)− β2y1(t)−

γ2y1(t− τ1)y2(t)],

(2)

A species might also experience abrupt changes of state.

This can occur due to certain seasonal effects, such as weather
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change, food supply, and mating habits. As a result, the

population levels of a species repeatedly undergo changes of

relatively short duration at certain moments of time due to

the existence of these external forces. However, the duration

of these changes is often negligible in comparison with that

of the entire evolution process and thus these abrupt changes

can be well-approximated as impulses. To accurately describe

this ecological system, one may use impulsive differential

equations and many papers investigate impulsive ecological

systems in this way (see [11]-[13], [18], [20], [23], [25], [31],

[35], [37]-[39], [41]).

Since biological and environmental parameters are naturally

subject to fluctuations over time, the effects of a periodically

varying environment are considered important selective forces

on systems in a fluctuating environment. The ecological

system is often deeply perturbed by the activities of human

exploitation, such as planting and harvesting. It is more

realistic to consider almost periodic systems than periodic

systems and, over all kinds of population models, many

excellent results have been obtained from the study of

positive almost periodic solutions (see [3], [8], [9], [19],

[32], [33], [40]). However, few results are available for the

existence of positive almost periodic solutions to the impulsive

delayed plankton allelopathy system with multiple exploited

(or harvesting) terms.

In 2013, Li & Ye [32] studied the existence multiple positive

almost periodic solutions to an impulsive non-autonomous

Lotka-Volterra predator-prey system with harvesting terms.

The authors first introduced a new method to discuss

the existence multiple positive almost periodic solutions to

population models by using Mawhin’s continuation theorem

of coincidence degree. Moreover, their method can be used to

study other types of population systems.

Motivated by the above and applying the method analogous

to the one used by Li & Ye, the purpose of this paper is

to study the existence of multiple positive almost periodic

solutions of a delayed plankton allelopathy system with

multiple exploited (or harvesting) terms. In addition, we

consider the impact generated by the coexistence of multiple

generations of a species. To the best of our knowledge, there

are few results of the existence of four positive almost periodic

solutions for this kind of system.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
′
1(t) = x1(t)

[
r1(t)− a1(t)x1(t)−

n∑
i=1

b1i(t)·

x2(t− τ2i(t))−
n∑

i=1

c1i(t)x1(t)x2(t−
σ2i(t))

]− h1(t)

x
′
2(t) = x2(t)

[
r2(t)−

n∑
i=1

a2i(t)x1(t−

τ1i(t))− b2(t)x2(t)−
n∑

i=1

c2i(t)x2(t)·
x1(t− σ1i(t))

]− h2(t)
xm(t+k ) = (1 + Γmk)xm(tk),m = 1, 2.

(3)

where x1(t), x2(t) are the population densities of two

competing species. r1(t), r2(t) are the first and the second

specific intrinsic rates of increase, a1(t), b2(t) are the rates

of intra specific competition of the first and second species

respectively. b1i(t), a2i(t), (i = 1, 2, · · · , n) stand for the

ith generation’s inter specific competition rates of the first

and the second species. τ1i(t), τ2i(t) are the time delays

required for the maturities of the ith generation of the

first and second species. c1i(t) and c2i(t) are the rates of

toxic inhibition about the ith generation of the first species

by the second and vice versa. σ1i(t) and σ2i(t) are the

time delays required for making inhibition toxins of the ith
generation of the first and the second species. h1(t) and

h2(t) are the harvesting rate of the first and the second

specifies; r1(t), r2(t), a1(t), a2i(t), b1i(t), b2(t), c1i(t), c2i(t),
h1(t), h2(t), (i = 1, 2 · · · , n) are all continuous positive

ω-almost periodic functions.

The organization of this paper is as follows. In Section II,

we make some preparations and state lemmas that are useful

in the following sections. In Section III, we apply Mawhins

continuation theorem of coincidence degree theory to establish

sufficient conditions for the existence of multiple positive

almost periodic solutions to system. A conclusion is given

in Section IV.

II. PRELIMINARIES

We first introduce some basic notations. Let AP (R) =
{p(t) : p(t) is a continuous, real valued, almost periodic

function on R}. Suppose that f(t, φ) is almost periodic in

t, uniformly with respect to φ ∈ C([−σ, 0], R). T (f, ε, S)
will denote the set of ε-almost periods with respect to S ⊂
C([−σ, 0], R), l(ε, S) the inclusion interval, Λ(f) the set of

Fourier exponents, mod(f ) the module of f , and m(f) the

mean value.

Lemma 1: If f(t) ∈ AP (R), then there exists t0 ∈ R such

that f(t0) = m(f).
Lemma 2: Assume that x(t) ∈ AP (R), then x(t) is

bounded on R.

Lemma 3: [32] Assume that x(t) ∈ AP (R) ∩ C1(R,R),
then there exist two points sequences {ξk}∞k=1, {ηk}∞k=1

such that N ′(ξk) = N ′(ηk) = 0, limk→∞ ξk = ∞ and

limk→∞ ηk = −∞.

Lemma 4: [32] Assume that N(t) ∈ AP (R) ∩ C1(R,R),
then N(t) falls into one of the following four cases:

(i) There are ξ, η ∈ R such that N(ξ) = supt∈R N(t) and

N(η) = inft∈R N(t). In this case, N ′(ξ) = N ′(η) = 0.

(ii) There are no ξ, η ∈ R such that N(ξ) = supt∈R N(t)
and N(η) = inft∈R N(t). In this case, for any ε > 0,

there are exist two points ξ, η ∈ R such that N ′(ξ) =
N ′(η) = 0, N(ξ) > supt∈R N(t) − ε and N(η) <
inft∈R N(t) + ε.

(iii) There is a ξ ∈ R such that N(ξ) = supt∈R N(t) and

there is no η ∈ R such that N(η) = inft∈R N(t). In this

case, N ′(ξ) = 0 and for any ε > 0, there exists an η such

that N ′(ξ) = N ′(η) = 0 and N(η) < inft∈R N(t) + ε.
(iv) There is an η ∈ R such that N(η) = inft∈R N(t) and

there is no ξ ∈ R such that N(ξ) = supt∈R N(t). In this

case, N ′(η) = 0 and for any ε > 0, there exists an ξ such

that N ′(ξ) = N ′(η) = 0 and N(ξ) > supt∈R N(t)− ε.

Let PC(R,R) = {ϕ : R → R, ϕ is a piecewise continuous

function with points of discontinuity of the first kind at tk, k =
1, 2, . . ., at which ϕ(t−k ) and ϕ(t+k ) exit and ϕ(t−k ) = ϕ(tk)}.

Since the solutions of system (3) belong to the space

PC(R,R2), we adopt the following definitions for almost

periodicity.
Definition 1: The family of sequences {tjk = tk+j −

tk, k, j ∈ Z} is said to be equipotentially almost periodic if for

arbitrary ε > 0, there exists a relatively dense set of ε-almost

periods, that are common for any sequences.
Definition 2: The function ϕ ∈ PC(R,R) is said to be

almost periodic, if the following conditions hold:

(1) the set of sequences {tjk = tk+j − tk, k, j ∈ Z} is

equipotentially almost periodic;

(2) for any ε > 0 there exists δ(ε) > 0 such that if the points

t1 and t2 belong to the same interval of continuity of

ϕ(t) and |t1 − t2| < δ, then |ϕ(t1)− ϕ(t2)| < ε;
(3) for any ε > 0 there exists a relatively dense set T of

ω-almost periodic such that if τ ∈ T , then |ϕ(t + τ) −
ϕ(t)| < ε for all t ∈ R which satisfy the condition |t −
tk| > ε, k ∈ Z.

Consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
′
1(t) = y1(t)

[
r1(t)− ā1(t)y1(t)−

n∑
i=1

b̄1i(t)·

y2(t− τ2i(t))−
n∑

i=1

c̄1i(t)y1(t)

y2(t− σ2i(t))
]− h̄1(t)

y
′
2(t) = y2(t)

[
r2(t)−

n∑
i=1

ā2i(t)y1(t−

τ1i(t))− b̄2(t)y2(t)−
n∑

i=1

c̄2i(t)y2(t)·
y1(t− σ1i(t))

]− h̄2(t)

(4)

where

ā1(t) = a1(t)
∏

0<tk<t(1 + Γ1k),

ā2i(t) = a2i(t)
∏

0<tk<t(1 + Γ1k),

b̄2(t) = b2(t)
∏

0<tk<t(1 + Γ2k),

b̄1i(t) = b1i(t)
∏

0<tk<t(1 + Γ2k),
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c̄1i(t) = c1i(t)
∏

0<tk<t(1 + Γ1k)(1 + Γ2k),

c̄2i(t) = c2i(t)
∏

0<tk<t(1 + Γ1k)(1 + Γ2k),

h̄1(t) = h1(t)
∏

0<tk<t
1

1+Γ1k
,

h̄2(t) = h2(t)
∏

0<tk<t
1

1+Γ2k
,

Lemma 5: For systems (3) and system (4), the following

results hold:

(1) if (y1(t), y2(t))
T is a solution of (4), then

(x1(t), x2(t))
T =

( ∏
0<tk<t

(1 + Γ1k)y1(t),

∏
0<tk<t

(1 + Γ2k)y2(t)
)T

is a solution of (3).

(2) if (x1(t), x2(t))
T is a solution of (3), then

(y1(t), y2(t))
T =

( ∏
0<tk<t

(1 + Γ1k)
−1x1(t),

∏
0<tk<t

(1 + Γ2k)
−1x2(t)

)T

is a solution of (4).

Proof: Suppose that (y1(t), y2(t))
T is a solution of (4).

Let

xm(t) =
∏

0<tk<t

(1 + Γmk)ym(t),m = 1, 2,

then for any t �= tk, k ∈ Z+, by substituting

ym(t) =
∏

0<tk<t

(1 + Γmk)
−1xm(t),m = 1, 2,

into system (3), we can easily verify that the first and the

second equations of system (3) holds.

For t = tk, k ∈ Z+,m = 1, 2, we obtain

xm(t+k ) = lim
t→t+

k

∏
0<tk<t

(1 + Γmk)ym(t)

=
∏

0<ts≤tk

(1 + Γms)ym(tk)

= (1 + Γmk)
∏

0<ts<tk

(1 + Γms)ym(tk)

= (1 + Γmk)xm(tk).

Hence, the second equation of system (3) also holds. Thus

(x1(t), x2(t))
T is a solution of system (3).

(2) We first show that ym(t),m = 1, 2 are continuous. Since

ym(t),m = 1, 2 are continuous on each interval (tk, tk+1], it is

sufficient to check the continuity of ys(t) at the impulse points

tk, k ∈ Z+. Since ym(t) =
∏

0<tk<t

(1 + Γmk)
−1xm(t),m =

1, 2, we have

ym(t+k ) =
∏

0<ts≤tk
(1 + Γms)

−1xm(t+k )

=
∏

0<ts<tk
(1 + Γms)

−1xm(tk) = ym(tk),

ym(t−k ) =
∏

0<ts<tk
(1 + Γms)

−1xm(t−k )

=
∏

0<ts<tk
(1 + Γms)

−1xm(tk) = ym(tk).

Thus ym(t),m = 1, 2 is continuous on [0,∞). It is easy to

prove that (y1(t), y2(t))
T satisfies system (3). Therefore, it is

a solution of system (4). This completes the proof of lemma

7.

For the sake of convenience, we denotef l =
inf
t∈R

f(t), fM = sup
t∈R

f(t), here f(t) is a positive continuous

almost periodic function.

For simplicity, we need to introduce some notations as:

l±1 =
rM1 ±

√
(rM1 )2 − 4āl1h̄

l
1

2āl1
,

l±2 =
rM2 ±

√
(rM2 )2 − 4b̄l2h̄

l
2

2b̄l2
,

A±
1 =

rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 ±

√
S1

2āM1
,

S1 = (rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 )

2 − 4āM1 h̄m
1 ,

A±
2 =

rl2 −
n∑

i=1

āM2i l
+
1 −

n∑
i=1

c̄M2i l
+
1 l

+
2 ±

√
S2

2b̄M2
,

S2 = (rl2 −
n∑

i=1

āM2i l
+
1 −

n∑
i=1

c̄M2i l
+
1 l

+
2 )

2 − 4b̄M2 h̄m
2

Throughout this paper, we need the following assumptions.

(H1) rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 > 2

√
āM1 h̄m

1 and

rl2 −
n∑

i=1

āM2i l
+
1 −

n∑
i=1

c̄M2i l
+
1 l

+
2 > 2

√
b̄M2 h̄m

2 ;

(H2) The set of sequences{tjk = tk+j − tk, k, j ∈ Z+} is

uniformly almost periodic.

(H3)
∏

0<tk<t

(1 + Γmk) is almost periodic, m = 1, 2.

Lemma 6: [17] Let x > 0, y > 0, z > 0 and x > 2
√
yz, for

the functions f(x, y, z) =
x+

√
x2 − 4yz

2z
and g(x, y, z) =

x−
√

x2 − 4yz

2z
, the following assertions hold.

(1) f(x, y, z) and g(x, y, z) are monotonically increasing and

monotonically decreasing on the variable x ∈ (0,∞),
respectively.

(2) f(x, y, z) and g(x, y, z) are monotonically decreasing

and monotonically increasing on the variable y ∈ (0,∞),
respectively.

(3) f(x, y, z) and g(x, y, z) are monotonically decreasing

and monotonically increasing on the variable z ∈ (0,∞),
respectively.

Lemma 7: For the following equations

r1(t)− ā1(t)e
u1(t) − h̄1(t)e

−u1(t) = 0

r2(t)− b̄2(t)e
u2(t) − h̄2(t)e

−u2(t) = 0

if assumption(H1) holds,then we have the following

inequalities

ln l−i < lnu−
i < lnA−

i < lnA+
i < lnu+

i < ln l+i ,
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i = 1, 2, for all t ∈ R.

where

u±
1 =

r1(t)±
√
r21(t)− 4ā1(t)h̄1(t)

2ā1(t)
,

u±
2 =

r2(t)±
√
r22(t)− 4b̄2(t)h̄2(t)

2b̄2(t)
.

Proof: Using lemma 6, it is easily that

rM1 +
√
(rM1 )2 − 4āl1h̄

l
1

2āl1

>
r1(t) +

√
r21(t)− 4ā1(t)h̄1(t)

2ā1(t)

>

rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 +

√
S1

2āM1

>

rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 −

√
S1

2āM1

>
r1(t)−

√
r21(t)− 4ā1(t)h̄1(t)

2ā1(t)

>
rM1 −

√
(rM1 )2 − 4āl1h̄

l
1

2āl1

where So we can get

l+1 > u+
1 > A+

1 > A−
1 > u−

1 > l−1 or

ln l+1 > lnu+
1 > lnA+

1 > lnA−
1 > lnu−

1 > ln l−1 .
Analogously, we have

ln l+2 > lnu+
2 > lnA+

2 > lnA−
2 > lnu−

2 > ln l−2 .
The proof of this lemma is completed.

III. EXISTENCE OF AT LEAST FOUR POSITIVE ALMOST

PERIODIC SOLUTIONS

We first summarize a few concepts from the book by Gaines

and Mawhin [22].

Let X and Z be real normed vector spaces. Let L :
DomL ⊂ X → Z be a linear mapping and N : X ×
[0, 1] → Z be a continuous mapping. The mapping L will

be called a Fredholm mapping of index zero if dim Ker L
= codim Im L < ∞ and ImL is closed in Z. If L is a

Fredholm mapping of index zero, then there exists continuous

projectors P : X → X and Q : Z → Z such that

ImP = KerL and KerQ = Im L = Im (I − Q), and

X = KerL
⊕

KerP,Z = ImL
⊕

ImQ. It follows that

L|Dom L∩Ker P : (I − P )X → Im L is invertible and its

inverse is denoted by KP . If Ω is a bounded open subset

of X , the mapping N is called L-compact on Ω̄ × [0, 1], if

QN(Ω̄×[0, 1]) is bounded and KP (I−Q)N : Ω̄×[0, 1] → X
is compact. Because Im Q is isomorphic to Ker L, there exists

an isomorphism J : ImQ → Ker L.

Lemma 8: [22] Let L be a Fredholm mapping of index zero

and let N be L-compact on Ω̄× [0, 1]. Assume

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ)
is such that x /∈ ∂Ω ∩Dom L;

(b) QN(x, 0)x �= 0 for each x ∈ ∂Ω ∩Ker L;

(c) deg(JQN(x, 0),Ω ∩KerL, 0) �= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩DomL.
Let T be a given positive constant and a finite number of

points of the sequence {τk} lies in the interval [0, T ]. Let

PC([0, T ],Rn) be the set of functions x : [0, T ] → Rn

which are piecewise continuous in [0, T ] and have points of

discontinuous τk ∈ [0, T ], where they are continuous from

the left. In the set PC([0, T ],Rn) introduce the norm ‖x‖ =
sup |x(t)| : t ∈ [0, T ] with which PC([0, T ],Rn) becomes a

Banach space with the uniform convergence topology.
In our case, we shall consider X = Z = V1

⊕
V2, where

V1 = {z(t) = (z1(t), z2(t))
T : zs(t) ∈ AP (R),

mod(zs(t)) ⊂ mod (Fs), ∀μ ∈ Λ(zs(t)) satisfies |μ| ≥ α, s =
1, 2} gets that

V1 ∪ {rs(t), ā1(t), b̄1i(t), b̄2(t), ā1i(t), c̄si(t),
h̄s(t), τsi(t), σsi(t), i = 1, 2, · · · , n, s = 1, 2} is

equi-almost-periodic,

V2 = {z(t) ≡ (c1, c2) ∈ R2},
where

F1(t, φ1, φ2) = r1(t)− ā1(t)e
φ1(0) −

n∑
i=1

b̄1i(t)·

eφ2(−τ2i(t)) −
n∑

i=1

c̄1i(t)e
φ1(0)eφ2(−σ2i(t)) − h̄1(t)e

−φ1(0),

F2(t, φ1, φ2) = r2(t)−
n∑

i=1

ā2i(t)e
φ1(−τ1i(t)) − b̄2(t)·

eφ2(0) −
n∑

i=1

c̄2i(t)e
φ2(0)eφ1(−σ1i(t)) − h̄2(t)e

−φ2(0).

in which φs ∈ C([−σ, 0],R), s = 1, 2, σ = max
1≤i≤n

sup{τ1i(t), τ2i(t), σ1i(t), σ2i(t)}, and α is a given positive

constant.
Define the norm

‖z‖ =
2∑

s=1

sup
t∈R

|zs(t)| ∀z ∈ X = Z.

By making the substitution

ys(t) = ezs(t), s = 1, 2,

system (3) is reformulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
′
1(t) = r1(t)− ā1(t)e

z1(t) −
n∑

i=1

b̄1i(t)·

ez2(t−τ2i(t)) −
n∑

i=1

c̄1i(t)e
z1(t)ez2(t−σ2i(t))

−h̄1(t)e
−z1(t),

z
′
2(t) = r2(t)−

n∑
i=1

ā2i(t)e
z1(t−τ1i(t))

−b̄2(t)e
z2(t) −

n∑
i=1

c̄2i(t)e
z2(t)ez1(t−σ1i(t))

−h̄2(t)e
−z2(t).

(5)
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Similar to the proofs of lemma 2 and lemma 7 in [30], one

can easily prove the following three lemmas, respectively.
Lemma 9: X and Z are Banach spaces equipped with the

norm ‖ · ‖.
Lemma 10: Let L : X → Z, Lz = u′ = (z

′
1, z

′
2)

T . Then L
is a Fredholm mapping of index zero.

Lemma 11: Let N : X× [0, 1] → Z,

N(u(t), λ) = (N1(u(t), λ), N2(u(t), λ))
T ,

where

N1(z(t), λ) = r1(t)− ā1(t)e
z1(t) − λ

∑n
i=1 b̄1i(t)·

ez2(t−τ2i(t)) − λ
∑n

i=1 c̄1i(t)e
z1(t)ez2(t−σ2i(t))

−h̄1(t)e
−z1(t),

N2(z(t), λ) = r2(t)− λ
∑n

i=1 ā2i(t)e
z1(t−τ1i(t))

−b̄2(t)e
z2(t) − λ

∑n
i=1 c̄2i(t)e

z2(t)ez1(t−σ1i(t))

−h̄2(t)e
−z2(t).

and P : X → X, Px = m(x);Q : Z→ Z, Qu = m(u).
Then N is L-compact on Ω̄ (Ω is a open bounded subset of

X.
Theorem 1: Assume that (H1),(H2) and (H3) hold, then

system (3) has at least four positive almost periodic solutions.
Proof: In order to use lemma 8, we have to find at least

four appropriate open bounded subsets in X. Corresponding

to the operator Lz = λN(z, λ), λ ∈ (0, 1), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
′
1(t) = λ(r1(t)− ā1(t)e

z1(t) − λ
n∑

i=1

b̄1i(t)·

ez2(t−τ2i(t)) − λ
n∑

i=1

c̄1i(t)e
z1(t)ez2(t−σ2i(t))

−h̄1(t)e
−z1(t)),

z
′
2(t) = λ(r2(t)− λ

n∑
i=1

ā2i(t)e
z1(t−τ1i(t))

−b̄2(t)e
z2(t) − λ

n∑
i=1

c̄2i(t)e
z2(t)ez1(t−σ1i(t))

−h̄2(t)e
−z2(t)).

(6)

Assume that z ∈ X is an almost periodic solution of system

(6) for some λ ∈ (0, 1). By lemma 4, for any ε > 0, there

exist ξs, ηs ∈ R such that zs(ξs) > zMs − ε, zs(ηs) < zls + ε
and żs(ξs) = 0, żs(ηs) = 0, s = 1, 2. From this and system

(6), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(ξ1)− ā1(ξ1)e
z1(ξ1) − λ

n∑
i=1

b̄1i(ξ1)e
z2(ξ1−τ2i(ξ1))

−λ
n∑

i=1

c̄1i(ξ1)e
z1(ξ1)ez2(ξ1−σ2i(ξ1))

−h̄1(ξ1)e
−z1(ξ1) = 0,

r2(ξ2)− λ
n∑

i=1

ā2i(ξ2)e
z1(ξ2−τ1i(ξ2))

−b̄2(ξ2)e
z2(ξ2) − λ

n∑
i=1

c̄2i(ξ2)e
z2(ξ2)ez1(ξ2−σ1i(ξ2))

−h̄2(ξ2)e
−z2(ξ2) = 0.

(7)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(η1)− ā1(η1)e
z1(η1) − λ

n∑
i=1

b̄1i(η1)e
z2(η1−τ2i(η1))

−λ
n∑

i=1

c̄1i(η1)e
z1(η1)ez2(η1−σ2i(η1))

−h̄1(η1)e
−z1(η1) = 0,

r2(η2)− λ
n∑

i=1

ā2i(η2)e
z1(η2−τ1i(η2))

−b̄2(η2)e
z2(η2) − λ

n∑
i=1

c̄2i(η2)e
z2(η2)ez1(η2−σ1i(η2))

−h̄2(η2)e
−z2(η2) = 0.

(8)

On the one hand, according to the first equation of (7), we have

āl1e
2z1(ξ1) − rM1 ez1(ξ1) + h̄l

1

≤ ā1(ξ1)e
2z1(ξ1) − r1(ξ1)e

z1(ξ1) + h̄1(ξ1)

= −λez1(ξ1)(
n∑

i=1

b̄1i(ξ1)e
z2(ξ1−τ2i(ξ1))

+
n∑

i=1

c̄1i(ξ1)e
z1(ξ1)ez2(ξ1−σ2i(ξ1)))

< 0,
namely,

al1e
2z1(ξ1) − rMez1(ξ1) + hl

1 < 0,

which implies that

ln l−1 < z1(ξ1) < ln l+1 . (9)

Similarly, by the first equation of (8), we obtain

ln l−1 < z1(η1) < ln l+1 . (10)

From the second equation of (7), we obtain

b̄l2e
2z2(ξ2) − rM2 ez2(ξ2) + h̄l

2

≤ b̄2(ξ2)e
2z2(ξ2) − r2(ξ2)e

z2(ξ2) + h̄2(ξ2)

= −λez2(ξ2)(
n∑

i=1

ā2i(ξ2)e
z1(ξ2−τ1i(ξ2))

+
n∑

i=1

c̄2i(ξ2)e
z2(ξ2)ez1(ξ2−σ1i(ξ2)))

< 0.
That is

bl2e
2z2(ξ2) − rM2 ez2(ξ2) + h̄l

2 < 0.

which imply that

ln l−2 < z2(ξ2) < ln l+2 . (11)

Similarly, by the second equation of (8), we get

ln l−2 < z2(η2) < ln l+2 . (12)

On the other hand, by (7), (10), (11) we have
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rl1 ≤ r1(ξ1)

= ā1(ξ1)e
z1(ξ1) + λ

n∑
i=1

b̄1i(ξ1)e
z2(ξ1−τ2i(ξ1))

+λ
n∑

i=1

c̄1i(ξ1)e
z1(ξ1)ez2(ξ1−σ2i(ξ1))

+h̄1(ξ1)e
−z1(ξ1)

≤ āM1 ez1(ξ1) +
n∑

i=1

b̄M1i l
+
2 +

n∑
i=1

c̄M1i l
+
1 l

+
2

+h̄M
1 e−z1(ξ1)

and

rl2 ≤ r2(ξ2)

= λ

n∑
i=1

ā2i(ξ2)e
z1(ξ2−τ1i(ξ2)) + b̄2(ξ2)e

z2(ξ2)

+λ
n∑

i=1

c̄2i(ξ2)e
z2(ξ2)ez1(ξ2−σ1i(ξ2))

+h̄2(ξ2)e
−z2(ξ2)

≤
n∑

i=1

āM2i l
+
1 + b̄M2 ez2(ξ2) +

n∑
i=1

c̄M2i l
+
1 l

+
2

+h̄M
2 e−z2(ξ2)

namely,

āM1 e2z1(ξ1) − (rl1 −
n∑

i=1

b̄M1i l
+
2 −

n∑
i=1

c̄M1i l
+
1 l

+
2 )e

z1(ξ1)

+h̄M
1 > 0,

and

b̄M2 e2z2(ξ2) − (rl2 −
n∑

i=1

āM2i l
+
1 −

n∑
i=1

c̄M2i l
+
1 l

+
2 )e

z2(ξ2)

+h̄M
2 > 0,

which imply that

z1(ξ1) < ln(A−
1 ) or z1(ξ1) > ln(A+

1 ), (13)

and

z2(ξ2) < ln(A−
2 ) or z2(ξ2) > ln(A+

2 ), (14)

according to (8), similarly we can get for each s = 1, 2.

zs(ηs) < ln(A−
s ) or zs(ηs) > ln(A+

s ), (15)

It follows from (9)-(14), lemma 4, lemma 7 and the

arbitrariness of ε that for any t ∈ R,

ln l−1 ≤ z1(t) ≤ lnA−
1 or lnA+

1 ≤ z1(t) ≤ ln l+1 ,

and

ln l−2 ≤ z2(t) ≤ lnA−
2 or lnA+

2 ≤ z2(t) ≤ ln l−2 .

For convenience, we denote

Gs = (Θ1
s ln l

−
s , lnA

−
s +Θ2

s),

Hs = (lnA+
s −Θ3

s,Θ
4
s ln l

+
s ), s = 1, 2,

where Θ1
s ∈ (0, 1),Θ2

s,Θ
3
s ∈ (0,

lnA−
s +lnA+

s

2 ),Θ4
s ∈

(1,∞), s = 1, 2. Clearly, ln l±s , s = 1, 2, are independent of

λ. For each s = 1, 2, we choose one of interval among the

two intervals Gs and Hs and denote it as Δs, then define the

set

{z = (z1, z2)
T : zs(t) ∈ Δs, t ∈ R, s = 1, 2}.

It is obvious the number of the above sets is 4. We denote these

sets as Ωk, k = 1, 2, 3, 4. Ωk, k = 1, 2, 3, 4 are bounded open

sunsets of X , Ωm

⋂
Ωn = ∅,m �= n. Thus Ωk, k = 1, 2, 3, 4

satisfies the requirement (a) in lemma 8.

Now we show that (b) of lemma 8 holds, i.e., we prove

when z ∈ ∂Ωk ∩ kerL = ∂Ωk ∩R2, QN(z, 0) �= (0, 0)T , k =
1, 2, 3, 4. If it is not true, then when z ∈ ∂Ωk ∩ kerL =
∂Ωk ∩ R2, k = 1, 2, 3, 4, constant vector z = (z1, z2)

T with

z ∈ ∂Ωk, k = 1, 2, 3, 4 satisfies

m(r1(t)− ā1(t)e
z1 − h̄1e

−z1) = 0,

and

m(r2(t)− b̄2(t)e
z2 − h̄2e

−z2) = 0.

Using the mean value theorem of calculous, there exist two

points ζs(s = 1, 2) such that

r1(ζ1)− ā1(ζ1)e
z1 − h̄1(ζ1)e

−z1 = 0, (16)

and

r2(ζ2)− b̄2(ζ2)e
z2 − h̄2(ζ2)e

−z2 = 0. (17)

By (16) and (17), we have

u±
1 =

r1(ζ1)±
√
(r1(ζ1))2 − 4ā1(ζ1)h̄1(ζ1)

2ā1(ζ1)

and

u±
2 =

r2(ζ2)±
√
(r2(ζ2))2 − 4b̄2(ζ2)h̄2(ζ2)

2b̄2(ζ2)
.

According to lemma 7, we obtain for each s = 1, 2.

ln l−s < ln z−s < lnA−
s < lnA+

s < ln zs+ < ln l+s .

Then u belongs to one of Ωk ∩ R2, k = 1, 2, 3, 4. This

contradicts the fact that z ∈ ∂Ωk ∩ R2, k = 1, 2, 3, 4. This

proves (b) in lemma 8 holds. Finally, we show that (c) in

lemma 8 holds. Because(H1) holds, the algebraic equations

of the system{
r1(ζ1)− a1(ζ1)e

z1 − h1(ζ1)e
−z1 = 0,

r2(ζ2)− b2(ζ2)e
z2 − h2(ζ2)e

−z2 = 0,

has four distinct solutions.

(z∗1 , z
∗
2) = (ln ẑ1, ln ẑ2),

in the above situations ẑ1 = z−1 or ẑ1 = z+1 , z
±
1 =

r1(ζ1)±
√

(r1(ζ1))2−4a1(ζ1)h1(ζ1)

2a1(ζ1)
, and ẑ2 = z−2 or ẑ2 =

z+2 , z
±
2 =

r2(ζ2)±
√

(r2(ζ2))2−4b2(ζ2)h2(ζ2)

2b2(ζ2)
. By lemma 7, it is

easy to verify that for each s = 1, 2,

ln l−s < ln z−s < lnA−
s < lnA+

s < ln z+s < ln l+s ,

Therefore, (z∗1 , z
∗
2) uniquely belongs to the corresponding

Ωk. Since KerL = ImQ, we can take J = I. A direct
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computation gives, for k = 1, 2, 3, 4,

deg

{
JQN(u, 0),Ωk ∩KerL, (0, 0)T

}

= sign

[(− a1(ζ1)z
∗
1 + h1(ζ1)

z∗
1

)·
(− b2(ζ2)z

∗
2 + h2(ζ2)

z∗
2

)]
.

Since

r1(ζ1)− a1(ζ1)z
∗
1 − h1(ζ1)

z∗1
= 0

and

r2(ζ2)− b2(ζ2)z
∗
2 − h2(ζ2)

z∗2
= 0,

then

deg

{
JQN(u, 0),Ωk ∩ kerL, (0, 0)T

}

= sign

[(
r1(ζ1)− 2a1(ζ1)z

∗
1

)·
(
r2(ζ2)− 2b2(ζ2)z

∗
2

)]

= ±1.

So far, we have prove that Ωk(k = 1, 2, 3, 4) satisfies all

the assumptions in lemma 8. Hence, system (5) has at least

four different almost periodic solutions. If z∗(t) = (z∗1 , z
∗
2)

T

is an almost periodic solution of system (4), by applying

lemma 5, we known that

(x1(t), x2(t))
T =

(
ez

∗
1 (t)

∏
0<tk<t(1 + Γ1k),

ez
∗
2 (t)

∏
0<tk<t(1 + Γ2k)

)T

is almost periodic solution of system (3). Since conditions

(H2) and (H3) hold, similar to the proofs of lemma 31 and

theorem 79 in [2], we can prove that x̄s(t) =
∏

0<tk<t
(1 +

Γsk)e
z̄s(t) is almost periodic in the sense of definition 2.

Therefore, system (3) has at least four different positive almost

periodic solutions. This completes the proof of theorem 1.

Consider the following delayed plankton allelopathy system

on time scales with exploited (or harvesting) terms⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
′
1(t) = x1(t)[r1(t)− a1(t)x1(t)

−
n∑

i=1

b1i(t)x2(t− τ2i(t))−
n∑

i=1

c1i(t)·
x1(t)x2(t− σ2i(t))]− h1(t)

x
′
2(t) = x2(t)[r2(t)−

n∑
i=1

a2i(t)x1(t− τ1i(t))

−b2(t)x2(t)−
n∑

i=1

c2i(t)x2(t)x1(t− σ1i(t))]

−h2(t)

(18)

where a1(t), b2(t), asi(t), bsi(t), c(st), hs(t), (s = 1, 2), are

all positive continuous almost periodic functions,the time

delays τsi(t), σsi(t), s = 1, 2 are all nonnegative continuous

almost periodic functions.

Similar to the proof of theorem 1, we may easily obtain,

Corollary 1: Assume that the following condition holds

(H ′
1) rl1 −

n∑
i=1

bM1i l
+
2 −

n∑
i=1

cM1i l
+
1 l

+
2 > 2

√
aM1 hm

1

and rl2 −
n∑

i=1

aM2i l
+
1 −

n∑
i=1

cM2i l
+
1 l

+
2 > 2

√
bM2 hm

2 .

Then system (18) has at least four different positive almost

periodic solutions.

IV. CONCLUSION

By applying Mawhins continuation theorem of coincidence

degree theory, we study an impulsive delayed plankton

allelopathy system o time scales with multiple exploited or

harvesting terms and give some sufficient conditions for the

existence of four positive almost periodic solutions of this

system (3).

ACKNOWLEDGMENT

The authors are very grateful to the referees and editors

for their valuable suggestions. This work are supported by

the science and technology foundation (grant No. 2014FD049)

and the education foundation (grant No. 2015Y409) of Yunnan

province.

REFERENCES

[1] A. Mukhopadhyay, J. Chattopadhyay, P.K. Tapaswi, ”A delay differential
equations model of plankton allelopathy”, Mathematical Biosciences,,
Vol.149, pp. 167-189,1998.

[2] A.M. Samoilenko, N.A. Perestyuk, ”Impulsive Differential
Equations”,World Scientific, Singapore, 1995.

[3] B.X. Yang, J.L. Li, An almost periodic solution for an impulsive
two-species logarithmic population model with time -varying delay,
Mathematical and Computer Modelling, Vol.55 n0o.7-8, pp. 1963-1968,
2012.

[4] C.Y. He, ”Almost Periodic Differential Equations”, Higher Education
Publishing House, Beijing (in Chinese), 1992.

[5] D. Hu, Z. Zhang, ”Four positive periodic solutions to a Lotka-Volterra
cooperative system with harvesting terms”, Nonlinear Anal. RWA., Vol.11,
pp. 1560-1571, 2010.

[6] D.S. Wang, ”Four positive periodic solutions of a delayed plankton
allelopathy system on time scales with multipoe exploited (or harvesting)
terms”, IMA Journal of Applied mathematics, Vol.78, pp. 449-473, 2013.

[7] E. L. Rice, Alleopathy, second ed., Academic Press, New York, 1984.
[8] G.T. Stamov, I.M. Stamova, J.O. Alzaut, ”Existence of almost periodic

solutions for strongly stable nonlinear impulsive differential-difference
equations”, Nonlinear Analysis: Hybrid Systems, Vol.6 no.2, pp. 818-823,
2012.

[9] J.B. Geng, Y.H. Xia, ”Almost periodic solutions of a nonlinear ecological
model”, Commun Nonlinear Sci Numer Simulat, Vol.16, pp.2575-2597,
2011.

[10] J. Chattopadhyay, ”Effect of toxic substances on a two-species
competitive system”, Ecol. Modelling, Vol.84, pp. 287-289, 1996.

[11] J. Dhar, K. S. Jatav, ”Mathematical analysis of a delayed stage-structured
predator-prey model with impulsive diffusion between two predators
territories”, Ecological Complexity, Vol.16, pp. 59-67, 2013.

[12] J.G. Jia, M.S. Wang, M.L. Li, ”Periodic solutions for impulsive delay
differential equations in the control model of plankton allelopathy”,
Chaos, Solitons and Fractals, Vol.32, pp. 962-968, 2007.

[13] J. Hou, Z.D. Teng, S.J. Gao, ”Permanence and global stability
for nonautonomous Nspecies Lotka-Volterra competitive system with
impulses”, Nonlinear Anal. RWA., Vol.11 no.3, pp. 1882-1896, 2010.

[14] J.M.Smith, Modles in Ecology, Cambridge University, Cambridge, 1974.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:11, 2016

604

[15] J. ZHEN, Z.E. MA, ”Periodic Solutions for Delay Differential Equations
Model of Plankton Allelopathy”, Computers and Mathematics with
Applications , Vol.44, pp. 491-500, 2002.

[16] K.H. Zhao, Y.K. Li, ”Four positive periodic solutions to two species
parasitical system with harvesting terms”, Comput. Math. with Appl.,
Vol.59 no.8, pp. 2703-2710, 2010.

[17] K.H. Zhao, Y. Ye, ”Four positive periodic solutions to a periodic
Lotka-Volterra predatoryprey system with harvesting terms”, Nonlinear
Anal. RWA., Vol.11, pp.2448-2455, 2010.

[18] L. Yang, S.M. Zhong, ”Dynamics of a delayed stage-structured model
with impulsive harvesting and diffusion”, Ecological Complexity, Vol.19,
pp. 111-123, 2014.

[19] M.X. He, F.D. Chen, Z. Li, ”Almost periodic solution of an impulsive
differential equation model of plankton allelopathy”, Nonlinear Analysis:
Real World Applications,, Vol.11, pp. 2296-2301, 2010.

[20] M. Zhao, X.T. Wang, H.G.Yu, J. Zhu, ”Dynamics of an ecological model
with impulsive control strategy and distributed time delay”, Mathematics
and Computers in Simulation, Vol.82 no.8, pp. 1432-1444, 2012.

[21] Q. Wang, Y.Y. Fang, D.C. Lu, ”Existence of four periodic solutions
for a generalized delayed ratio-dependent predator-prey system”, Applied
Mathematics and Computation, Vol.247, pp. 623-630 ,2014.

[22] R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differetial
Equitions, Springer Verlag, Berlin, 1977.

[23] S.Y. Tang, L.S. Chen, ”The periodic predator-prey Lotka-Volterra model
with impulsive effect”, J. Mech. Med. Biol., Vol.2, pp. 1-30, 2002.

[24] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive
Differential Equations, World Scientific, Singapore, 1989.

[25] X.H. Wang, J.W. Jia, ”Dynamic of a delayed predator-prey model with
birth pulse and impulsive harvesting in a polluted environment”, Physica
A: Statistical Mechanics and its Applications, Vol.422, pp. 1-15, 2015.

[26] X.Y. Song and L.S. Chen, ”Periodic solution of a delay differential
equation of plankton allelopathy”, Acta Math. Sci. Ser. A, Vol.23, pp.
8-13, 2003.

[27] Y.K. Li, K.H. Zhao, ”2n positive periodic solutions to n species
non-autonomous Lotka-Volterra unidirectional food chains with
harvesting terms”, Math. Model. Anal., Vol.15, pp. 313-326, 2010.

[28] Y.K. Li, K.H. Zhao, ”Eight positive periodic solutions to three species
non-autonomous Lotka-Volterra cooperative systems with harvesting
terms”, Topol. Methods Nonlinear Anal., Vol.37, pp. 225-234, 2011.

[29] Y.K. Li, K.H. Zhao, ”Multiple positive periodic solutions to m-layer
periodic Lotka-Volterra network-like multidirectional food-chain with
harvesting terms”, Anal. Appl., Vol.9, pp. 71-96, 2011.

[30] Y.K. Li, K.H. Zhao, Y. Ye, ”Multiple positive periodic solutions of
n species delay competition systems with harvesting terms”, Nonlinear
Anal. RWA., Vol.12, pp. 1013-1022, 2011.

[31] Y.K. Li, ”Positive periodic solutions of a periodic neutral delay
logistic equation with impulses”, Comput. Math. Appl., Vol.56 no.9, pp.
2189-2196, 2008.

[32] Y.K. Li, Y. Ye, ”Multiple positive almost periodic solutions to an
impulsive non-autonomous Lotka-Volterra predator-prey system with
harvesting terms”, Commun. Nonlinear Sci. Numer. Simul., Vol.18 no.11,
pp. 3190-3201, 2013.

[33] Y. Xie, X.G. Li, ”Almost periodic solutions of single population model
with hereditary”, Appl. Math. Comput., Vol.203, pp. 690-697, 2008.

[34] Z.H. Li, K.H. Zhao, Y.K. Li, ”Multiple positive periodic solutions for a
non-autonomous stage-structured predatory-prey system with harvesting
terms”, Commun. Nonlinear Sci. Numer. Simul., Vol.15, pp. 2140-2148,
2010.

[35] Z.J. Du, M. Xu, ”Positive periodic solutions of n-species neutral delayed
Lotka-Volterra competition system with impulsive perturbations”, Applied
Mathematics and Computation, Vol.243, pp. 379-391, 2014.

[36] Z.J. Du, Y.S. Lv, ”Permanence and almost periodic solution of a
Lotka-Volterra model with mutual interference and time”, Applied
Mathematical Modelling, Vol.37 no.3, pp. 1054-1068, 2013.

[37] Z.J. Liu, J.H. Wu, Y.P. Chen, M. Haque, ”Impulsive perturbations in
a periodic delay differential equation model of plankton allelopathy”,
Nonlinear Analysis: Real World Applications, Vol.11, pp. 432-445, 2010.

[38] Z.J. Liu, L.S. Chen, ”Positive periodic solution of a general discrete
non-autonomous difference system of plankton allelopathy with delays”,
Journal of Computational and Applied Mathematics, Vol.197, pp.
446-456,2006.

[39] Z.L. He, L.F. Nie, Z.D. Teng, ”Dynamics analysis of a two-species
competitive model with state-dependent impulsive effects”, Journal of
the Franklin Institute, Vol.352 no.5, pp. 2090-2112, 2015.

[40] Z. Li, M.A. Han, F.D. Chen, ”Almost periodic solutions of a discrete
almost periodic logistic equation with delay”, Applied Mathematics and
Computation, Vol.232, pp. 743-751, 2014.

[41] Z.Q. Zhang, Z. Hou, ”Existence of four positive periodic solutions
for a ratio-dependent predator-prey system with multiple exploited (or
harvesting) terms”, Nonlinear Anal. RWA., Vol.11, pp. 1560-1571, 2010.

[42] Z. Zhang, T. Tian, ”Multiple positive periodic solutions for a generalized
predator-prey system with exploited terms”, Nonlinear Anal. RWA., Vol.9,
pp. 26-39, 2008.


