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Unsteady Rayleigh-Bénard Convection of
Nanoliquids in Enclosures

P. G. Siddheshwar, B. N. Veena

Abstract—Rayleigh-Bénard convection of a nanoliquid
in shallow, square and tall enclosures is studied using the
Khanafer-Vafai-Lightstone single-phase model. The thermophysical
properties of water, copper, copper-oxide, alumina, silver and
titania at 3000 K under stagnant conditions that are collected
from literature are used in calculating thermophysical properties
of water-based nanoliquids. Phenomenological laws and mixture
theory are used for calculating thermophysical properties. Free-free,
rigid-rigid and rigid-free boundary conditions are considered in the
study. Intractable Lorenz model for each boundary combination is
derived and then reduced to the tractable Ginzburg-Landau model.
The amplitude thus obtained is used to quantify the heat transport
in terms of Nusselt number. Addition of nanoparticles is shown
not to alter the influence of the nature of boundaries on the onset
of convection as well as on heat transport. Amongst the three
enclosures considered, it is found that tall and shallow enclosures
transport maximum and minimum energy respectively. Enhancement
of heat transport due to nanoparticles in the three enclosures is found
to be in the range 3% - 11%. Comparison of results in the case of
rigid-rigid boundaries is made with those of an earlier work and
good agreement is found. The study has limitations in the sense that
thermophysical properties are calculated by using various quantities
modelled for static condition.

Keywords—Enclosures, free-free, rigid-rigid and rigid-free
boundaries, Ginzburg-Landau model, Lorenz model.

I. INTRODUCTION

EFFORTS to have high thermally conducting cooling

liquids and compact devices have been the endeavour

of the engineers in the last few decades. Nanoliquids (base

liquids+dilute concentration of 10-100 nm size nanoparticles)

are a new kind of heat transfer liquids. The baseliquids

commonly used are water, ethylene-glycol, engine oil,

glycerine, lubricants, bio-fluids and polymer solutions. The

nanoparticles used in nanoliquids are metals, oxides, carbides,

nitrides and nonmetals.

Choi et al. [5], Masuda et al. [13], Eastman et al. [8] and Das

et al. [7] were among the first to report increase in thermal

conductivity of liquids due to addition of nanoparticles. To

study the heat transfer phenomenon by suspending dilute

concentration of nanoparticles in base liquid there are two

approaches which have been adopted in the literature. Firstly

the two-phase model ([3], [16]) that takes into account the role

of fluid and solid phase in heat transfer process. The second

one is the single-phase model ([12], [17]) where both the fluid

phase and the solid phase are in thermal equilibrium state. In

the absence of any experimental data in the literature on heat

transport in nanoliquids, it remains to be an open problem

as to whether the single-phase or the two-phase model is the
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best for studying Rayleigh-Bénard convection in nanoliquids.

If the main interest is focused on the heat transfer process,

then single-phase model is more convenient than the two-phase

model. This statement is because of the superior characteristics

of the nanoliquid which behave like a fluid rather than the

conventional liquid-solid mixtures.

Heat transfer in enclosure filled with nanoliquid has been

studied widely in the past. Khanafer et al. [12] studied

numerically natural convection problem in a differentially

heated square cavity by considering the dispersion effect.

Tiwari and Das [18] studied heat transfer in square cavity

with lateral walls not being fixed. Further Rayleigh-Bénard

convection with vertical boundary effects has been investigated

by many using single-phase model ([12], [15], [6], [1], [11]).

In the present paper onset of convection and heat transport

is studied using single-phase model for three different types

of boundary conditions considering shallow, square and tall

enclosures. The thermophysical properties are calculated

using phenomenological laws [2] and mixture theory [10].

The main objective of the paper is to consider a simple

model of nanoliquid and study the following:

(i) The effect of three different boundary combinations on

onset and heat transfer.

(ii) Among shallow, square and tall ones which enclosure

transports more heat.

(iii) Among the five-water based nanoliquids which nanoliquid

transports more heat.

II. NOMENCLATURE

Latin Symbols
a ratio of thermal diffusivity

A aspect ratio

b width of enclosure

Cp specific heat

�g acceleration due to gravity (0, 0,−g)
h height of enclosure

k thermal conductivity

Nu Nusselt number

p pressure

Pr Prandtl number

r scaled Rayleigh number

�q velocity vetor (u,w)
Ra Rayleigh number

t time

T temperature

T0 temperature at the lower boundary

u horizontal velocity component
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w vertical velocity component

x dimensional horizontal coordinate

X non-dimensional horizontal coordinate

z dimensional vertical coordinate

Z non-dimensional vertical coordinate

Greek symbols
α thermal diffusivity

β thermal expansion coefficient

χ volume fraction

ΔT temperature difference

μ dynamic viscosity

μ1 constant

μ2 constant

∇2 Laplacian operator ( ∂2

∂x2 + ∂2

∂z2 )
ψ stream function

Ψ non-dimensional stream function

ρ actual density

τ non-dimensional time

Θ non-dimensional temperature

Subscripts
b basic state

bl base liquid

c critical

nl nanoliquid

np nanoparticle

Superscript

FF free-free

RF rigid-free

RR rigid-rigid
′ prime

III. MATHEMATICAL FORMULATION

Consider two-dimensional square, tall and shallow

enclosures filled with nanoliquid as shown in Fig. 1. The

horizontal walls are at a distance h. The upper and lower

walls are maintained at constant temperatures T0 and

T0 + ΔT (ΔT > 0) respectively. The vertical walls are

adiabatic and are at a distance b from each other. The

Rayleigh-Bénard convection problem is assumed to be

governed by single-phase model. The nanoliquid is taken

to be Newtonian and incompressible. The nanoparticles are

assumed to have a uniform size and spherical shape with

identical smoothness (or roughness). Laminar regime of free

convection is considered for investigation.

The governing conservation laws for studying the chosen

problem are:

Conservation of Mass
∂u

∂x
+

∂w

∂z
= 0, (1)

Conservation of Momentum

ρnl(T0)

[
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

]
= −∂p

∂x
+ μnl∇2u, (2)

ρnl(T0)

[
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

]
= −∂p

∂z
+ μnl∇2w (3)

− [ρnl(T0)− (ρβ)nl(T − T0)] g,

Conservation of Energy

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= αnl∇2T. (4)

The thermophysical properties of nanoliquid are obtained as

a function of the properties of base liquid and nanoparticles

using phenomenological laws and mixture theory and are as

documented below:

A. Phenomenological Laws

μnl

μbl
=

1

(1− χ)2.5
(Brinkman model [2]), (5)

knl
kbl

=

(
knp

kbl
+ 2

)
− 2χ

(
1− knp

kbl

)
(
knp
kbl

+ 2

)
+ χ

(
1− knp

kbl

) (6)

(Hamilton-Crosser model [10]).

B. Mixture Theory

ρnl
ρbl

= (1− χ) + χ
ρnp
ρbl

,

(ρβ)nl
(ρβ)bl

= (1− χ) + χ
(ρβ)np
(ρβ)bl

,

(ρCp)nl
(ρCp)bl

= (1− χ) + χ
(ρCp)np
(ρCp)bl

,

αnl =
knl

(ρCp)nl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (7)

Temperature of nanoparticles is assumed to be constant on

the horizontal boundaries and vertical boundaries are taken to

be adiabatic. Hence the boundary conditions on T are:

T = T0 +ΔT at z = −h

2

T = T0 at z =
h

2

⎫⎪⎬⎪⎭ ,− b

2
< x <

b

2
, (8)

∂T

∂x
= 0 at x = − b

2
,
b

2

}
,−h

2
< z <

h

2
. (9)

The three boundary conditions on velocity are mentioned

a little later in the paper.

C. Basic State Solution

In the basic state the nanoliquid is assumed to be at rest and

physical quantities vary along z-direction only and are given

by

u = w = (0, 0), p = pb(z), Tb = Tb(z), ρ = ρb(z). (10)
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e1= e2= e3= e4=

e1 e2

e3e4

a) Square enclosure

c) Shallow enclosure

e1 e2

e3e4

b) Tall enclosure

e2e1

e3e4

Fig. 1 Schematic representation of the flow configuration

The basic-state quantities satisfy the following equations:

∂pb
∂x

= 0, (11)

−dpb
dz

= [ρnl(T0)− (ρβ)nl(Tb − T0)]g, (12)

d2Tb

dz2
= 0. (13)

The solution of (13), subject to temperature condition in (8)

is:

Tb(z) = T0 +ΔT

(
1

2
− z

h

)
. (14)

D. Perturbation State

On the quiescent basic state we superimpose perturbation

in the form:

u = u′, w = w′, p = pb+p′, T = Tb+T ′, ρ = ρb+ρ′. (15)

where the prime indicates a perturbed quantity and these

quantities are functions of x, z and t.

Substituting the expression (15) by neglecting primes, using

quiescent basic state solution, eliminating pressure terms

between (2) and (3), and introducing stream function in the

form:

u =
∂ψ

∂z
, w = −∂ψ

∂x
. (16)

Equations (2)-(4) take the form:

ρnl(T0)

[
∂

∂t
(∇2ψ)− ∂(ψ,∇2ψ)

∂(x, z)

]
= −(ρβ)nlg

∂T

∂x
+μnl∇4ψ,

(17)
∂T

∂t
+

ΔT

h

∂ψ

∂x
− ∂(ψ, T )

∂(x, z)
= αnl∇2T. (18)

E. Non-Dimensionalization

Non-dimensionalizing (17)-(18) using the following

definition

(X,Z) =
(x
b
,
z

h

)
, τ =

tαbl

h2
, Ψ =

ψ

αbl
, Θ =

T

ΔT
,

∇2
A = A2 ∂2

∂X2
+

∂2

∂Z2
,

we get non-dimensional form of vorticity and heat transport

equations as follows:

1

Prnl

∂

∂τ
(∇2

AΨ) = −a2RanlA
4 ∂Θ

∂X
+ a∇4

AΨ (19)

+
1

Prnl
A
∂(Ψ,∇2

AΨ)

∂(X,Z)
,

∂Θ

∂τ
= −A

∂Ψ

∂X
+A

∂(Ψ,Θ)

∂(X,Z)
+ a∇2

AΘ. (20)

The non-dimensional parameters appearing in (19) and (20)

are,

Prnl =
μnl

ρnl(T0)αnl
(Prandtl number),

A =
h

b
(Aspect ratio),

a =
αnl

αbl
(Thermal diffusivity ratio),

Ranl =
(ρβ)nlgΔTb3

μnlαnl
(Rayleigh number )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (21)

F. Boundary Conditions

To solve (19) and (20) we consider three sets of boundary

conditions:
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Case (i): Free-free isothermal horizontal (FFIH)
boundaries and free-free adiabatic vertical (FFAV)
boundaries

Ψ =
∂2Ψ

∂Z2
= Θ = 0 at Z = −1

2
,
1

2
,
−1

2
< X <

1

2

Ψ =
∂2Ψ

∂X2
=

∂Θ

∂X
= 0 at X = −1

2
,
1

2
,

−1

2
< Z <

1

2

⎫⎪⎬⎪⎭ .

(22)

Case (ii): Rigid-rigid isothermal horizontal (RRIH)
boundaries and rigid-rigid adibatic vertical (RRAV)
boundaries

Ψ =
∂Ψ

∂Z
= Θ = 0 at Z = −1

2
,
1

2
,
−1

2
< X <

1

2

Ψ =
∂Ψ

∂X
=

∂Θ

∂X
= 0 at X = −1

2
,
1

2
,
−1

2
< Z <

1

2

⎫⎪⎬⎪⎭ .

(23)

Case (iii): Rigid-free isothermal horizontal (RFIH)
boundaries and rigid-rigid adiabatic vertical (RRAV)
boundaries

Ψ =
∂Ψ

∂Z
= Θ = 0 at Z = −1

2
,
−1

2
< X <

1

2

Ψ =
∂2Ψ

∂Z2
= Θ = 0 at Z =

1

2
,
−1

2
< X <

1

2

Ψ =
∂Ψ

∂X
=

∂Θ

∂X
= 0 at X = −1

2
,
1

2
,
−1

2
< Z <

1

2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(24)

G. Stability Analysis

Since principle of exchange of stabilities (PES) is valid we

consider only stationary convection in our study. This is done

by considering the linear and steady-state version of (19) and

(20) and their normal mode solutions are assumed to be as

follows:

Case (i)

Ψ(X,Z) = Ψ0 sin
(
πX +

π

2

)
sin

(
πZ +

π

2

)
, (25)

Θ(X,Z) = Θ0 cos
(
πX +

π

2

)
sin

(
πZ +

π

2

)
, (26)

where Ψ0, Θ0 are infinitesimal amplitudes of the stream

function and temperature. The solutions (25) and (26) satisfy

the boundary conditions in (22). Substituting (25) and (26) in

linear and steady-state version of (19) and (20) and following

classical procedure, we obtain the expression for RaFF
nlc

(critical Rayleigh number for free-free boundaries) in the

form:

RaFF
nlc =

δ6A
π2A5

, (27)

where δ2A = π2(A2 + 1).

Case (ii)

Ψ(X,Z) = Ψ0Cfe(X)Cfe(Z), (28)

Θ(X,Z) = Θ0 cos
(
πX +

π

2

)
sin

(
πZ +

π

2

)
, (29)

where Cfe(X) and Cfe(Z) are Chandrasekar’s even function

([4], [14]). The solution in (28) and (29) satisfy the boundary

conditions in (23). Following the procedure of case (i), we

obtain the expression for RaRR
nlc (critical Rayleigh number for

rigid-rigid boundaries) in the form:

RaRR
nlc =

δ2A
4A3P 2

2

[
P3(1 +A4)

A2
+ P4

]
, (30)

where

P2 =
16π3μ4

1

(π4 − μ4
1)

2
, P3 =

μ2
1

16
P6P

2
7 ,

P4 =
μ2
1

8
P6P

2
8 , P6 = sec4[

μ1

2
] sech4[

μ1

2
],

P7 = 2 sin[μ1] cosh
2[
μ1

2
] + 2 sinh[μ1] cos

2[
μ1

2
]

−μ1(2 + cos[μ1] + cosh[μ1]),

P8 = 2 sin[μ1] cosh
2[
μ1

2
]− 2 sinh[μ1] cos

2[
μ1

2
]

−μ1(cos[μ1]− cosh[μ1]),

μ1 = 4.73004074.

Case (iii)

Ψ(X,Z) = Ψ0Cfo(X)Cfo(Z), (31)

Θ(X,Z) = Θ0 cos (2πX + π) sin (2πZ + π) , (32)

where Cfo(X) and Cfo(Z) are Chandrashekar odd functions

([4], [14]). The solution in (31) and (32) satisfy the boundary

conditions in (23). Following the procedure of case (i), and

dividing the so obtained critical Rayleigh number by 16, as

explained by Chandrasekhar [4], we get

RaRF
nlc =

δ2A
16A3E2

2

[
E3(1 +A4)

A2
− E4

]
, (33)

where

E2 =
128π3μ4

2

(−16π4 − μ4
2)

2
, E3 =

μ2
2

16
E6E

2
7 ,

E4 = −μ2
2

8
E6E

2
8 , E6 = csc4[

μ2

2
] csch4[

μ2

2
],

E7 = −2 sinh[μ2] sinh
2[
μ2

2
] + 2 sin[μ2] sinh

2[
μ2

2
]

+μ2(−2 + cos[μ2] + cosh[μ2]),

E8 = 2 sin[μ2] sinh
2[
μ2

2
] + 2 sinh[μ2] sin

2[
μ2

2
]

+μ2(cos[μ2]− cosh[μ2]),

μ2 = 7.85320.

The linear theory predicts only the onset of convection

and does not give any information about heat transport. In

order to study heat transport we need to perform a nonlinear

stability analysis to find the effect of various parameters on

finite-amplitude convection and thereby on heat transport.
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H. Local Nonlinear Stability Analysis

In nonlinearity the temperature field is distorted by the

interaction of Ψ and Θ. A minimal double Fourier series

which describes the unsteady finite-amplitude convection is

chosen for all three cases and substituting these into (19) and

(20) we get generalized tri-modal Lorenz model which will

be discussed later.

Case (i)

Ψ(X,Z, τ) =

√
2δ2Aa

Aπ2
U1(τ) sin

(
πX +

π

2

)
sin

(
πZ +

π

2

)
,

(34)

Θ(X,Z, τ) = −
√
2

r1π
V1(τ) cos

(
πX +

π

2

)
sin

(
πZ +

π

2

)
(35)

− 1

r1π
W1(τ) sin (2πZ + π) ,

where

δ2A = π2(A2 + 1), r1 =
RaFF

nlm

RaFF
nlc

.

Case (ii)

Ψ(X,Z, τ) =
δ2Aa

2
√
2AP5

U2(τ)Cfe(X)Cfe(Z), (36)

Θ(X,Z, τ) = −
√
2P2

r2P5
V2(τ) cos

(
πX +

π

2

)
sin

(
πZ +

π

2

)
− P2

r2P5
W2(τ) sin (2πZ + π) , (37)

where

δ2A = π2(A2 + 1), P5 =
32π3μ4

1(39π
4 + μ4

1)

(π4 − μ4
1)

2(81π4 − μ4
1)
,

r2 =
RaRR

nlm

RaRR
nlc

.

Case (iii)

Ψ(X,Z, τ) =

√
2δ2Aa

AE5
U3(τ)Cfo(X)Cfo(Z), (38)

Θ(X,Z, τ) =
−√

2E2

r3E5
V3(τ) cos (2πX + π) sin (2πZ + π)

(39)

− E2

r3E5
W3(τ) sin (4πZ + 2π)]

where

δ2A = π2(A2 + 1), E5 =
512π4μ4

2(624π
4 + μ4

2)

(1296π4 − μ4
2)(−16π4 + μ4

2)
2
,

r3 =
RaRF

nlm

RaRF
nlc

,

where Ui, V i and Wi are the amplitudes that are

to be determined. On substituting the eigen functions of

the above three cases in (19) and (20) and adopting

orthogonalization procedure of the Galerkin expansion, we

obtain the analytically intractable nonlinear autonomous

system of differential equations called ”Lorenz model”.

dUi

dτi
=

Prnl
Qi

a[Vi − Ui], (40)

dVi

dτi
= a[riUi − Vi − UiWi], (41)

dWi

dτi
= a[UiVi − biWi]. (42)

In the Lorenz equations (40)-(42), i=1, i=2, and i=3

correspond respectively to case (i), case (ii) and case (iii).

Case (i)

τ1 = δ2Aτ, Q1 = 1, b1 =
4π2

δ2A
.

Case (ii)

τ2 = δ2Aτ, Q2 = − P1δ
6
A

4π2A5RaRR
nlcP

2
2

,

P1 =
1

16
P6P7P8, b2 =

4π2

δ2A
.

Case (iii)

τ3 = 4δ2Aτ, Q3 = −4(A2 + 1)E1δ
4
A

A5RaRF
nlcE

2
2

,

E1 =
1

16
E6E7E8, b3 =

4π2

δ2A
.

All other quantities are as defined earlier.

I. Multiscale Method

From regular perturbation expansion, we have the following:

Ui = εUi1 + ε2Ui2 + ε3Ui3 + ........,

Vi = εVi1 + ε2Vi2 + ε3Vi3 + ........,

Wi = εWi1 + ε2Wi2 + ε3Wi3 + ........,

ri = ri0 + ε2ri2 + ........

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (43)

where ri0 is the critical Rayleigh number (scaled). We now

use the following symbols for the matrices to be obtained by

regular perturbation method.

Mi1 = [Ui Vi Wi]
T and L =

⎛⎝−a a 0
ari0 −a 0
0 0 −abi

⎞⎠ . (44)

Substituting (43) in (40)-(42) and using the time variation

only at the slow time scale which is taken to be τ = ε2τ∗

and on comparing the like powers of ε on both sides of the

resulting equations, we get the following equations at various

orders.

First-order system

L Mi1 = [0 0 0]T . (45)
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Second-order system

L Mi2 = [R21 R22 R23]
T . (46)

where

R21 = 0, R22 = −a ri1Ui, R23 = −a U2
i ri0.

Third-order system

L Mi3 = [R31 R32 R33]
T , (47)

where

R31 =
Qi

Prnl

dUi

dτ∗

R32 = ri0
dUi

dτ∗
− ari2Ui + ari0

U3
i

bi
R33 = −2aUiri0U0i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (48)

The solution of first-order and second-order systems are

given by

[Ui1 Vi1 Wi1]
T = [Ui ri0Ui 0]T ,

[Ui2 Vi2 Wi2]
T = [Ui ri0Ui

U2
i

bi
ri0]

T .

We are not interested in the solution of the third-order

system. However, for the purpose of determining the amplitude

it is sufficient to consider the Fredholm solvability condition

which for the present problem is:⎛⎜⎝ Ûi1

V̂i1

Ŵi1

⎞⎟⎠(
R31 R32 R33

)
=

⎛⎝0
0
0

⎞⎠ . (49)

where [Ûi1 V̂i1 Ŵi1] are the solution of the adjoint of

first-order system.

Simplifying the solvability condition, we get

Ginzburg-Landau equation as follows:

dUi(τ
∗)

dτ∗
= Fi1Ui(τ

∗)− Fi2U
3
i (τ

∗), (50)

where

Fi1 =

[
aPrnl

Qi + Prnl

]
, Fi2 =

[
aPrnl

bi[Qi + Prnl]

]
.

Solving (50) we get amplitude in the form

U2
i (τ

∗) =
Fi1A

2
0

Fi2A2
0 + (Fi1 − Fi2A2

0)e
−2Fi1τ∗ (51)

where A0 = 1. In calculations we have assumed ri0 = ri2 = 1
for simplification.

Case(i)
dU1(τ

∗)
dτ∗

= F11U1(τ
∗)− F12U

3
1 (τ

∗), (52)

where

F11 =

[
aPrnl

Q1 + Prnl

]
, F12 =

[
aPrnl

b1[Q1 + Prnl]

]
.

Solving (52) we get amplitude in the form

U2
1 (τ

∗) =
F11A

2
0

F12A2
0 + (F11 − F12A2

0)e
−2F11τ∗ . (53)

Case(ii)
dU2(τ

∗)
dτ∗

= F21U2(τ
∗)− F22U

3
2 (τ

∗), (54)

where

F21 =

[
aPrnl

Q2 + Prnl

]
, F22 =

[
aPrnl

b2[Q2 + Prnl]

]
.

Solving (54) we get amplitude in the form

U2
2 (τ

∗) =
F21A

2
0

F22A2
0 + (F21 − F22A2

0)e
−2F21τ∗ . (55)

Case(iii)
dU3(τ

∗)
dτ∗

= F31U3(τ
∗)− F32U

3
3 (τ

∗), (56)

where

F31 =

[
aPrnl

Q3 + Prnl

]
, F32 =

[
aPrnl

b3[Q3 + Prnl]

]
.

Solving (56) we get amplitude in the form

U2
3 (τ

∗) =
F31A

2
0

F32A2
0 + (F31 − F32A2

0)e
−2F31τ∗ . (57)

In the next section we study the heat transport in terms of

the Nusselt number at the lower boundary.

J. Estimation of Enhanced Heat Transport in Nanoliquids
at Lower Boundary

Nunl =
Heat transport by (conduction+convection)

Heat transport by conduction
. (58)

From Fourier laws, we know that

Heat transport by conduction =

[
−kbl

∫ 1
2

− 1
2

dΘb

dZ
dX

]
Z=− 1

2

,

(59)

Heat transport by convection =

[
−knl

∫ 1
2

− 1
2

∂Θ

∂Z
dX

]
Z=− 1

2

.

(60)

Nunl = 1 +
knl
kbl

⎡⎢⎣ − ∫ 1
2

− 1
2

∂Θ

∂Z
dX

− ∫ 1
2

− 1
2

dΘb

dZ
dX

⎤⎥⎦
Z=− 1

2

. (61)

Case(i)

NuFF
nl = 1 + 2

knl
kbl

U2
1

b1

(
1− 1

r1

)
. (62)
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Case(ii)

NuRR
nl = 1 + 2π

P2

P5

knl
kbl

U2
2

b2

(
1− 1

r2

)
. (63)

Case(iii)

NuRF
nl = 1 + 4π

E2

E5

knl
kbl

U2
3

b3

(
1− 1

r3

)
. (64)

IV. CONCLUSION

Rayleigh-Bénard convection in nanoliquid filled enclosure is

studied for three different boundary combinations namely FF,

RF and RR by considering water-copper, water-copperoxide,

water-silver, water-alumina and water-titania nanoliquids.

Thermophysical properties of baseliquids, nanoparticles, and

nanoliquids are all collected from literature ([16], [17]) and

tabulated in Tables I and II. In plotting graphs water-copper

has been taken as representative nanoliquid and similar

observation to that of water-copper is noticed in other

nanoliquids.

From linear stability ananlyses for the three boundary

combinations considered for A=1 and χ=0.06, the following

critical Rayleigh numbers have been obtained:

RaFF
nlc = 779.273 < RaRF

nlc = 1629.41 < RaRR
nlc = 2756.26.

From Table III it is clear that onset of convection is advanced

in tall enclosure compared to square enclosure and shallow

enclosure respectively for FF, RF, and RR boundaries.

It is further found that Ranl, for all three boundaries, can be

rewritten as follows:

Ranl = F Rabl, F =
(ρβ)nl
(ρβ)bl

μbl

μnl

αbl

αnl
. (65)

We found that F < 1 for all water-based nanoliquids when

the values in Tables I and II are used in (65). In the absence

of nanoparticles F = 1. This implies that Ranl < Rabl. This

explains advanced onset of convection and hence enhanced

heat transfer in nanoliquids.

Nusselt number increases with increase in Rayleigh number

for FF, RF and RR boundaries as shown in Tables IV-VI

for different nanoliquids and the same is also observed

in the graphs. It is further observed that among the five

water-based nanoliquids considered water-copper transports

more heat compared to other nanoliquids for FF boundaries

whereas water-silver transports more heat for RF and RR

boundaries. This observed phenomenon is due to high thermal

conductivities of copper and silver nanoparticles. Water-titania

transports least heat for all three boundaries because of its low

thermal conductivity.

The Nusselt number results of the present problem for RR

boundaries are compared with the results of Elhajjar et al.

[9] for RaRR
nlc = 5000 and χ = 0.08 which is in good

agreement for rectangular enclosure and this is shown in Table

VII. The mismatch in results on the effect of χ on Nunl

between our results and Elhajjar et al. [9] is due to the wrong

definition of specific heat and thermal expansion coefficient of

nanoliquid used in Elhajjar et al. [9] paper. In our paper, we

have obtained thermodynamically correct result by using the

following definition:

(Cp)nl =
(1− χ)(ρCp)bl + χ(ρCp)np

(1− χ)ρbl + χρnp
, (66)

βnl =
(1− χ)(ρβ)bl + χ(ρβ)np

(1− χ)ρbl + χρnp
. (67)

From Figs. 2-10 it is clear that Nusselt number increases

with the increase in aspect ratio, critical Rayleigh number and

volume fraction for FF, RF and RR boundaries. Further from

graphs for different aspect ratio it is clear that the model is

valid for A ≥ 0.85, below which the convection phenomenon

in enclosure problem becomes multi-cellular Rayleigh-Bénard

convection. Further, from these graphs it is very much clear

that FF boundaries transports more heat compared to RF and

RR boundaries respectively. The same can be observed in

Fig. 11. From Table VIII increment in heat transfer is found

to be in the range 4.8572%-11.0224%, 4.4027%-10.7487%,

3.8768%-10.2469% in presence of nanoparticles, for different

aspect ratio, for FF, RF and RR boundaries respectively.

In general we can conclude that the presence of

nanoparticles advances onset of convection and hence

enhances heat transport which is true for dilute concentration

of nanoparticles.

TABLE I
THERMOPHYSICAL PROPERTIES OF BASE LIQUID AND NANOPARTICLES

AT 3000K

Quantity μ ρ k β × 105 Cp

water 0.00089 997 0.613 21 4179

copper - 8933 401 1.67 531.8

copper-oxide - 6320 76.5 1.8 235

silver - 10500 429 1.89 235

alumina - 3970 40 0.85 765

titania - 4250 8.9538 0.9 686.2

TABLE II
THERMOPHYSICAL PROPERTIES OF NANOLIQUID AT 3000K

Nanoliquids μnl ρnl knl αnl × 107

water-copper 0.00104 1473.25 0.72981 1.77001

water-copper

oxide
0.00104 1316.47 0.72743 1.76625

water-silver 0.00104 1567.27 0.72985 1.79548

water-alumina 0.00104 1175.47 0.72483 1.76827

water-titania 0.00104 1192.27 0.70808 1.73047

TABLE III
COMPARISION OF CRITICAL RAYLEIGH NUMBER FOR FF, RF AND RR

BOUNDARIES FOR χ = 0.06

Quantity RaFF
nlc RaRF

nlc RaRR
nlc

A=0.8 1311.2400 2779.2400 4757.5100

A=1 0779.2730 1629.4100 2756.2600

A=1.2 0568. 6730 1200.0400 2046.4100
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TABLE IV
VALUES OF NANOLIQUID NUSSELT NUMBER, NuFF

nl , FOR χ = 0.06,

A0 = 1, τ∗ = 2 AND RaFF
nlc = 779.2730, WITH NuFF

bl = 1.9687 FOR

RaFF
nl = 2RaFF

nlc AND NuFF
bl = 2.2916 FOR RaFF

nl = 3RaFF
nlc FOR FF

BOUNDARIES

Nanoliquids 2×RaFF
nlc % increase 3×RaFF

nlc % increase

water-copper 2.1656 10.0015 2.5542 11.4592

water-copper

oxide
2.1636 9.8999 2.5515 11.3414

water-silver 2.1656 10.0015 2.5541 11.4548

water-alumina 2.1612 9.7780 2.5483 11.2017

water-titania 2.1327 8.3303 2.5103 9.5435

TABLE V
VALUES OF NuRF

nl , FOR χ = 0.06, A0 = 1, τ∗ = 2 AND

RaRF
nlc = 1629.4100, WITH NuRF

bl = 1.9214 FOR RaRF
nl = 2RaRF

nlc AND

NuRF
bl = 2.2285 FOR RaRF

nl = 3RaRF
nlc FOR RF BOUNDARIES

Nanoliquids 2×RaRF
nlc % increase 3×RaRF

nlc % increase

water-copper 2.1088 9.7533 2.4785 11.2183

water-copper

oxide
2.1064 9.6283 2.4752 11.0702

water-silver 2.1090 9.7637 2.4787 11.2272

water-alumina 2.1036 9.4826 2.4715 10.9041

water-titania 2.0767 8.0826 2.4356 9.2932

TABLE VI
VALUES OF NuRR

nl , FOR χ = 0.06, A0 = 1, τ∗ = 2 AND

RaRR
nlc = 2756.2600, WITH NuRR

bl = 1.8399 FOR RaRR
nl = 2RaRR

nlc AND

NuRR
bl = 2.1199 FOR RaRR

nl = 3RaRR
nlc FOR RR BOUNDARIES

Nanoliquids 2×RaRR
nlc % increase 3×RaRnlc % increase

water-copper 2.0107 9.2831 2.3476 10.7410

water-copper

oxide
2.0077 9.1200 2.3437 10.5571

water-silver 2.0111 9.3048 2.3482 10.7693

water-alumina 2.0046 8.9515 2.3395 10.3589

water-titania 1.9803 7.6308 2.3071 8.8306

TABLE VII
COMPARISION OF THE PRESENT PROBLEM WITH THAT OF ELHAJJAR ET

AL. [9] FOR RR BOUNDARIES

Quantity NuRR
nl NuRR

bl % increase

A=0.81 1.1743 1.1359 3.3805

A=0.83 1.3033 1.2365 5.4023

A=0.85 1.4174 1.3257 6.9171

A=0.87 1.5187 1.4050 8.0925

A=0.89 1.6089 1.4757 9.0262

TABLE VIII
COMPARISON OF NANOLIQUID WITH χ = 0.06 AND BASE LIQUID

NUSSELT NUMBER, FOR A0 = 1, τ∗ = 2 FOR FF, RF AND RR
BOUNDARIES WITH DIFFERENT ASPECT RATIO

Quantity
RaFF

nlc = 2RaFF
nlc RaRF

nlc = 2RaRF
nlc RaRR

nlc = 2RaRR
nlc

NuFF
nl NuFF

bl NuRF
nl NuRF

bl NuRR
nl NuRR

bl

A=0.8 1.3665 1.3032 1.3232 1.2674 1.2754 1.2278

% increase 4.8572 4.4027 3.8768

A=1 2.1656 1.9687 2.1088 1.9214 2.0107 1.8399

% increase 10.0015 9.7533 9.2831

A=1.2 2.4919 2.2445 2.4110 2.1770 2.2766 2.0650

% increase 11.0224 10.7487 10.2469

A � 1.2

A � 1

A � 0.85

A � 0.8

0 2 4 6 8
1.0

1.5

2.0

2.5

3.0

Τ�

N
u n

lFF

Fig. 2 Variation of nanoliquid Nusselt number, Nunl with time, τ∗ for
different aspect ratio, A with volume fraction, χ = 0.06 and Rayleigh
number, Ra = 2Ranlc for water-copper nanoliquid for FF boundaries
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Fig. 3 Variation of Nunl with τ∗ for different Ranl with χ = 0.06 and
A=1 for water-copper nanoliquid for FF boundaries
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Fig. 4 Variation of Nunl with τ∗ for different χ with Ra = 2Ranlc and
A=1 for water-copper nanoliquid for FF boundaries
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Fig. 5 Variation of Nunl with τ∗ for different A with χ = 0.06 and
Ra = 2Ranlc for water-copper nanoliquid for RF boundaries
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Fig. 6 Variation of Nunl with τ∗ for different Ranl with χ = 0.06 and
A=1 for water-copper nanoliquid for RF boundaries

Χ � 0 Χ � 0.04 Χ � 0.06
Χ � 0.1

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0

Τ�

N
u n

lR
F

Fig. 7 Variation of Nunl with τ∗ for different χ with Ra = 2Ranlc and
A=1 for water-copper nanoliquid for RF boundaries.
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Fig. 8 Variation of Nunl with τ∗ for different A with χ = 0.06 and
Ra = 2Ranlc for water-copper nanoliquid for RR boundaries
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Fig. 9 Variation of Nunl with τ∗ for different Ranl with χ = 0.06 and
A=1 for water-copper nanoliquid for RR boundaries
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Fig. 10 Variation of Nunl with τ∗ for different χ with Ra = 2Ranlc and
A=1 for water-copper nanoliquid for RR boundaries
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Fig. 11 Variation of Nunl with τ∗ for FF, RF and RR boundary
combinations
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