
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:11, No:5, 2017

564

1 

Abstract—In this paper, we investigate theoretically the waves 
propagation in a lossless double-negative grounded slab (DNG). This 
study is performed by the Transverse Resonance Method (TRM). The 
proper or improper nature of real and complex modes is observed. 
They are highly dependent on metamaterial parameters, i.e. ɛr-
negative, µr-negative, or both. Numerical results provided that only 
the proper complex modes (i.e., leaky modes) exist in DNG slab, and 
only the improper complex modes exist in single-negative grounded 
slab. 

 
Keywords—Double-negative grounded slab, real and complex 

modes, single-negative grounded slab, transverse resonance method. 

I. INTRODUCTION  

HE production of artificial dielectrics with the permittivity 
and permeability arbitrary (metamaterial) has tremendous 

interest in the community scientific. These artificial dielectrics 
may give rise to unexpected and interesting propagation feature 
for waveguiding structures [1] and they are candidate to reduce 
edge diffraction effects and enhance radiation efficiency for 
microstrip antennas [2]. 

The artificial dielectrics are used in many applications such 
as microwave/millimeter wave leaky wave antennas [3], 
where the effective dielectric constants were between zero and 
unity. 

Several groups studied a waveguiding structures based on 
artificial dielectrics media. Nefedov and Tretyako [4] found 
that there exist modes whose fields decay exponentially from 
the interface of the two media for transverse electric (TE) and 
transverse magnetic (TM) polarizations. These modes, called 
as evanescent surface modes, were also found by Alù and 
Engheta [5]. These studies have no study on the complex 
modes. In 2006, Shu and Song suggested the dispersive 
propagation of complex modes (leaky waves) on metamaterial 
grounded slab and their investigations on the Poyting vectors 
show that these modes do not transport energy in both 
transverse and longitudinal directions [6]. This study is 
unfortunately incomplete.  

In this paper, we focus to the modal properties of surface 
modes, volume modes, and complex modes supported by one 
or both negative parameters of grounded slab using the TRM 
in order to completely assess their propagation and radiation 
features. In Section II, we present a simple analysis of the 
dispersion relation of real and complex modes for TE and TM 
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polarizations in our structure. In Section III, we discuss the 
numerical results of the characteristics of these modes along 
the considered structure. In Section IV, we conclude our work. 

II. ANALYSIS 

The structure of interest, as shown in Fig. 1, consists of two 
media, air and grounded slab. The infinitely extent slab of 
lossless material is inserted in this structure with thickness d, 
while the slab is assumed to be of a lossless isotropic DNG 

material with real parameters 0r   and 0r  at the 

frequency of interest . 
 

 

Fig. 1 An infinity grounded slab with negative parameters er and ur 
 
To find the propagation constant for propagation 

perpendicular to the plane xoz (y direction), we use the well-
known TRM in this direction. The structure can be then 
considered as an equivalent circuit with modes propagating in 
the z direction, as shown in Fig. 2. These modes are referred to 
as z-modes because they propagate along the longitudinal z 

direction with propagation constant k z . This equivalent circuit 

leads to the dispersion equation.  
 
 

1 2(Y Y )E 0                                                                           (1) 
 

 

Fig. 2 Equivalent circuit used to illustrate the TRM 
 
We consider here that these modes would be TE and TM. 

The dispersion equations for both polarizations TE and TM are 
then written as: 
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2 2 1k coth(k ) k 0  y y y rd                                             (2) 

 
TM 

2 2 1k (k ) k 0 y y y rth d  
                                                 (3) 

 
The TE and TM characteristic admittances in the air and 

slab region are given by [7]: 
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where ky1 and  ky2  are the transverse wavenumber  .  

The analysis proceeds by first assuming that the 
propagation constant kx value is zero (no variation along the x 
direction).   

A. Surface Mode 

The surface modes are characterized by exponentially 
decaying fields in the y-direction [8]. 

A TM-type surface mode propagating along the z axis is 
investigated. The non-vanishing magnetic field components 
which satisfy the Maxwell equations in two regions can be 
deduced as: 
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The xH  components from the two regions are continuous 

on the surface y = 0. 
For TM surface modes, the surface impedance must be 

inductive ( 1real(k ) 0y  ) in order to provide the field 

concentration above the surface. The Helmholtz wave 
equation is written as:  

 
2 2 2

2 1 0 ( 1)  y y r rk k k                                                      (9) 

 
The real modes propagate in z direction with a real 

propagation constant z zk   . 

We aim to obtaining an approximate solution by setting the 

imaginary parts r  and r  to zero. Under this assumption, 

the wave number y1k  is real and, the wave number 2yk  is 

real. Let 1 1 1y y yk j    and 2 2 2y y yk j   . In this 

case, (2) and (8) reduce to  
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The equation of system can be solved for the unknowns 1y  

and 2y  using an iterative procedure to arrive at a final set of 

solutions from some initial trial values. This procedure is 
released by “fsolve” in MATLAB. 

For TE surface mode, the electric field components in two 
regions can be written as: 
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Assuming the same approximation using in TM mode, we 

obtain the equation system 
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To find the dispersion of the TE surface mode, we will 

solve this system by the same procedure happening in TM 
mode. 

B. Volume Mode 

Volume modes propagate along the longitudinal z direction 
with a real propagation constant z zk   . The magnetic field in 

the TM polarization is represented by these equations in the 
two regions. 
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The difference between the two wave equations allows us to 

obtain this equation: 
 
2 2 2

2 1 0 ( 1)  y y r rk k                                                    (14)

  

We imply that the wave number of the slab y2k  is real. 

Therefore, we can write these two equations: 
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In order to find volume modes, we solve this system using 

“fsolve” in MATLAB. 
In TE polarization, the electric field is written in the two 

regions by the two equations:  
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Volume mode is characterized by a real wavenumber 

1 1k y y  
and a real wavenumber 2 2k y y . It is 

represented by the solution of the system  
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C. Leaky Mode 

The leaky mode is characterized by two complex wave 
numbers zk , y1k , and y2k . 

For TM and TE polarizations, the system of equations to 
solve can be written as: 
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The resolution of the system can be reduced to the 

resolution of the single equation of the two polarizations  
 
TM 

2 2 tan(Z) 0 rZ a jZ                                           (20) 

 


2 2 cot(Z) 0rZ a jZ                                                (21) 
 

where 2yZ k d  and 2 2 2
0 ( 1)r ra k d    . 

There is no analytical solution to these equations, then its 
resolution cannot be done numerically. The resolution of these 
equations are from the complex variable Z, using a Newton-
Raphson algorithm [9]. We chose this method because it is 
simple and effective.  

In our method, we chose to take as initial points, the 
analytical solutions of (20) and (21) for the particular case 

0r   and 0r  . In this case, these equations will be 

written as: 
 

TM: tan(Z) 0jZ   
 

TE: cot(Z) 0jZ   
 

The solution of the two equations is ( / 2)piZ n  where 

n is an odd integer.  

III. NUMERICAL RESULTS AND DISCUSSION  

In the numerical study, our structure is made of a 
metamaterial medium with permeability and permittivity equal 
to: 
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where 0.56F  , 2 10p   GHz and 

0 2 4    GHz 

(parameters chosen as in [7]). These material parameters 
depend on frequency. 
 

 
Fig. 3 Relative permittivity ɛr (solid line) and relative permeability µr 

(dashed line) as a function of frequency f for a double-negatives 
grounded slab 

 
In Fig. 3, we illustrate the permeability and permittivity 

depending on the frequency of 4.8f  GHz to 6.2f   GHz. 

The permeability becomes positive above 6f   GHz and it 

becomes negative below this value. This frequency is the 
critical frequency. 

Graphical representations of the surface mode for TM and 
TE modes supported by a grounded slab with the above-
reported parameters and slab height 60d   mm in a 
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frequency range between 4.8f   GHz and 6.2f   GHz are 

shown in Fig. 4. 
In TM polarization, the mode is always real and is properly 

evanescent above 5.2 GHz (red Dash-dot line) and improper 
ordinary below (red solid line). But, in TE polarization, the 

mode is not evanescent above 5.2 GHz, it is only improper 
ordinary below. 

We present in Fig. 5 the characteristics of volume modes 
propagating along the double-negatives grounded slab. 

 

 

Fig. 4 Dispersion diagrams for TM and TE surface modes of a grounded slab with height d = 60 mm 
 

 

Fig. 5 Normalized real constant of volume mode propagating on a double-negatives grounded slab versus frequency for TM (solid line) and TE 
(dashed line) polarizations 

 
The real constants of TE and TM volume modes are equal 

to the constant of free space k0βzk0, above 5.2 GHz and 
they are decreased below. At the critical frequency fc=6 GHz, 
the normalized real constants of TE modes become increased. 
But, in TM modes, they remain decreased. 

As an illustration, Fig. 6 presents the normalized real 
constant and the normalized attenuation constant of the leaky 
mode propagating in double-negatives grounded slab. 

Two modes for TE and TM are visible in Fig. 6. TM1 and 
TM2 have two real branches below 5.2 GHz and 5 GHz 
which to complex branches above those frequencies. TE1 and 

TE2 have two real branches below 5.22 GHz and 5.02GHz 
which to complex branches above those frequencies. At 

6cf   GHz (when the metamaterial changes from double-

negative to r -negative), the normalized real constants of 

these two modes for TE and TM become zero and retain their 
sign. The normalized attenuation constants of TM modes 

decrease rapidly at cf . However, the normalized attenuation 

constants of TE modes increase at this frequency. 
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Fig. 6 Characteristics of leaky modes propagating along a double-negatives grounded slab as function frequency. (a) Normalized real constants 
(b) normalized attenuation constant 

 
IV. CONCLUSION  

The dispersion and radiation properties of real and complex 
modes propagating along double-negative or single-negative 
grounded slab have been investigated in this paper. The 
graphical method is used to find the possible real and complex 
roots. Evanescent surface mode has been shown to occur only 
in TM modes of DNG case. We found that only the improper 
leaky modes are observed in DNG, and only the proper leaky 
modes are observed in SNG. 
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