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 
Abstract—Recording psychological and physiological correlates 

of human performance within virtual environments and interpreting 
their impacts on human engagement, ‘immersion’ and related 
emotional or ‘effective’ states is both academically and 
technologically challenging. By exposing participants to an effective, 
real-time (game-like) virtual environment, designed and evaluated in 
an earlier study, a psychophysiological database containing the EEG, 
GSR and Heart Rate of 30 male and female gamers, exposed to 10 
games, was constructed. Some 174 features were subsequently 
identified and extracted from a number of windows, with 28 different 
timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number 
of features to 30, using a feature selection technique, K-Nearest 
Neighbour (KNN) and Support Vector Machine (SVM) methods 
were subsequently employed for the classification process. The 
classifiers categorised the psychophysiological database into four 
effective clusters (defined based on a 3-dimensional space – valence, 
arousal and dominance) and eight emotion labels (relaxed, content, 
happy, excited, angry, afraid, sad, and bored). The KNN and SVM 
classifiers achieved average cross-validation accuracies of 97.01% 
(±1.3%) and 92.84% (±3.67%), respectively. However, no significant 
differences were found in the classification process based on effective 
clusters or emotion labels. 
 

Keywords—Virtual Reality, effective computing, effective VR, 
emotion-based effective physiological database  

I. INTRODUCTION 

HE recent “resurrection” of interest in Virtual Reality 
(VR), courtesy of new interface and gaming technologies, 

many evolving from international crowd-funding communities 
has, once again, stimulated interest in the quest for true 
“immersion” or the generation of a believable sense of 
“presence” in computer-generated worlds. Although, Human-
Computer Interaction (HCI) system designers have, in their 
attempts to increase the sense of end user immersion, 
introduced several multi-dimensional input/output devices, in 
an order to provide user-friendly, intuitive techniques and 
styles of interaction with real-time 3D worlds (including 
various types of data input controllers, multifunctional touch 
panels, for example); the area of HCI research that strives 
towards establishing direct communication between a 
computer system and the human brain has, until recently, been 
treated as science fiction (referencing such popular films as 

 
Mohammadhossein Moghimi and Prof. Robert Stone are with the 

Department of Electronic, Electrical and Systems Engineering, University of 
Birmingham (e-mail: m. moghimi@pgr.bham.ac.uk, r.j.stone@ bham. ac.uk). 

Dr. Pia Rotshtein is with the School of Psychology, University of 
Birmingham (e-mail: p.rotshtein@bham.ac.uk). 

The Matrix and Pacific Rim). In 2006, Cairns suggested that 
true “immersion” may only ever be achieved through the use 
of advanced brain-computer interfaces [1]. However, until that 
day arrives, it is important to understand in advance, how it 
may be possible to measure and, indeed, influence human 
engagement and emotional connectivity with virtual worlds 
using psychophysiological techniques.  

In the VR domain, Brain-Computer Interaction (BCI) 
systems attempt to improve human-computer interaction and 
increase the sense of immersion by interfacing directly with 
the human brain and, thus, removing the artificial barriers to 
intuitive interaction afforded by conventional input-display 
techniques. So far, the interaction process has been mostly 
based on conventional methods, in that computer users 
typically use physical interaction devices to see, hear, act, 
sense haptic or olfactory stimuli, and in some cases, even talk 
to the system. The near-term goal of BCI systems, as an 
extension to these conventional systems (as opposed to a 
replacement, which is a longer-term aspiration), would be to 
translate human thoughts and emotions by direct connection to 
the human brain and use this information as a new modality 
channel for HCI systems [2]  

As discussed in a previous paper by the present authors [3], 
to date, researchers have studied the implementation of virtual 
realities in many different areas. As well as entertainment, 
virtual realities and their so-called “serious games” 
counterparts have been used for training purposes [4]-[6], pain 
distraction [7], [8], rehabilitation régimes [9], [10] and 
emotional disorder therapy [11], [12]. The focus of all these 
studies has been to engage the human users in an interactive 
virtual environment, and to increase the sense of presence and 
immersion within them, thereby effectively delivering new 
skills, knowledge or in some cases, acting as a form of clinical 
distraction. In 2006, Joels suggested that changes in the 
excitement level (depending on the pleasurable or 
displeasurable condition), affects the learning and memory 
process. He proposed that memory performance changes 
(either improvements or impairments) are highly dependent on 
the time and context of the emotional experience [13]. 
Therefore, the recognition of the users’ emotions, when 
exposed to virtual realities, and controlling their affective 
experiences within the virtual environments (regardless of 
their purpose) can be as important as the VR’s contextual 
outcome.  

As highlighted by the present authors in [3], one of the sub-
categories of research into BCI systems is described as 
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affective computing. During the process of affective 
computing, psychophysiological signals from the users are 
recorded to enable the BCI system to extract data of relevance 
to their emotional and cognitive states. This new input channel 
could provide several features for an advanced HCI system 
attempting to support the generation of believable immersive 
experiences. As an illustration, the system could use this 
information to adapt itself to the user’s emotions and, by doing 
so increase his/her performance and immersion levels, during 
the interaction process. Recently, developments in HCI-
mediated emotional recognition have been developed using 
non-interactive, or passive environments, such as listening to 
music, or the observation of videos and imagery (e.g. [14]-
[23]), with others beginning to focus on virtual realities and 
more interactive environments (e.g. [24], [25]). 

In [3], we conceptualised, designed and evaluated an 
Affective Virtual Reality (Affective VR), capable of evoking 
various emotional experiences on the part of the human user. 
In the present study, by employing the designed Affective VR, 
an affective computing system was designed and evaluated. 
To do this, the relationship between psychophysiological 
signals and human emotions, evoked through the designed 
Affective VR (presented in [3]), has been the focus of 
investigation. 

II. RELATED WORKS 

A. Affective Stimuli and Experience Assessment  

As described in a previous paper by the present authors [3], 
to analyse the emotional response of humans and their 
psychophysiological responses, a psychophysiological 
affective database, recorded from a number of users exposed 
to a number of controlled and known affective stimuli, is 
required. To construct such a database, a number of controlled 
emotional scenarios (affective stimuli) evoking some specific 
affective states on the part of the users need to be presented to 
participants in an experiment, whilst taking part in a 
physiological measurement paradigm. These recordings, 
tagged by the corresponding affective states, are analysed for 
the design, training and validation of the affective recognition 
system. So far videos [14], [15], music videos [16], [17], 
Images [18], [19], Sound [20], [21], Real Life Scenarios [22], 
[23] and Virtual Reality and Games [24], [25] have been 
employed, as affective stimuli, in order to evoke a range of 
emotional experiences, on the part of the users. On the other 
hand, studies have employed either self or expert assessments 
to tag the emotional stimuli with the participants’ affective 
experiences. In expert-assessment a psychologist or human 
emotion expert is instructed to evaluate the participant’s 
affective state, and to categorise it within an Affective Space 
[23]. Whereas in self-assessment, the participants were 
instructed to evaluate their emotional experience and report 
them within an Affective Space [14]-[19], [21], [25]. To date, 
studies, in the main, have employed either dimensional (used 
by [14]-[16], [18], [19], [21], [24]) or categorical (employed 
by [23], [25]) Affective Space, to perform emotional 
experience assessments. In dimensional models, a number of 

parameters are employed to numerically present emotional 
experiences within a dimensional space. Both Russell and 
Mehrabian presented two similar dimensional models in the 
1980s and 1970s. These models define emotions based on two 
or three continuous independent parameters (Valence, Arousal 
and Dominance) [26], [27]. Whereas in categorical models, 
the Affective Space is presented by using an emotion set (a 
number of ‘Emotion Labels’), such that the user can be 
“categorised” as experiencing either one or a combination of 
these Emotion Labels. As an illustration, Ekman and Friesen 
used a categorical presentation of emotions, labelling them as 
surprise, fear, disgust, anger, happiness and sadness [28].  

B. Physiological Recordings and Features 

To record psychophysiological responses of the users, 
exposed to affective stimuli (image, video, etc.), various 
physiological recordings have been employed in the 
literatures. To date, Electroencephalography (EEG) [14]-[18], 
[20], [24], [25], [29], Galvanic Skin Response (GSR) [16]-
[19], [22]-[24], [29] and Heart Rate [16], [17], [19]-[24] have 
been the most popular recordings in the literature suggested to 
be related to affective states. However, a minority of the 
studies has also employed respiratory (breathing) rate, skin 
temperature, Electromyography (EMG) and pupil diameter, as 
well, in order to classify affective states [14], [16], [17], [24]. 

To train the emotion recognition agent (considering 
supervised learning algorithms [30]), a number of 
psychophysiological features need be identified and extracted 
from the recorded physiological signals. These features need 
to be related to the affective states, as they will ultimately be 
employed within the affective recognition system to predict 
the emotional response of the users when experiencing a 
specific affective situation. To date various physiological 
features have been introduced in the literatures. These features 
can be: 
1.  The statistical analysis (e.g. mean, standard deviation, 

etc.) of the raw signals (e.g. average GSR value, mean of 
the heart rate peaks, etc. [24]).  

2.  The frequency analysis of physiological signals to extract 
specific rhythms (e.g. alpha, beta, gamma rhythm powers 
within EEG signals [14], [17]). 

3.  The detection of specific patterns, such as Event Related 
Potentials (ERP – such as the P300, N100, and others 
[18]).  

4.  Other exclusive measurements (e.g. EEGw [29]).  

III. PSYCHOPHYSIOLOGICAL DATABASE CONSTRUCTION 

A Material 

In the present study to construct the psychophysiological 
database, the designed and pre-evaluated Affective VR, 
presented in [3], has been used as the source of the emotional 
stimuli. The Affective VR was based on a speedboat 
simulation (Fig. 1) acting as the background scenario. A 
number of parameters (called affective incidents) were 
implemented in the VR to change the affective power of the 
environment within the Circumplex of Affect presented by 
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Russell in 1980s [26]. As an illustration, participants were 
challenged by driving the boat and collecting scores freely, in 
a minefield or whilst being targeted by torpedoes, in various 
experimental setups, such as coloured images, black and white 
or inverse black and white screens, using a mouse, or a 
joystick, with or without simple force feedback (for more 
details, refer to [3]). 

 

 

Fig. 1 Speedboat Simulation Environment 
 

In the present study, the two most powerful affective games, 
in each of the four Affective Clusters introduced in [3], have 
been identified using the Cosine Similarity Algorithm [31] as 
implemented in [3]. As a result of this analysis, the eight most 
powerful affective games (those, which have the highest 
probability of driving the emotional experience of the 
participants toward all affective clusters) have been identified. 
Following the identification of the most powerful affective 
games, two neutral games were added in the experiment (the 
neutral game from [3], plus the game close to (0, 0, 0) with the 
highest standard deviation). Therefore, overall, 10 affective 
games have been identified for presentation to the participants 
in this experiment.  

As discussed in [3], Multi-Variant Analyses of Variance 
(MANOVA) highlighted significant differences between the 
four participant groups (male gamers, male non-gamers, 
female gamers and female non-gamers). According to the 
results presented in [3], male gamers, male non-gamers and 
female gamers show marked similarities in their affective 
experiences, when compared to female non-gamers. In order 
to minimise between participants variability, it was decided to 
recruit only male and female gamers in this experiment 

As the majority of studies have employed EEG, Heart Rate 
and GSR signals to perform affective analysis and recognition 
(Section II A), in the present study, it was decided to record 
data using these three techniques, for the purposes of 
supporting the psychophysiological database construction 
process. Participants were required to wear an EMOTIVE 
EPOC (developed by EMOTIV Inc.) headset to record EEG 
signals, as well as Shimmer+ wearable sensor technologies 
(developed by Shimmer Sensing Inc.) to record GSR and heart 
rate activities. The EMOTIVE EPOC records the EEG signals, 
with a 128Hz sampling frequency, from 14 channels (AF3, 
AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1 and O2), 
while P3 (Common Mode Sense – CMS) and P4 (Driven 

Right Leg – DRL) are used as the reference channels), 
arranged according to the 10-20 EEG system. The GSR and 
heart rate data are also recorded using the Shimmer+ wearable 
sensor technologies, with a 512 Hz sampling frequency. A 
program was developed to function in parallel with the game, 
to perform the recording (through the software development 
tool kits (SDKs) provided by the manufacturers), as soon as 
each game was started. 

B. Method 

The experiment was performed in a quiet room. All 
participants were provided with a 32-inch Samsung HD LCD 
display, a Microsoft Wireless Mouse 5000, a Logitech 
Wingman 3D force feedback joystick and Sennheiser 
earphones. Each experiment commenced with a training 
session to prepare the participants for every possible incident 
within the games (as presented in [3]). The training introduced 
the game environment to the participants and served to reduce 
any element of surprise in the games. After the participants 
had completed the training session, they progressed to the two 
neutral games, followed by the other eight in a random order. 
At the end of each game the participants were instructed to 
self-assess their average emotional experience, based on the 
dimensional (Valence, Arousal and Dominance) and the 
categorical (according to eight Emotion Labels: Relaxed, 
Content, Happy, Excited, Angry, Afraid, Sad and Bored) 
models of affect (as presented in [3]). The participants were 
given a five-15 minute break, after playing the first five 
games, in order to reduce the fatigue factor caused by wearing 
the physiological sensing equipment. On average, each game 
lasted for three minutes, and the complete experiment took 
approximately 1.5 hours. 

C. Result (Psychophysiological Database) 

Of a possible total of 300 affective sessions, 290 were 
recorded (10 sessions were not attended by participants). 
During the affective sessions, the raw EEG signals from all 14 
channels were recorded. Furthermore, the signal quality of 
each EEG channel was available from the EMOTIVE EPOC 
headset and was therefore recorded alongside the raw channel 
data. The raw Photoplethysmogram (PPG) output was 
recorded by the Shimmer+ device, mounted on the 
participant’s index finger. During this recording a location of 
the skin is illuminated, and then the changes in light reflection 
are recorded. The alternating current component of the PPG 
signal relates to the blood pulse pressure. The Shimmer+ 
software uses the estimation techniques introduced in [32] to 
approximate the heart rate of the subjects using the PPG 
signal. Moreover, the GSR signal was also recorded using two 
finger straps mounted on the middle and ring fingers. These 
raw data sources were synchronised according to the master 
clock of the main system and stored in Microsoft Excel files 
during the run-time of the experiment. The emotional ratings 
of the participants were recorded and stored separately at the 
end of each game. 
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IV. PHYSIOLOGICAL FEATURE MATRIX CONSTRUCTION 

In this study, all pre-processing, windowing and data 
analyses have been implemented using MATLAB software 
(version R2015b).  

A. Pre-Processing 

A 5th order Butterworth band-pass filter was applied to the 
raw EEG signals, whilst the lower-band was set to 4 Hz and 
the upper-band was fixed at 45 Hz (also employed by [14]-
[17], [20]). This was due to the fact that eye-blinking artefacts 
are mainly observed in frequencies lower than 4 Hz, as people 
rarely blink more than four times a second. Thus, selecting 4 
Hz as the lower-band cut-off frequency attenuates all blinking 
effects, present in the raw EEG signals. Moreover, the brain’s 
high frequency rhythms (Gamma range) can be observed 
between 30 Hz and 45 Hz [33]. Therefore, selecting 45 Hz as 
the upper-band cut-off frequency attenuates all higher 
unwanted frequencies.  

B. Windowing 

To extract the affective features, a portion (called a 
Window) of the corresponding raw physiological signal is 
extracted and analysed. Any affective feature, extracted from 
this portion of the physiological signal, has to be able to be 
confidently tagged by a specific emotional experience. The 
emotionally labelled affective features, extracted from this 
period, are employed as a single observation, within the 
affective database, for the emotion recognition training 
process. The duration of each window could be either shorter 
than (as employed by [21], [23], [24]) or equal (as used by 
[20], [25]) to the duration of the each affective stimulus. On 
the other hand, the duration of windows (either shorter or 
equal to stimuli duration) can be either a fixed value (such as 
2, 4, 10, etc. seconds), regardless of the affective experience 
duration; or a relative value (such as 10%, 20%, etc.) to be 
calculated, independently, according to the duration of the 
participants’ affective experience. In this study, 28 arbitrary 
window lengths (17 fixed and 11 relative values) have been 
selected to be used and compared in the classification process. 
All relative durations would be shorter than the stimuli 
duration, except the 100% window length, which behave as a 
window with the entire stimuli duration. Therefore, in this 
study, both windowing techniques, with durations equal to and 
shorter than stimuli length, have been implemented and 
evaluated.  

To perform spectral analysis on the signals, we employed a 
Fast Fourier Transform (FFT) technique. One of the 
hypotheses of the FFT analysis technique is the periodicity of 
the target signal [34]. However, the recorded physiological 
signals are not periodic waves. Applying FFT on non-periodic 
signals would cause a Spectral Leakage effect, which results in 
non-zero spectral powers in high frequencies, which may not 
belong to the original signal [35]. To eliminate this effect, 
weighting window functions can be applied to the signal 
before FFT analysis takes place [35]. In this study, Hamming 
windows have been employed, for the window weighting 
process. By applying non-overlapped windows, almost 50% of 

the signal values, passed through the Hamming windows, 
would be attenuated by 50%. Consequently, this significant 
attenuation could result in considerable database signal loss. 
To resolve this issue, overlapping windows are employed to 
share the attenuated signal points with other windows. To 
avoid any maximum signals attenuation larger than 5%, the 
Hamming windows have to share (overlap) 80% of the 
signals, in the windowing process.  

C. Psychophysiological Features 

1. EEG Features 

The Theta, Slow-Alpha, Alpha, Beta and Gamma frequency 
rhythms [33] have been extracted from all 14 single and seven 
symmetric-paired channels. Moreover, the Asymmetric power 
ratios [40], [41], for both Slow-Alpha and Alpha rhythms, 
have been extracted. Furthermore, the left frontal (AF3, F3, F7 
and FC5), right frontal (AF4, F4, F8 and FC6), left parietal 
(P7 and O1), right parietal (P8 and O2), frontal (AF3, AF4, 
F3, F4, F7, F8, FC5 and FC6), parietal (P7, P8, O1 and O2) 
and overall EEGw3, have been calculated. In addition, the 
Alpha-Beta Ratio measurement, presented in (1), has been 
implemented in this study. According to [33], Alpha waves 
can indicate a relaxed awareness, without any attention or 
concentration, whereas Beta waves can be associated to active 
thinking, active attention or solving concrete problems. 
Therefore, this ratio can indicate an “attention measure” in a 
location of the brain (a large Alpha-Beta Ratio indicates high 
alpha activities and lower beta activations, signifying lower 
attention and concentration).  

Alpha-Beta Ratio Equation; 
 

Alpha െ Beta	Ratio ൌ
୆ୣ୲ୟ	୔୭୵ୣ୰

୅୪୮୦ୟ	୔୭୵ୣ୰
              (1) 

 
The Alpha-Beta Ratio has been extracted from all 14 single 

and seven symmetric-paired channels. Therefore in total, 147 
EEG features have been extracted from each window, 
retrieved from the raw EEG signals.  

2. GSR and Heart Rate Features 

The mean, minimum, maximum, standard deviation, mean 
of the peaks, mean of the first derivative, mean of the positive 
values of the first derivation, mean of the negative values of 
the first derivation, mean of the first derivative peaks and 
fluctuation frequency (The fluctuation frequency signifies the 
number of times the signal changes direction – i.e. increase to 
decrease and vice versa) have been extracted from both GSR 
and heart rate raw signals. Moreover, the GSR low frequency 
power (0 Hz to 2.4 Hz [16], [17]), heart rate medium (0.04 Hz 
to 0.15 Hz [16], [17]) and high (0.15 Hz to 0.5 Hz [16], [17]) 
frequency power and heart rate spectral power ratio 

(
୑ୣୢ୧୳୫	୊୰ୣ୯୳ୣ୬ୡ୷	ୗ୮ୣୡ୲୰ୟ୪	୔୭୵ୣ୰

ୌ୧୥୦	୊୰ୣ୯୳ୣ୬ୡ୷	ୗ୮ୣୡ୲୰ୟ୪	୔୭୵ୣ୰
) were also extracted from each 

retrieved window. Therefore, in total, 24 features were 
extracted from the raw GSR and heart rate signals in each 
window. 
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3. Participant Features 

In total, three features, related to the participant, have been 
extracted, in each window. These are the gender (male vs. 
female), hand preference (right vs. left handed) and age (four 
classes: 12-18, 18-24, 24-30 and 30-40 years old), each of 
which has been recorded within the features matrix. 

4. Affective Tagging 

As the self-assessments are conducted at the end of each 
game, rather than continuously during the gameplay (Section 
III B), the following hypothesis has been presented in this 
study. First, we divided the emotional experience of the 
participants, during a single game, into two affective periods:  
1. ‘Emotion Build-Up’ Period: This period occurs during 

the first part of each game. Within this period, the 
emotional experience of the participant can be 
unpredictable, as it can be representative of a residual 
state from a previous game or some other pre-cognitive 
state.  

2. ‘Emotion Persistence’ Period: This period occurs during 
the last part of each game. Within this period, the 
emotional experience of the participant has been 
influenced by the current game, and can be (reasonably) 
confidently labelled by an Affective Cluster or Emotion 
Label. This means that all emotional experience variations 
within this period are considered as minimal. This also 
means that the affective experience of the participants 
within this period is always close to the average affective 
label (Relaxed, Content, Happy, Excited, Angry, Afraid, 
Sad and Bored) and cluster (PVLAPD, PVHPAPD, 
NVPAND and NVNAND. The cluster is determined 
according the dimensional ratings of the participants at 
the end of each game and the cluster boundaries, 
presented in [3]), reported by the participants at the end of 
the game. 

Then, we hypothesised that the first 30% duration of each 
game constitutes the Emotion Build-Up Period, while the last 
70% can be considered as the Emotion Persistence Period. 
Therefore, all windows, which have a centre, time-stamp 
within the first 30% period of the each game have been 
deleted from the features matrix. Then, all windows, which 
have a centre time-stamp within the last 70% period of the 
each game, have been tagged by the Affective Cluster and 
Emotion Label reported by the participants at the end of that 
game.  

5. Defective Data Removal 

All windows exhibiting EEG signals with an average signal 
quality below “fair” (according to the EMOTIVE EPOC 
signal quality classes) have been removed from the features 
matrix. Furthermore, all windows exhibiting infinity or NAN 
(Not-A-Number) values have also been removed from the 
features matrix. 

V. FEATURE SELECTION 

As it was discussed in Section IV C 174 features were 
extracted from all windows. To be able to perform emotion 

classification, the dimension of the features matrix has to be 
reduced to a subspace. This subspace has fewer features 
(labelled Most Optimum Features throughout the paper), while 
they can adequately capture the essence of the data [30]. To 
perform the feature selection, the minimal-redundancy-
maximal-relevance (mRMR) technique has been employed. 
Consider the features matrix of F∈R^(N×D), while N is the 
number of observations and D is the number of features. The 
mRMR algorithm finds the most optimum subset Fୗ ∈ Թ୒ൈୢ, 
such that d ≪ D, and Fୗ can optimally characterise F [36]. 

The mRMR algorithm employs Shannon’s Entropy [37] to 
identify those features, which are mutually exclusive with 
respect to each other (minimal redundancy), whilst remaining 
mutually inclusive with respect to the classification clusters 
(maximal relevance – Affective Clusters or Emotion Labels in 
this study) [36]. To perform the analysis, the database has to 
be discretised prior to the Shannon’s Entropy calculations. 
Therefore, all features were discretised according to three 
classes (-1, 0 and 1), with respect to the features’ mean and 
standard deviation values (as implemented by [36]). 

In the present study, 30 arbitrary values have been used as 
the number of required features (d – 1 to 30), each of which 
could be selected according to either Affective Clusters or 
Emotion Labels. Furthermore, the mRMR technique was 
capable of producing various lists of most optimum features, 
according to different windowing techniques employed in the 
features matrix construction process (28 different window 
lengths). This combination can create 840 different settings 
ሺ28 ൈ 30 ൌ 840ሻ , for classification according to either 
Affective Clusters or Emotion Labels.  

VI. CLASSIFICATION AND AFFECTIVE RECOGNITION 

In this study, the SVM [38] and KNN [39] classifiers have 
been employed to perform the classification process. To 
evaluate the performance of the SVM classifier, according to 
different settings, the Linear, 2nd Order Polynomial 
(Quadratic), 3rd Order Polynomial (Cubic) and Gaussian 
Kernel functions have been employed. Also 24 arbitrary 
Kernel Scales, for the Gaussian Kernel function, have been 
arbitrarily selected and evaluated in the cross-validation 
process. Also 30 different arbitrary K values, for the KNN 
classifier, have been implemented and evaluated in the cross-
validation process (1 to 30). All classifications and cross-
validations have been implemented within MATLAB software 
(version R2015b), using the Statistics and Machine Learning 
Toolbox.  

A. Number of Features Evaluation 

Fig. 2 presents the performance of the classifiers with 
respect to different number of features, according to Affective 
Clusters and Emotion Labels. The scattered dots in Fig. 2 (and 
also Fig. 4) present different classifiers with various settings. 
For example, if the classifier employs five features for the 
classification, different window lengths (28 different window 
lengths) and classifier settings (different K-value in KNN, 
etc.) can result in various accuracies (all scattered dots 
presented in a vertical manner for five features). However, as 
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the best performing classifier in each setting has to be 
selected, the setting, which generates the maximum 
classification accuracy is identified and highlighted (e.g. the 
line highlighting the maximum values in Fig. 2 and also Fig. 
4). As it can be obtained by Fig. 2, the performance pattern of 
each classification technique, with respect to the number of 
features, are similar by employing either Affective Clusters or 
Emotion Labels. The accuracy of both KNN and SVM 
classifiers, with respect to the number of employed features, 

follows a sigmoid function pattern (݉݃݅ݏሺݔሻ ൌ
௘ೣ

ଵା௘ೣ
 , the term 

“sigmoid” means S-shaped [42]). This means that their 
accuracies have increased by employing more features, with 
saturation occurring around 98%. As it can be seen in the 
graphs, the accuracy of classifiers has increased around 0.6%, 
by increasing the number of features from 20 to 30. By 
increasing the number of features, the complexity of the 
classifier grows, which consequently increases the classifier’s 
processing and timing expense. Therefore, we decided to not 
to employ more than 30 features in the classification process.  

 

 

Fig. 2 KNN and SVM Classifiers Performance vs. Number of Features, According to Affective Clusters and Emotion Labels 
 

B. Classification Settings Evaluation 

Fig. 4 presents the performance of KNN and SVM 
classifiers, with respect to the corresponding classification 
settings, according to Affective Clusters and Emotion Labels. 
As it can be obtained by the figure, the performance of the 
KNN classifier is slightly attenuated, whilst “K” is increased 
(in classification according to both Affective Clusters and 
Emotion Labels). This means that the KNN classifier performs 
better when considering fewer neighbours in the affective 
space, in its attempts to classify the affective features. 
According to this analysis the 1st Nearest Neighbour (K=1) 
has the highest accuracy, compared to other “K” values. Also 
as illustrated by the graph, the performance of the SVM 
classifier is boosted when a higher order non-linear Kernel 
function is employed. The Gaussian Kernel function with 
relatively large kernel scales (either 2 or 3) performed better 
than the Linear and Quadratic Kernel functions. Although the 
Cubic Kernel performance was very similar to the Gaussian 
function, the best performing classifiers (Section VII) 
employed the Gaussian Kernel. 

VII. DISCUSSION 

To be able to compare the performance of all classification 
techniques, the best performing classifier setting (e.g. K value 
in KNN, etc.), for each window length, has been identified. As 
a result, 28 settings for each classification technique (KNN 
and SVM according to both Affective Clusters and Emotion 
Labels) have been identified. Fig. 3 presents the best 
classification accuracy, for each classifier, in each window 
length. The horizontal axis of the figure presents 28 different 
window lengths; 17 Fixed (left side of the vertical dashed line) 
and 11 Relative (right side of the vertical dashed line). An 
Analysis of Variance (ANOVA – Classifiers accuracy is 
considered as the dependent variables, while different 
classifiers, different windowing lengths and Affective Clusters 
vs. Emotion Labels classification technique as the independent 
parameters) showed that the performance of the classifiers, in 
categorising the emotions into either Affective Clusters or 
Emotion Labels is not statistically different (PClusters = 
0.569). Also, the same analysis highlighted that the different 
windowing techniques (fixed vs. relative) is not a significant 
factor in changing the classifications performances 
(PWindowing = 0.691). However, the performances of KNN 
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and SVM classifiers are significantly different in terms of their 
classification accuracy (PClassification < 0.001). On average, 
KNN (97.01% (±1.3%) mean accuracy across different 
windowing techniques, Affective Clusters and Emotion 

Labels) outperformed the SVM algorithm (92.84% (±3.67%) 
mean accuracy across different windowing, Affective Clusters 
and Emotion Labels) with around 4%.  

 

 

Fig. 3 KNN and SVM Classification Accuracy Comparison, vs. Window Lengths – According to Affective Clusters and Emotion Labels – The 
Horizontal Axes Presents 28 Window Lengths; 17 Fixed (Left Side of the Vertical Dashed Line) and 11 Relative (Right Side of the Vertical 

Dashed Line) 
   

 

Fig. 4 KNN and SVM Classifiers’ Settings vs. Accuracy, According to Affective Clusters and Emotion Labels
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VIII. CONCLUSION 

This paper demonstrated the phases of designing, 
conceptualisation and evaluation of an affective computing 
system, implemented in virtual reality. The findings of this 
study suggested that the physiological signals could be 
employed to classify emotional experiences. By assessing the 
performance of 28 different windowing techniques, we 
concluded that there is no difference in employing either 
relative or fixed windowing techniques. Therefore, as the 
relative windowing technique cannot be implemented in real-
time applications (as the duration of the stimuli cannot be 
determined until the end of the VR session), the fixed 
windowing technique could be a more appropriate and 
credible choice to be adopted for real-time applications. 
However, the analysis suggested that the shorter window 
length could perform better in the classification process. 

The final motivation of this research is to implement the 
designed affective recognition system, into an Adaptive 
Virtual Reality (Adaptive VR) demonstration, capable of 
adapting its internal environment according to the human 
users’ emotion. Such a development could have significant 
implications for the development of dynamic human-centred 
interface techniques, supporting efficient human-system 
communication styles in a wide range of real-world 
applications.  
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