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Abstract—In Wireless Sensor Networks which consist of tiny
wireless sensor nodes with limited battery power, one of the most
fundamental applications is data aggregation which collects nearby
environmental conditions and aggregates the data to a designated
destination, called a sink node. Important issues concerning the
data aggregation are time efficiency and energy consumption due
to its limited energy, and therefore, the related problem, named
Minimum Latency Aggregation Scheduling (MLAS), has been the
focus of many researchers. Its objective is to compute the minimum
latency schedule, that is, to compute a schedule with the minimum
number of timeslots, such that the sink node can receive the
aggregated data from all the other nodes without any collision or
interference. For the problem, the two interference models, the graph
model and the more realistic physical interference model known as
Signal-to-Interference-Noise-Ratio (SINR), have been adopted with
different power models, uniform-power and non-uniform power (with
power control or without power control), and different antenna
models, omni-directional antenna and directional antenna models.
In this survey article, as the problem has proven to be NP-hard,
we present and compare several state-of-the-art approximation
algorithms in various models on the basis of latency as its
performance measure.

Keywords—Data aggregation, convergecast, gathering,
approximation, interference, omni-directional, directional.

I. INTRODUCTION

ONE of the most crucial applications of Wireless Sensor

Networks (WSNs) is data aggregation (also called a

data gathering or convergecasting) which monitors nearby

environmental conditions periodically, and aggregates the

gathered data from all nodes to a designated destination called

a sink node (also called a base station). When a node sends

its data to its receiver, a collision or interference can occur

at the receiver if the transmission is interfered by signals

concurrently sent by other nodes, and thus the data should be

re-transmitted. Due to its periodic data gathering using limited

energy of the tiny nodes, prolonging the network lifetime by

reducing energy consumption which can be caused by the

unnecessary retransmissions have been focused by researchers.

An interesting approach is to assign timeslots to nodes to

obtain a good schedule. Following the schedule, all data can

be aggregated without any collision or interference on their

way to the sink node. Since the data aggregation occurs

periodically, reducing the latency of the schedule, that is, the

problem of constructing a schedule with a minimum number

of timeslots, has been a fundamental issue. This problem

is known as the Minimum Latency Aggregation Scheduling
(MLAS) problem in the literature.
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In this survey article, we investigate the MLAS problem. In

Section II, we introduce the network models, and then define

the MLAS problem. Section III describes the NP-hardness

results of the problem. We describe selected algorithms

in Section IV, and review the existing results of several

approximation algorithms in various networks models in

Section V. Finally, we conclude with some remarks in Section

VI.

II. NETWORK MODELS AND PROBLEM DEFINITION

A wireless sensor network consists of a set V of sensor

nodes, each u ∈ V of which is assigned a transmission
power level p(u), and equipped with an omni-directional or

directional antenna with a fixed beam-width θ ∈ (0, 2π] and

omni-directional receiving antenna. The transmission range
r(u) of u is defined as the radius of the broadcasting sector
sec(u) of u. Notice that sec(u) is a circle (when θ = 2π)

or a sector (when θ < 2π) centered at u with radius r(u).
Accordingly, a directed edge (u, v) exists from node u to node

v, if v resides in sec(u).

A. Antenna Models

There exist two antenna models adopted in WSNs:

omni-directional and directional antenna models (See Fig. 1).

1) Omni-Directional WSNs: In omni-directional WSNs,

each node is equipped with an omni-directional antenna with

the beam-width θ = 2π. The omni-directional WSNs are

commonly modeled undirected graphs, where a undirected

edge exists between u and v if v resides in sec(u) and u
resides in sec(v).

2) Directional WSNs: Recently, new wireless sensor

devices equipped with directional antenna whose directions

can be collaboratively determined and orientated have been

developed. WSNs, consisting of such nodes with a beam-width

θ ∈ (0, 2π] are called directional WSNs, which are commonly

modeled as directed graphs, where a directed edge exists from

u to v if v resides in sec(u).
Commercially available directional antennas are typically

designed for beam-widths of π, 2π/3, π/2, π/3 and π/4 [1].

B. Interference Models

1) Graph (Protocol) Model: Let Cu = {v|v ∈ V, d(u, v) ≤
r(u)} denote the set of nodes that are covered by u’s

transmission range (i.e., the set of nodes that reside in sec(u)),
where d(u, v) denotes the Euclidean distance between u and v.

Then, two nodes u and v can communicate each other if they
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(a) Omni-directional WSN. v and w cannot
simultaneously send data to their receivers u

and x, respectively

(b) Directional WSN. v and w can
simultaneously send data to their receivers u

and x, respectively

Fig. 1 Omni-directional WSN vs. Directional WSN

are covered by each other’s transmission range, i.e., u ∈ Cv

and v ∈ Cu. Next, let Iu = {v | v ∈ V, d(u, v) ≤ ρ · r(u)}
denote the set of nodes that are covered by u’s interference
range ρ · r(u), where ρ ≥ 1 is the interference factor. Then,

the collision (or conflict) is said to occur at a node w if

there exist other concurrently sending nodes u and v such

that w ∈ Cu ∩ Iv , where ρ = 1 (i.e., Cu = Iu). Also,

the interference is said to occur at w if there exist other

concurrently sending nodes u and v such that w ∈ Cu ∩ Iv ,

where ρ > 1 (i.e., Cu ⊂ Iu). The graph model concerning

only collision (i.e., when ρ = 1) is called the collision-free
(CF) graph model, whereas the graph model concerning both

collision and interference (i.e., when ρ ≥ 1) is called the

collision-interference-free (CIF) graph model (See Fig. 2).

Fig. 2 Collision-Interference-Free Graph Model. Solid circles are
broadcasting areas, and dotted circles are interference areas of the senders
s1 and s2. For any ρ > 1, even there is no collision occurring at any

receivers r1 and r2, s1 and s2 cannot send data simultaneously because r1
and r2 are interfered by s2 and s1, respectively

In the graph model, the communication graph is modeled

as a directed graph G = (V,E), where E = { (u, v) | u, v ∈
V, d(u, v) ≤ r(u)}.

2) Physical Interference (SINR) Model: Unlike the graph

model, in the more realistic physical interference model

known as Signal-to-Interference-Noise-Ratio (SINR) [2], real

world phenomena is adequately captured by considering the

cumulative interference caused by all the other concurrently

transmitting nodes. In the SINR model, when a node u sends

data using its power level p(u), the signal sent by u fades

and its receiver v is interfered by the cumulative interference

caused by all the other concurrently transmitting nodes, thus

the signal sent to v may not be strong enough to be received.

The received power at v is defined as p(u) · d(u, v)−α, where

α > 2 is the path loss exponent. The receiver v can receive the

data transmitted by the sender u without any interference only

if the ratio of the received power at v to the total interference

caused by the set X of other concurrently transmitting nodes

and background noise N > 0 is beyond an SINR threshold
β ≥ 1. Formally, a receiver node v can successfully receive

data via the communication edge (u, v) from a sender node u
only if

SINR(u,v) =

p(u)
d(u,v)α

N +
∑

w∈X\{u,v}
p(w)

d(w,v)α

≥ β ≥ 1 (1)

In this model, as u can send its data to the nodes

within the distance (p(u)Nβ )
1
α (i.e., r(u) = (p(u)Nβ )

1
α ) only, the

communication graph can be modeled as a directed graph

G = (V,E), where E = {(u, v) |u, v ∈ V, d(u, v) ≤ r(u)}.

However, here, if u on link (u, v) of the maximum link length
r(u) is transmitting, then u can be the only sending node, i.e.,

none of remaining nodes can transmit concurrently with u.

Therefore, existing studies in the SINR model consider only

links (u, v), where d(u, v) ≤ δ(p(u)Nβ )
1
α , for some constant

δ ∈ (0, 1) as in [3]. Accordingly, the communication graph

is newly modeled as a directed graph G = (V,E), where

E = {(u, v) |u, v ∈ V, d(u, v) ≤ δr(u)}.

C. Power Models
1) Uniform Power Model: In this model, each node is

assigned a uniform power level r, i.e., for each u ∈ V ,

p(u) = r. Thus, determining the right power levels to be

assigned (also known as power control) is not part of the

problem.
2) Non-uniform Power Model: In this model, each node

u ∈ V is typically assigned a different power level p(u). The

model is further divided into three different models:

• the bounded power model, where u is assigned p(u) ∈
[pmin, pmax �= ∞],

• the unlimited power model, where u is assigned p(u) ∈
[pmin,∞], and

• the discrete power model, where u is assigned p(u) ∈
{p1, p2, ..., pk}, where k is the number of power levels

used.

D. Problem Definition
A schedule is a sequence of timeslots, at each of which,

a set {ut1 , ut2 , ..., utκ} of sender nodes are scheduled to
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send their aggregated data to one of their neighbors in

a set {vt1 , vt2 , · · · , vtκ} of receiver nodes using power

levels pti ≤ pmax, 1 ≤ i ≤ κ. Formally, at

each timeslot t, we have an assignment vector πt =
((ut1 , vt1 , pt1), (ut2 , vt2 , pt2), · · · , (utκ , vtκ , ptκ)) in which

uti is assigned to send data with power level pti , 1 ≤ i ≤ κ,

and

• Graph model: neither collision or interference occurs at

any receiver vti , or

• SINR model: the SINR inequality (1) is satisfied for every

receiver vti .

A schedule, as a sequence of assignment vectors, is denoted

as Π = (π1, π2, ..., πτ ), where τ is its latency. The schedule

Π is successful if data from all nodes are aggregated to a

sink node. The Minimum Latency Aggregation Scheduling

(MLAS) is formally defined as follows:

Input. A set V of nodes in a plane, a sink node c ∈ V .

Output. A successful minimum latency aggregation schedule.

Note that determining and orienting antenna directions, and

power control are also parts of the problem, in directional

networks and in the non-uniform power model, respectively.

TABLE I
NOTATIONS

Symbol Definition
G (Un)directed graph G(V,E)
V The set of nodes
E The set of edges
r The uniform power level
p(u) Transmission power level of u
θ Beam-width of an antenna (θ ∈ (0, 2π])
r(u) Transmission range of u
sec(u) Broadcasting sector of u
(u, v) (Un)directed edge from u to v (between u and v)
Cu The set of nodes covered by u’s transmission range
Iu The set of nodes covered by u’s interference range
ρ Interference factor (ρ ≥ 1)
d(u, v) Euclidean distance between u and v
k The number of power levels
α path loss exponent
X Concurrently transmitting nodes
N Background noise (N > 0)
β SINR Threshold (β ≥ 1)
t A timeslot
πt An assignment vector at timeslot t
Π A schedule (π1, π2, · · · , πτ )
τ Latency (i.e., the length of schedule Π)
T Data aggregation tree
R Network (graph) radius
D Network (graph) diameter
Δ The maximum node degree
n The number of nodes

See Table I for notations.

III. NP-HARDNESS RESULTS

In this section, we review the NP-hardness results of the

MLAS problem in different network models.

A. Omni-Directional WSNs

1) Graph Model: The first NP-hardness result of the

MLAS problem was obtained by Chen et al. [4], [5] for

the grid topologies in the CF model with uniform power

level. They used a reduction from restricted planar 3-SAT
problem which is known to be NP-complete [6]. In the

CIF model with non-uniform power levels, An et al. [7]

showed Ω(log n) approximation lower bound in the metric

model, i.e., there is no approximation algorithm having an

approximation ratio better than Ω(log n) for the problem

unless NP ⊆ DTIME(n log log n), by constructing a

polynomial-time approximation-preserving reduction from the

Set Cover problem which is known to be hard to approximate

[8], [9].

2) SINR Model: Lam et al. [10], [11] was the first to show

the NP-hardness of the MLAS problem in the geometric SINR

model with the non-uniform power levels by constructing a

polynomial time reduction from the Partition problem which

was proven NP-complete [12]. Recently, the same authors

showed its APX-hardness with the uniform power level in

[13] by constructing a polynomial-time L-reduction from the

Minimum B-K-Set Cover problem which is known to be

APX-complete [14].

B. Directional WSNs

We observe that the MLAS problem with omni-directional

antenna (when θ = 2π), whose NP-hardness results are shown

in Section III-A, is a special case of the MLAS problem with

directional antennas (when θ ∈ (0, 2π]). Thus, we have

Theorem 1. The Minimum Latency Aggregation Scheduling
(MLAS) problem with directional antennas is NP-hard.

IV. SELECTED ALGORITHMS

In this section, we study the common approaches used in

the literature, and selected algorithms using the approaches.

A. Common Approaches

Several researchers [3], [7], [10], [11], [15]–[20] have

proposed aggregation scheduling algorithms which are divided

into two phases: (1) tree construction phase, and (2)

scheduling phase. In this section, we study two interesting

methods, constructing an MIS-based tree and network
partitioning, used for successful data aggregation in the

phases (1) and (2), respectively. We start by introducing some

standard notations [20] (cf. [21]).

• Graph Center: Given G = (V,E), we call a node s a

center node if the hop distance from s to the farthest

node from s is minimum.

• Maximal Independent Set (MIS): A subset V ′ ⊆ V of

the graph G is said to be independent if for any vertices

u, v ∈ V ′, (u, v) /∈ E. An independent set is said to be

maximal if it is not a proper subset of another independent

set.

• Connected Dominating Set (CDS): A dominating set (DS)

is a subset V ′ ⊆ V such that every vertex v is either in

V ′ or adjacent to a vertex in V ′. A DS is said to be

connected if it induces a connected subgraph.

Next, we describe the two phases in the following.

1) Tree Construction Phase:
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One of the common approaches to construct a data

aggregation tree is to construct one based on an MIS.

The MIS-based tree T is constructed as follows.

a) A breadth-first-search (BFS) tree (cf. [21]) on G rooted

at a sink node c is first constructed. Here, G is

the initial communication graph constructed under the

assumption that each node u is assigned some power

level p(u), depending on network models.

b) Then, an MIS is computed level by level on the

BFS tree using the algorithm in [22]. Let us call the

nodes in the MIS dominators, and the remaining nodes

dominatees. In Fig. 4 (a), the dominators in the MIS

are represented by black nodes, and the dominatees

are represented by gray nodes. The constructed MIS

guarantees that the shortest hop-distance between two

sets of a complementary pair, say A and MIS \ A,

where A ⊆ MIS, is exactly two hops. For example,

in Fig. 4 (a), the shortest hop-distance between one

complementary pair, A and MIS \ A, where A =
{v1, v2} and MIS\A = {v3, v4, v5, c}, on G is exactly

two hops.

c) Next, the dominators are connected by dominatees

thereby forming a CDS of G. The dominatees used

to connect dominators are, from now on, called

connectors. In Fig. 4 (b), the bolded edges represent

the CDS.

d) If there exist dominatees not connected to the CDS,

then each of them is connected to its neighboring

dominator. In Fig. 4 (c), white nodes represent

dominatees and the bolded edges represent T . This tree

T can be used as a data aggregation tree to guide to

find an aggregation schedule.

2) Scheduling Phase:

In this phase, algorithms assign timeslots to nodes so that

they can send their data without collision or interference.

T -based Scheduling: Once T is constructed, an

algorithm can schedule nodes based on T level by level

as follows:

a) Assigning timeslots to dominatees to communicate

with their upper level dominators (See Fig. 4(d).)

b) Assigning timeslots to dominators at level i to

communicate with their upper level connectors at level

i− 1, where i = R, (R− 2), · · · , 2 (See Fig. 4 (e) and

4(g).)

c) Assigning timeslots to connectors at level j to

communicate with their upper level dominators at level

j − 1, where j = (R− 1), (R− 3), · · · , 1 (See Fig. 4(

f) and 4(h).)

Every dominatee is scheduled in the phase (a). The phases

(b) and (c) need to be repeated level by level until the

sink node receives all the aggregated data. For instance,

at the first iteration (Fig. 4 (e)), only the dominators at

level 4 are selected as senders, then at the second iteration

(Fig. 4 (f)), only the connectors at level 3 are selected as

senders. Next, at the third iteration (Fig. 4 (g)), only the

dominators at level 2 are selected as senders, and lastly

(Fig. 4(h)), only the connectors at level 1 are selected as

senders. Note that at each phase, nodes scheduled with the

same timeslot must not cause any collision or interference

when they send their data to their receivers. Here, existing

algorithms use different methods to examine any possible

collisions or interferences. Next, we review the methods

to avoid collision and interference.

Avoiding Collisions and Interference: In order to check

a possible collision or interference caused by a set of

sender nodes which are assigned the same timeslot,

network partitioning and coloring methods have been

widely used.

• Network Partitioning: The first method is to partition

a network into several cells using a space filling

technique. One of the most common techniques is

to partition a network into square cells whose side

length is ϕ. ϕ is set to be r/
√
2 for graph model

[7], and set to be δr/
√
2 for the SINR model [3],

[11] with the uniform power level r so that only

one dominator can reside in each square cell. Then,

nodes are assigned the same timeslot if they are K
cells apart. For instance, in Fig. 4 (a), the two nodes

in dashed circles are K = 3 cells apart, and thus

they can be assigned the same timeslot to send data

simultaneously.

• Coloring: Similar to the aforementioned method,

some researchers have colored each cell so that

any two nodes residing different cells but with the

same color can be assigned the same timeslot [20],

[23], [24]. For instance, An et al. [20] partitions a

network into hexagons, and colored the hexagons

with M -coloring . Fig. 3 (a) shows a 1-coloring, and

a 7-coloring is obtained by enclosing the 1-coloring

with a layer of hexagons as shown in Fig. 3 (b).

Similarly, a 19-coloring obtained as shown in Fig.

3 (c), and recursively M -coloring is obtained in

general. Fig. 3 (d) shows an example of tessellating

a network with hexagons using 19-coloring.

Each paper appropriately chose the values of K and M
depending on their network models.

B. Huang et al.’s Algorithm

In this section, we introduce the algorithm proposed by

Huang et al. [15]. The authors studied the problem in the CF

graph model (i.e., ρ = 1) with the uniform power level r and

the antenna beam-width θ = 2π. It was the first constant-factor

approximation algorithm proposed for the network model in

the literature.

Huang et al.’s algorithm has two phases 1) tree construction

phase 2) scheduling phase where first-fit scheduling algorithm

is used.

1) Tree construction phase: The algorithm constructs the

data aggregation tree T as described in IV-A’s Tree
Construction Phase.

2) Scheduling phase (First-Fit Scheduling): In this phase,

the algorithm schedules nodes level by level based on T
as described in IV-A’s T -based Scheduling.
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(a) (b) (c) (d)

Fig. 3 Coloring by [20]: (a) 1-coloring, (b) 7-coloring, (c) 19-coloring, (d) Tessellation with 19-coloring

(a) Initial graph G and its MIS
represented by black nodes

which are called dominators.
Gray nodes represent dominatees

(b) CDS represented by nodes
connected with bold lines. Black
nodes represent dominators, and
gray nodes connecting the black

nodes represent connectors

(c) Aggregation tree T rooted at
c represented by bold lines.

Black nodes represent
dominators, gray nodes represent

connectors, and white nodes
represent dominatees

(d) Only domintees are selected
as senders

(e) Only the dominators at level
4 are selected as senders

(f) Only the connectors at level 3
are selected as senders

(g) Only the dominators at level
2 are selected as senders

(h) Only the connectors at level
1 are selected as senders

Fig. 4 (a)-(c) Illustration of MIS-based Tree Construction, (d)-(h) Illustration of Scheduling Based on a Data Aggregation Tree

a) Dominatees to dominators: First, a node s1 from a set S
of dominatees is selected, and the algorithm examines

if it causes any collision. As it is currently the only

sender node selected, there is no possible collisions,

and thus s1 is added to a temporary set X , and is

removed from S. Next, another node s2 is selected

from S, and the algorithm examines if it conflicts with

any node in X or not. To do so, the parent nodes

of all nodes in X in T will be checked. As there is

only one node s1 in X , only pT (s1), the parent of

s1 in T , is examined, and the algorithm also checks

whether s2 is adjacent to pT (s1) in G. If yes, nothing

to do, otherwise, it means that s2 does not conflict

with any nodes in X , and so s2 is added to X and

removed from S. This process is repeated until the

largest set X is found such that all other nodes in S

will conflict at least one node in X . Notice that this

X is the maximal possible set whose nodes can be

assigned the same timeslot t. Now the algorithm looks

for other set of sender nodes who can be assigned the

next timeslot t+1, and the process is repeated to find

the next maximal possible set. The algorithm repeats

the process until all elements in S are scheduled. The

details of the algorithm is shown in Algorithm 1.

b) Assigning timeslots to dominators at level i to

communicate with their upper level connectors at level

i− 1, and

c) Assigning timeslots to connectors at level i − 1 to

communicate with their upper level dominators at level

i− 2.

These processes (b) and (c) are repeated layer by

layer until all data is aggregated to the sink node.
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While assigning timeslots, it checks collisions using

the First-Fit Scheduling algorithm.

Algorithm 1 First-Fit Scheduling algorithm [15]

Input:Graph G, Sender set S, Tree T , Starting timeslot t
Output: Updated schedule Π, and the next timeslot t

1: X ← ∅
2: repeat
3: for ∀si ∈ S do
4: X ← {u |u is a sender node in πt}
5: if ∀x ∈ X , (pT (x), u) /∈ E then
6: πt ← πt ∪ (si, pT (si), r)
7: S ← S \ {si}
8: end if
9: end for

10: Π ← Π ∪ {πt}
11: t ← t+ 1
12: until S = ∅
13: return Π and t

The authors claimed that their algorithm produces schedules

whose latencies are bounded by 28R+Δ− 18 which gives a

nearly constant approximation.

Theorem 2. For CF graph model with the uniform power level
and the antenna beam-width θ = 2π, Huang et al.’s algorithm
[15] produces schedules whose latencies are bounded by
28R + Δ − 18, where R is the network radius, and Δ is
the maximum node degree.

Note that here, Δ contributes to an additive factor instead of

a multiplicative one unlike Chen at al.’s latency bound R(Δ−
1) [4], and thus the authors [15] claim that their algorithm

has a significantly less latency bound than earlier algorithms

especially when Δ is large.

C. An et al.’s Algorithm

In this section, we introduce the algorithm proposed by

An et al. [7]. The authors studied the problem in the CIF

graph model (i.e., ρ ≥ 1) with the uniform power level and

the antenna beam-width θ = 2π. The algorithm is based on

Huang et al.’s algorithm [15] introduced in IV-B. It starts by

partitioning the network into square cells, each of which has

side length r/
√
2. This induces a grid where the upper-left

corner has coordinates (1, 1). A cell is denoted by Cell-ID

C(x, y) if its upper-left corner has coordinates (x, y). It then

has two phases 1) tree construction phase 2) scheduling phase

as follows.

1) Tree construction phase: The algorithm constructs the

data aggregation tree T as described in IV-A’s Tree
Construction Phase.

2) Scheduling phase: In this phase, the algorithm schedules

nodes level by level based on T as described in IV-A’s

T -based Scheduling. At each level, it selects nodes which

are K = �ρ · √2 + 2� cells apart to assign the same

timeslot t, and these sender nodes do not cause any

collision or interference at t.

The authors claimed that their algorithms produces

schedules whose latencies are bounded by Δ·K2+21·K2·R =

Algorithm 2 Assign-Time-Slot algorithm [7]

Input:Sender set S, Graph G, Tree T , Starting timeslot t
Output: Updated schedule Π, and the next timeslot t

1: for t1 = 0, · · · ,K − 1 and t2 = 0, · · · ,K − 1 do
2: Let S′ ⊆ S be the set of nodes with C(x, y) such that

t1 = x mod K, and t2 = y mod K.
3: for each node v ∈ S′ do
4: πt ← {(v, pT (v), r)}
5: S′ ← S′ \ {v}
6: end for
7: Π ← Π ∪ {πt}
8: t ← t+ 1
9: S ← S \ S′

10: end for
11: return Π and t

O(Δ+R) which gives a nearly constant approximation ratio

(See Theorem 4).

Theorem 3. For CIF graph model with the uniform power
level and the antenna beam-width θ = 2π, An et al.’s algorithm
[7] produces schedules whose latencies are bounded by O(Δ+
R), where R is the network radius, and Δ is the maximum
node degree.

V. RESULTS OF EXISTING ALGORITHMS

In this section, we review the results of existing

approximation algorithms in different interference and power

models. We first start go over the lower bounds for the MLAS

problem to understand better the current existing algorithms’

approximation ratios.

Theorem 4. [Lower Bounds] In order to produce a successful
schedule, any data aggregation scheduling algorithm requires

• in graph model [19]:
– ≥ max{Δ, logR} timeslots, for ρ = 1,
– ≥ max{Δ

φ , R} timeslots, where φ = 2π
�arcsin ρ−1

2ρ � , for

1 < ρ < 3, and
– ≥ max{Δ, R} timeslots, for ρ ≥ 3, and

• in SINR model [3]: ≥ max{Δ
ω , R}, where ω = rα

β − 1,
where Δ is the maximum node degree of the network, and R
is the network radius.

A. Graph Model with Uniform Power and Beam-Width θ =
2π

1) Collision-Free Graph Model: To review the results in

this network model, we group the papers based on their way

to build data aggregation trees.

1) Tree-Based Data Aggregation: [4], [5], [25], [26]

have proposed tree-based data aggregation algorithms.

Annamalai et al. [25] developed a heuristic algorithm,

named Convergecasting Tree Construction and Channel
Allocation Algorithm (CTCCAA), which constructs a

data aggregation tree with timeslots assigned to nodes.

The tree is constructed by spanning from a sink node

c to its neighbors sec(c), from sec(c) to sec(sec(c)),
and so on. The algorithm uses several constraints (e.g.,

given orthogonal codes, distances, etc) when children
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choose their parents to which they send their data.

[26] introduced the Latency Bounded Data Aggregation
Tree (LBDAT) algorithm, which is developed from Light
Approximation Shortest-path Tree (LAST) algorithm [27]

that aims at balancing Minimum Spanning Tree (MST)

and Shortest Path Tree (SPT), and proved that LBDAT

produces schedules whose latency is bounded by D ·
min{Δ, n}, where D is the network diameter. The

authors also claimed that there exists a schedule whose

length is at most min{log2(n+2
3 )+1, 3 log3(

2n+3
5 )+2}.

Later, [4], [5] introduced an approximation algorithm

with the ratio of (Δ − 1). The algorithm proceeds

by incrementally constructing smaller and smaller SPTs

rooted at c. Their technique forms a data aggregation tree

after a schedule is made, not making a schedule after a

tree is constructed.

2) MIS-Tree-Based Data Aggregation: On the other

hand, [15]–[17] used the MIS-based tree T as their

data aggregation tree. For the Scheduling Phase (See

Section IV-A), [15]–[17] introduced different algorithms.

[15] named the algorithm ‘first-fit algorithm’, and [16]

named its algorithm ‘distributed aggregation scheduling
algorithm’ (SCHDL for short). [15], [16], and [17] also

proved that their algorithms produce schedules whose

latencies are bounded by 23R + Δ − 18, 24D +
6Δ + 16, and 16R + Δ − 14, respectively. Recently,

[28] constructed a novel data aggregation tree which

is different from the commonly used CDS (Connected

2-hop Dominating Sets-based) approaches. Their tree is

built with a balanced Connected 3-hop Dominating Sets

(C3DS)-based structure. Furthermore, their algorithm

simultaneously constructs a data aggregation tree and

schedules. The authors stated that their latency bound,

12R+Δ− 2, is currently the best.

2) Collision-Interference-Free Graph Model: Considering

the both collision and interference (i.e., ρ ≥ 1), [18] was

the first study to introduce approximation algorithms. The

authors first proposed three algorithms with ρ = 1 which

use T as their aggregation tree. Each of the algorithms

uses Sequential Aggregation Scheduling (SAS), Piplelined
Aggregation Scheduling (PAS), and Enhanced Pipelined
Aggregation Scheduling (E-PAS) algorithms, respectively, in

their Scheduling Phases. They also proved that the latencies

produced by the algorithms are 15R+Δ−4, 2R+O(logR)+

Δ, and
Ä
1 +O

Ä
logR/ 3

√
R
ää

+ Δ, with SAS, PAS, and

E-PAS, respectively. Authors [18] stated that novel structures

like the two connected dominating sets and the canonical

inward arborescences used by these three algorithms are of

independent interest and are expected to have applications

in other communication scheduling. Then, they obtained two

aggregation schedules with ρ > 1 by expanding SAS and

PAS. The expanding algorithm is called the ρ-expansion
of a communication scheduling algorithm. ρ-expansions of

communication schedules produced with SAS and PAS were

proved to have the latencies of ζρ+1(15R + Δ − 4) and

ζρ+1(2R+Δ+O(logR)), respectively, where ζη = π√
3
η2 +(

π
2 + 1

)
η+1. Later, [19] proved that the overall lower bound

of data aggregation scheduling under any interference model

is max{log n,R}, and obtained lower bounds, max{Δ/φ,R}
and max{Δ, R}, for the cases 1 < ρ < 3 and ρ ≥ 3,

respectively, where φ = (2π)/(arcsin ρ−1
2ρ �) (See Theorem

4). They also proposed an aggregation algorithm that assigns

timeslots based on T , and uses Improved data Aggregation
Scheduling (IAS) algorithm in the Scheduling Phase. The

latency bound of produced schedules is 16R+Δ−14. [7] also

proposed a constant factor approximation algorithm, named

Cell Coloring, whose latency is bounded by O(Δ + R). The

Cell Coloring algorithm uses T as its data aggregation tree,

and uses the partitioning technique for scheduling.

B. Graph Model with Non-Uniform Power and Beam-Width
θ = 2π

1) Collision-Free Graph Model: In the CF model, assuming

that the maximum transmission range of a node is unbounded,

[29] proposed a very simple randomized distributed algorithm

whose latency is bounded by O(log n), where n is the number

of nodes in the network. They also showed that the obtained

bound is tight, and any algorithm needs Ω(log n) timeslots for

data aggregation in an arbitrary network.

C. SINR Model with Uniform Power and Beam-Width θ =
2π

The first approximation algorithm in the SINR model with

uniform power level was introduced by [3]. The algorithm

uses T as its data aggregation tree, and partitions the network

for scheduling. into cells with ϕ = r/
√
2. Then, any nodes

which are K = �( 4βκ·P ·ϕ−α

(
√
2)−αP ·ϕ−α−βN

+1+
√
2)

1
α �, where κ =

α(1+2−
α
2 )

α−1 + π2−
α
2

2(α−2) , cells apart are assigned the same timeslot.

The latency of schedules produced by the algorithm is O(Δ+
R).

D. SINR Model with Non-Uniform Power and Beam-Width
θ = 2π

In the following, we review the studies done in the SINR

model with non-uniform power levels.

1) Bounded Power Model with Power Control: While

most existing works studied the problem under the

uniform power model or the unlimited power model, few

researchers investigated the problem assuming a more realistic

non-uniform power assignment where the maximum power

level is bounded. [30] introduced a distributed algorithm that

computes schedules whose latency is bounded by O(R +
Δ log n). Their algorithm runs on a data aggregation tree

which is also MIS-based. When scheduling, the algorithm

also controls powers (i.e., assigns appropriate power levels to

nodes). Later, [24] proposed a constant factor approximation

algorithm with O(R + χ) timeslots, where χ is the link

length diversity. Under a reasonable assumption about χ, the

number of timeslots is bounded by O(R+ log n) which gives

a constant approximation ratio. The algorithm partitions a

network using the divide-and-conquer approach, applying a

multilevel partitioning technique which repeatedly partitions

cells into smaller subcells.
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2) Unbounded Power Model with Power Control: In this

model, it is assumed that the transmission power of each node

is large enough to cover the maximum node distance in the

network. [23], [31] proposed a distributed algorithm that yields

O(χ) timeslots, where g is the logarithm of the ratio between

the lengths of the longest and shortest links in a network.

They also proposed a centralized algorithm whose latency is

O(log3 n) which was improved by [32] to O(log n).
3) Discrete Power Model without Power Control: [11]

studied the problem in the dual power model, where each

node u ∈ V is assigned either the high power level or the

low power level, i.e., p(u) ∈ {pmin, pmax}, and proposed

two constant factor approximation algorithms with the latency

bounds O(R + Δ), Square-Based Aggregation Scheduling
(SBAS) and Hexagon-Based Aggregation Scheduling (HBAS)

algorithms. Both algorithms schedule nodes based on the

MIS-based data aggregation T , but use different network

partitioning techniques: partitioning the network into square
cells or hexagonal cells.

E. Networks with Beat-Width θ < 2π

With the uniform power model, Liu at et. [33] proposed a

nearly constant factor approximation algorithm with 0 < θ ≤
2π. To the best of our knowledge, there have been no studies

done with non-uniform power model.

VI. CONCLUSION

In this survey article, we have presented a comprehensive

survey of approximation algorithms for the MLAS problem

which is known to be NP-hard [4], [5], [7], [10], [11].

In both graph and SINR models, several studies provided

constant-factor approximation algorithms. One interesting

observation is allowing unlimited power significantly effects

on reducing time complexity in both the models. Even though

the bounded power model is considered to be more realistic

than the unbounded power model, studying of data aggregation

algorithms with unlimited powers could be still meaningful for

this reason.

Most existing algorithms do not consider any possible

changes of a network topology which can be caused by

the death of nodes or the mobility of nodes. Especially,

central algorithms using a pre-built data aggregation tree

cannot be directly applied to a network in such environment.

Further research of distributed data aggregation algorithms

for unknown topology, e.g., a network in which nodes have

no knowledge of the number of neighboring nodes within

any given radius from themselves [30], holds the promise of

providing data aggregation in mobile WSNs.
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