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 
Abstract—In this paper, the problem of robust model predictive 

control (MPC) for discrete-time linear systems in linear fractional 
transformation form with structured uncertainty and norm-bounded 
disturbance is investigated. The problem of minimization of the cost 
function for MPC design is converted to minimization of the worst 
case of the cost function. Then, this problem is reduced to 
minimization of an upper bound of the cost function subject to a 
terminal inequality satisfying the l2-norm of the closed loop system. 
The characteristic of the linear fractional transformation system is 
taken into account, and by using some mathematical tools, the robust 
predictive controller design problem is turned into a linear matrix 
inequality minimization problem. Afterwards, a formulation which 
includes an integrator to improve the performance of the proposed 
robust model predictive controller in steady state condition is studied. 
The validity of the approaches is illustrated through a robust control 
benchmark problem. 
 

Keywords—Linear fractional transformation, linear matrix 
inequality, robust model predictive control, state feedback control. 

I. INTRODUCTION 

PC technique was firstly developed for oil refining 
applications in the 1970s. During past decades, the use 

of MPC increased in several other fields, such as the 
chemistry, aerospace, and food industries [1]. Novel 
applications have included, for example, the control of oxygen 
excess ratio in fuel cells [2], management of battery/super-
capacitor storage systems in hybrid electric vehicles [3], 
exhaust emission regulation in turbocharged diesel engines 
[4], and load voltage control of four-leg inverters [5].  

One of the most important reasons for the wide acceptance 
of MPC in industrial applications is the possibility of handling 
constraints on manipulated and controlled variables [6], [7]. 
Nominal stability and constraint satisfaction guarantees can be 
obtained with the adequate formulation of the optimization 
problem to be solved [8], [9]. However, such properties may 
be lost in the presence of a mismatch between the internal 
model of the controller and the actual dynamics of the plant, 
resulting from modeling simplifications, parametric 
uncertainties, or disturbances.  

In this context, some research studies have been conducted 
to develop robust MPC (RMPC) formulations. Various RMPC 
theories are developed by the researchers during past decades. 
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They attempt to deal explicitly with plant model uncertainty 
which was the most important disadvantages and the inability 
of the previous MPCs [10]-[14]. Early propositions involved 
uncertainties expressed in the form of bounds on the impulse 
response of finite impulse response (FIR) models [15], [16]. A 
more elaborate approach introduced by Kothare et al. [10] 
allowed for the use of more general uncertainty structures, 
either in polytopic or structured feedback forms. The resulting 
optimization problem could be cast into a semidefinite 
programming format, with constraints in the form of linear 
matrix inequalities (LMIs). The goal in previous design was a 
state feedback control law which minimizes a worst-case 
infinite horizon objective function, subject to constraints on 
the control input and plant output [10]. There are few RMPC 
methods presented in the literature that consider both model 
uncertainty and disturbances as it is crucial in some physical 
models. This can be attributed to the fact that there is always a 
trade-off when both model uncertainty and disturbances are 
considered; thus, the researchers consider only one of them as 
the sources of these two inconveniences are different [14]. 
Therefore, a RMPC design with respect to model uncertainty 
and disturbances has yet to be realized. The goal of this paper 
is to develop RMPC theory for a class of linear systems using 
state-of-the-art advanced control, MPC and robust control 
strategies. The RMPC is to provide better performance as it 
should be robust against model uncertainty and induced 
disturbances. 

In this paper, a RMPC design methodology for a class of 
discrete-time linear systems is investigated. The method 
presented in this paper is developed based on a LMI design 
procedure for the online state feedback control. The main 
contribution is the accomplishment of prescribed disturbance 
attenuation in a systematic way by incorporating the well-
known robustness guarantees. To this end, a quadratic 
Lyapunov function to guarantee the stability of the close-loop 
linear system is presented. The problem of minimization of the 
cost function for MPC design is altered to the minimization of 
the worst case of the cost function. Then, this problem is 
converted to finding the upper bound of the cost function 
subject to the 

2 -norm robust constraint. Due to the 

possibility to recast the robust problems in LMI format, the 
problem is turned to be a LMI minimization problem to be 
solved. Furthermore, in order to improve the steady state 
response, integrator control approach is considered to be 
added to the formulation of RMPC. The controller design 
procedure is illustrated through a benchmark problem of 
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robust control widely used in the literature to depict the 
validity and performance of the proposed RMPC scheme. 

The rest of the paper is organized as follows. In Section II, 
the linear system in fractional transformation format is 
described, and then, the problem of RMPC is illustrated. In 
Section III, the formulation of integrator RMPC is presented. 
The simulation results of the two approaches in this paper are 
brought is Section IV to make a comparison between the two 
strategies. This paper is concluded in Section V. 

II.  ROBUST MPC PROBLEM (RMPC) 

A.  Linear System in Linear Fractional Transformation 
Format 

Different kinds of models are available in the literature for 
different dedications including control and robust study 
purposes [17], [18]. A common paradigm for robust control is 
a linear model with uncertainty appearing in the feedback. 
Consider the following discrete-time linear system in linear 
fractional transformation (LFT) form,  

 
( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )

u w

u

y

x k Ax k Bp k B u k B w k

q k Cx k Dp k D u k

p k q k

y k C x k

    

  
 


         (1) 
 

where   is a block diagonal introduced here, 
 

1

1

r

 
   
 
  



 
                              (2) 

 

( ) nx k  , ( ) mu k  , ( ) rw k  , and ( ) zy k   are the state, 

controlled input, exogenous input, and controlled output, 
respectively. Fig. 1 illustrates the common LFT format. ( )w k

here is the norm bounded disturbance, so, 
 

max2
( )w k W                                (3) 

 

where, 
max

W is a known value. 

In this framework, can represent a number of factors 
including nonlinearities, parameters and also dynamics that 

are unknown or uncertain. Moreover,   illustrates a 
convolution operator with the operator norm induced by the 

2 -norm less than 1, i.e. 

 

0 0

( ) ( ) ( ) ( ), 1,..., , 0
k k

T T
i i i i

j j

p j p j q j q j i r k
 

    
         (4) 

B. Model Predictive Control (MPC) 

MPC is an open-loop control design method. In this 
method, plant measurements and a model of the process are 
used in order to predict the future outputs of the system. Using 

the aforementioned predictions and minimizing a cost function 
over prediction horizon introduced in (5), m control moves 

( | ),u k i k  0,1, 2, ..., 1i m  are obtained.  
 

( | ), 0,1,..., 1
min ( )

u k i k i m
J k

                                       (5) 

 
In MPC framework, only the first computed input ( | )u k k is 

considered for implementation. For the next step, the 
optimization problem (5) is solved again with respect to 
receding prediction horizon and control horizon. This 
procedure is continued, and new measurements are used at 
each sample time until the whole control input is obtained. It 
is assumed that, after the time 1k m  , there is no more 
control action. There is an option to add control signal and 
states constraints to the optimization problem (5) to more 
properly control the system. This is the main advantages of the 
MPC [19]. 

 

 

Fig. 1 Graphical representation of structured uncertainty with 
disturbance 

C.  Linear Matrix Inequality  

Two well-known lemmas are brought in this section. In 
order to construct an optimization problem based on LMIs, 
these two lemmas play an important role. For more details of 
LMIs and their solvers for optimization problems, one can 
refer to [20], [21]. 
Lemma 1. (Schur Complement): Convex quadratic 
inequalities can be converted to LMI using Schur 
Complement. Consider that symmetric matrices ( )Q x , ( )R x , 

and ( )S x depend affinely on x . Then, the following linear 

matrix inequality and the equation inequalities are equivalent 
[22]. 

 

1

1

( ) ( )
0

( ) ( )

( ) 0, ( ) ( ) ( ) ( ) 0

( ) 0, ( ) ( ) ( ) ( ) 0

T

T

T

Q x S x

S x R x

R x Q x S s R x S x

Q x R x S s Q x S x







  

  

 
  

            (6) 
 

Lemma 2. (S-procedure [22]): Consider that 

, 1, 2,...,n n

iQ i q   are symmetric matrices. The 

conditions on iQ , 
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0
0, 0 . ,

0, 1, 2, ...,

T

T

i

Q s t

Q i q

  

 

  

 
                 (7) 

 

hold if there exists 0, 1, 2, ...,
i

i q   such that, 

 

0
1

0

q

i i
i

Q Q


                               (8) 

D. RMPC 

Considering a linear uncertain system described by (1), for 
RMPC design, the minimization problem at each sampling 
time k, of the nominal performance objective in MPC design is 
replaced by the minimization of the worst case, 

 

,
min max ( )

u w
J k
                               (9) 

 
where  

1

2

0
( ) [ ( | ) ( | )

( | ) ( | ) ( ) ( )]

T

T T
w

j
J k x k j k Q x k j k

u k j k Ru k j k w k j R w k j






  

     

  (10) 

 
Here, we consider an online state vector feedback 

controller, so, 
 

( ) ( ) ( )u k K k x k                             (11) 
 
In the presence of disturbance, the task is to minimize the 

2  gain between the disturbance input ( )w k  and the output 

( )y k . In the linear case, the 2  gain is called 
  norm.  

The problem of 
  filter design is to determine matrix K(k) 

such that: 
 

0.5

2 2

lim ( ) 0 ( ) 0

( ) ( ) ( ) 0

k

w

y k for w k

y k R w k for w k


 

                 (12) 

 
Consider a quadratic Lyapunov function such that,   
 

, 0 & (0) 0TV x Px P V                           (13) 
 
Suppose that V satisfies the following inequality, 
 

1 1

2

( ( 1| )) ( ( | ))

( ( | ) ( | ) ( | ) ( | )

( ) ( ))

T T

T
w

V x k i k V x k i k

x k j k Q x k j k u k j k R u k j k

w k j R w k j

    

     

  

  (14) 

 
For robust performance objective function to be finite, we 

assume that, ( , ) 0x k  and so, ( ( , )) 0V x k  . 

Summing the last inequality from 0i  to ,i   we have, 
 

( ( | ))V x k k J                                (15) 
 
Therefore, 

,
max ( ) ( ( | ))
w

J k V x k k
                         (16) 

 
The goal is that at each sampling time k, a constant state 

vector feedback law created to minimize the upper bound of 

( ( | ))V x k k . In other words, the problem of 
  filtering 

design in the presence of disturbance is reduced to find a 
Lyapunov function ( ( | )) 0V x k k >  such that, 

 
2( ) ( ) ( ) ( ) 0T T

wv V y k y k w k R w k         (17) 
 

is negative definite, where 
 

( ( 1 | ) ) ( ( | ) )V V x k i k V x k i k            (18) 
 
As it is standard in MPC, only the first computed input 

( | ) ( | ) ( | )u k k K k k x k k  is implemented. At the next 

sampling time, the state ( | )x k k  is measured, and the 

optimization is repeated to recompute gains ( )K k . The 

following theorem gives us conditions for the existence of the 
appropriate 0P  satisfying (13) and the corresponding state 
feedback matrix ( )K k . 

Theorem 1. For given control parameters, 
1 1, ,Q R  and 

wR , 

the RMPC design problem for a system with structured 
uncertainty and norm-bounded disturbance is achieved if there 
exists 0Q  , 0  , 1P Q  , Y KQ , 1 0     , 1 0

i i
    , 

1, ...,i r  that solve the following convex optimization problem: 
 

, , ,
m in

Q Y 


                           (19) 

 
Subject to, 

2
max

2

1

* 0 0

*

TW x

Q



 
   
                          (20) 

 
0.5 0.5

1

2

0 0

* 0 0 0 0 0

* * 0 0 0 0

0* * * 0 0

* * * *

* * * * * 0

* * * * * *

T T T
cl cl

p w

w

Q Y R QQ QC QA

I

I

D

Q B B

R






 

 
  
 
 

   
  
 

 
 
     (21) 

 

where, 
cl u

A A B K   and 
cl u

C C D K  .  

If the problem is feasible, the control action ( )u k  is 

obtained as, ( ) ( ) ( ),u k K k x k where, 
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1( ) ( ) ( )K k Y k Q k                            (22) 
 

Proof: Using ( ) ( )u k Kx k , and considering a quadratic 

Lyapunov function 
TV x Px , 0P   and supposing that 

( | )x k k x  for simplification, the variation of the 

aforementioned Lyapunov function is given by, 
 

( ) (

)

T

u w

T

u w

V Ax Bp B Kx B w P Ax Bp

B Kx B w x Px

     

     
         (23) 

 
Based on the Lyapunov stability theory, the convergence of 

the state vector x(k) to zero is guaranteed if the terminal 
inequality (17) is verified, which holds if 

 

0Tv M                                    (24) 

 
where 

[ ]T T T Tx p w                                (25) 
 
and, 
 

1 1
( ) ( ) ( ) ( )

0

T T T T

u u u u w

T T

w

T

w w

A BK P A BK P Q K RK A BK PB A BK PB

M B PB B PB

B PB

      

  

 

 
 
 
  

  (26) 

 
Moreover, for the uncertain parameters introduced by block 

diagonal , we have (this also can be seen in [10]) 
 

( | ) ( | ) (( ) ( | )

( | )) (( ) ( | ) ( | )),

1, 2, ...,

T

j j

T

j u j

up k i k p k i k C D K x k i k

Dp k i k C D K x k i k Dp k i k

j r

     

    

    (27) 
 
Therefore, gathering all the equations 1, 2, ...,j r , also 

from the results of lemma 2, we obtain 
 

0

( ) 0 0

0

T T T

cl cl cl

T

x C C C D x

p I D D p

w w

   

   

 

    
    
    
          

            (28) 

 
with, 

1

2

0

r

I

I

I







  

 
 
 
 
  



  

                      (29) 

 
It is easy to see that both of the previous equations are 

satisfied if there exist 
1 2
, , ..., 0

r
      such that, 

 

1 1

2

( ) 0

T T T

cl cl cl cl

T T T

cl cl cl w

T T T

w

T

w w w

A PA P Q K R K C C

M

A PB C D A PB

B PB I D D B PB

B PB R

    

 



 

   

 











   (31) 

1

2 0

r

I

I

I










  



 
 
 
 
 
  



 
 

Substituting 1P Q   with 0Q  , after some 

straightforward manipulations, we see that this is equivalent to 
the existence of 0Q  , Y KQ , 0  such that (32) holds. 

In (32), 1 0     and 1 0    . On the other 

hand, assuming that lim ( ) 0
x

x k


  (justified by the asymptotic 

stability of ( )x k , we have, 
 

( ) ( )T

l k

V x k Px k




 
 
                      (33) 

 
Taking the sum of both sides of the terminal inequality (17) 

from k=1 to k→ ∞, and some simple manipulations, we reach 
(20). The proof is complete. 

 
0.5 0.5

1

2

0 0

* 0 0 0 0 0

* * 0 0 0 0

0* * * 0 0

* * * *

* * * * * 0

* * * * * *

T T T
cl cl

p w

w

Q Y R QQ QC QA

I

I

D

Q B B

R






 

 
  
 
 

   
  
 

 
 
 

  (32) 

 
Remark 1. It is worth saying that the proposed method for 
RMPC guarantees both the performance and robustness in 
presence of disturbances and model uncertainty. 
Remark 2. It is mentioned in theorem 1 that for a given  , 
we search for an upper bound for robust performance. Instead, 
this minimization can be solved with respect to  , reaching 
to the best design for disturbance rejection or performance. 

III. INTEGRATOR RMPC FORMULATION 

The new formulation for RMPC is developed to improve 
the steady state response of the proposed RMPC in the 
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previous section.  
Consider the system introduced by (1). The problem of 

integrator RMPC is constructed by adding a new state Ix to 

(1). Then, (1) is altered to, 
 

0( 1) ( )
( )

0( 1) ( ) 0

0
( ) ( )

0 0 1

u

yI I

w p

Ax k x k B
u k

Cx k x k

B B
w k p k r

       
             

     
       
     

   (34) 

 
where, 

0
, ,

0

, ,
0 0 0

yI

u w p
u w p

Ax
x A

Cx

B B B
B B B

  
        

     
       
       

              (35) 

 
Thus, the linear fractional transformation of the new 

formulation is introduced in the following, 
 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )

p u w

u

y

x k Ax k B p k B u k B w k

q k Cx k Dp k D u k

p k q k

y k C x k

    

  

 

       (36) 
 
By considering the aforementioned formulation, the new 

integrator RMPC formulation is driven similarly to the RMPC 
scheme introduced in Section II.  

There is a trade-off between the performance and 
disturbance rejection in the control design. In integrator 
RMPC formulation, the accuracy of the performance of the 
system’s steady-state response is increased significantly 
although the overshoot of the system increased. One possible 
way to eliminate this weakness of the integrator RMPC 
problem is to switch between integrator RMPC and RMPC 
introduced in this paper. To do so, when the states of the 
system reach to a predefined bound around the origin, the 
switching control is initiated between two strategies. This 
strategy significantly improves the performance of the system. 
This switching strategy is illustrated through an example in the 
next section. 

 

 

Fig. 2 A tow-mass-spring system 

IV. SIMULATION RESULTS 

In this section, the results of the proposed strategies in 

previous sections are illustrated via a benchmark example for 
robust control design. Fig. 2 presents a two-mass–spring 
system employed in this paper as an example. This example is 
acquired from [10]. Using Euler first-order approximation 
with a sampling time of 0.1 s, the discrete-time model of this 
system is achieved. The model in terms of exogenous 

variables is described in (37) and (38). 1x and 2x  are the 

positions of the active cart and passive cart, and 3x  and 4x  

are their velocities, respectively. 1m and 2m  are the masses of 

the two bodies, and K is the spring coefficient.  
 

1 1

2 2

1

1 0 0.1 0

0 1 0 0.1

0.1 / 0.1 / 1 0

0.1 / 0.1 / 0 1

0 0 0

0 0 0
, , ,

0.1 / 0.1 0.1

0 0.1 0

n n

n n

u p w

A
K m K m

K m K m

B B B
m






  


 
 
 
 
 
 
     
     
     
     
     
     

           (37) 

 

   0.475 0.475 0 0 , 1 1 0 0
y

C C       (38) 
 

In (37), we assume that 
1 2

1m m kg  for masses and K is 

the uncertain constant such that, 
max

10,K   
min

0.5K   as the 

maximum and minimum value of the uncertain spring. The 
uncertainty is modeled similar to (1), thus, 

 

max min max min, ,
2 2

n

n dev

dev

K K K K K K
K K

K


  
       (39) 

 
For the objective function introduced in this paper, we 

assume that, 
1 max

(1,1,1,1), 1, 5, 0 .5
w

Q diag R R W     . 

Three methods including that of Kothare et al. [10], RMPC, 
and Integrator RMPC introduced in this paper are compared. 
The target is to bring the position of the carts to [1,1]dx = . 
Therefore, shifted states, shifted inputs, and shifted outputs are 

defined as d
x x x= - , d

u u u= - , d
y y y= - , respectively. 

Then, the origin of theorem 1 is moved to the steady state 
value. In this example, the initial conditions are assumed such 
that all the states of the system start from the origin. Figs. 3-5 
show the simulation results for the aforementioned methods. 
Figs. 3 and 4 depict the position and the velocity of the carts, 
respectively. In this figure, the RMPC introduced here in 
comparison to the method of Kothare et al. has a faster 
response. Furthermore, the integrator RMPC method increased 
the overshoot of the system. Both of the proposed methods in 
this paper are able to steer and also keep the states to the 
reference in the presence of uncertain parameter and induced 
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disturbance. Fig. 5 illustrates the optimal value of , the 

answer of the minimization problem (19) in each step k. As it 
is clear in this figure, both formulations introduced in this 
paper reach to a smaller optimal value for . Moreover, Fig. 5 

shows the norm of feedback gains, K(k). It can be shown from 
this figure that the proposed formulations in this paper reach 
to a bigger norm of K in comparison to the method in [10]. 

 

 

Fig. 3 Position of the carts 
 
Another study has been done in order to illustrate the 

performance of the controllers when a switching control law is 
considered for control system. To do so, the RMPC illustrated 
in this paper is activated at first. Then, as the position of the 1st 
cart is reached to the 10% of its steady state value, the 
integrator RMPC triggered to steer the states of the system to 
the reference value. Simulation results for switched strategy 
are shown in Figs. 6-8. Fig. 6 illustrates that the switching 
control strategy in comparison to the method of Kothare et al. 
improves the performance of the system such that the 
switching strategy has the ability to decrease the settling time 
without overshoot. Fig. 7 shows the velocity of the carts for 
the switching strategy between the RMPC and integrator 
RMPC and in comparison to the method in [10]. This figure 
shows the ability of the proposed switching strategy to steer 
the velocities to zero such that it improves the performance of 
the system compared to the method in [10]. Fig. 8 depicts the 
norm of the feedback gains and the optimal value of  for 

switching control strategy and the method in [10]. Although 
the feedback gains in switching controller are bigger than the 
method of Kothare et al., the optimal value of  is less than 

the method in [10]. 

V. CONCLUSION 

In this paper, a RMPC design technique using LMIs for 
time invariant discrete-time linear systems is developed. The 
uncertain system was represented in linear fractional 

transformation format. The controller development is based on 
state feedback control and Lyapunov stability theorem.  The 
online optimization problem to achieve the feedback gains 
contains the solution of a LMI minimization problem. The 
LMI minimization problem is a convex optimization problem. 
Hence, the resulting state feedback control law minimizes an 
upper bound on the robust objective function. Besides, an 
integrator is added to the formulation in order to increase the 
accuracy of the responses in steady state condition. This paper 
shows that we have been able to handle uncertainty and 
disturbance in RMPC design approach with high accuracy for 
the reference tracking. A benchmark example illustrated 
capability of the proposed methods. 

 

 

Fig. 4 Velocity of the carts 
 

 

Fig. 5 Norm of the feedback gains and the optimal value of the Gama 
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Fig. 6 Position of the carts for switch control system and Kothare’s 
method 

 

 

Fig. 7 Velocity of the carts for switch control system and Kothare’s 
method 

 

 

Fig. 8 Norm of the feedback gains and the optimal value of the Gama 
for switch control system and Kothare’s method 
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