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Abstract—The main objective of this paper is to optimize series-
parallel system reliability using Genetic Algorithm (GA) and 
statistical analysis; considering system reliability constraints which 
involve the redundant numbers of selected components, total cost, 
and total weight. To perform this work, firstly the mathematical 
model which maximizes system reliability subject to maximum 
system cost and maximum system weight constraints is presented; 
secondly, a statistical analysis is used to optimize GA parameters, 
and thirdly GA is used to optimize series-parallel systems reliability. 
The objective is to determine the strategy choosing the redundancy 
level for each subsystem to maximize the overall system reliability 
subject to total cost and total weight constraints. Finally, the series-
parallel system case study reliability optimization results are showed, 
and comparisons with the other previous results are presented to 
demonstrate the performance of our GA. 
 

Keywords—Genetic algorithm, optimization, reliability, 
statistical analysis. 

I. INTRODUCTION 

HE system reliability optimization has become a very 
important subject matter area in industry design and 

operation of large scale manufacturing systems. The main 
issue that will be dealt with it in this study is the optimizing 
reliability of a series-parallel system using GA via 
implementing solutions for the redundancy allocation 
problem. The problem is to select redundancy level for each 
subsystem, component, and the best redundancy strategy in 
order to maximize the system reliability under system-level 
constraints. This type of problems includes a determination of 
components with many selections and redundancy levels that 
create the maximum advantages, and are subject to the cost 
and weight constraints at the system level. These are 
extremely common problems confronted in the theoretical 
design of numerous engineering systems. It has become 
progressively necessary to develop adequate solutions to these 
issues since various mechanical and electrical systems are 
becoming more complex, even as developing plans take 
smaller and reliability requirements display very hard and fast. 
It is very important that the systems achieve their purpose 
under circumstances and operating conditions in a certain way. 
Nevertheless, the reliability level is a function of the 
investment amounts of a system. Consequently, using the 
optimization models is required to make an effective decision 
and perform analysis. The optimization of system reliability 
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(OSR) models has been advanced to resolve the problems in 
whatever reliability is involved as objective function or 
constraint. The problem in this research is to optimize a 
combinatorial engineering design problem by considering the 
system of reliability constraint, which involves a redundant 
number of selected components to maximize reliability system 
or minimize cost system under numerous resources of the 
constraints. 

The series-parallel system considered (Fig. 1) has M 
number of subsystems in series, see Coit et al. [5] and Zhao et 
al. [18]. In turn, subsystem i contains Ni number of active (i.e., 
operating) units in parallel. If any one of the subsystems fails, 
the system fails. Each block in the diagram represents a unit. 
Reliability allocation is an essential step in system design. It 
allows determination of the reliability of vector of subsystems 
and components to obtain targeted overall reliability. For a 
system with identified cost, reliability, weight, volume, and 
other system parameters, the corresponding design problem 
becomes a combinatorial optimization problem, see Coit et al. 
[6] and Khorshidi et al. [8]. The best-identified reliability 
design problem of this type is denoted as the redundancy 
allocation problem.  

Our goal in this paper is to present GA and statistical 
analysis approach, based on redundancy allocation problem to 
find the number of redundant components that either 
maximize reliability or minimize cost under numerous 
resources of the constraints. The redundancy allocation 
problem is fundamentally a nonlinear integer programming 
problem. Most of these problems cannot be answered by direct 
or indirect or mixed search methods because of separate 
search space. According to Chern [4], redundancy allocation 
problem with multiple constraints is somewhat frequently hard 
to find feasible solutions. This redundancy allocation problem 
is Non-Deterministic Polynomial-time hard (NP-hard) and it 
has been well discussed in Chambari et al. [3], Kuo and Prasad 
[9], Liang et al. [11], Sharifi et al. [14], and Tillman et al. [16].  

The penalty function is used in constrained problems 
optimization, see Smith and Coit [15], Kuri-Morales and 
Gutiérrez-Garcia [10], Yeniay [17]. Some researchers used 
statistical analysis to do this work for evolutionary algorithms, 
see François and Lavergne [7], Mills et al. [12], Castillo-
Valdivieso et al. [2], Petrovski et al. [13], Bayabatli and 
Sabuncuoglu [1]. 

In the next section, we present our solving methodology 
using GA and statistical analysis. 

II. METHODOLOGY 

From the study of the references [1], [2], [7], [10], [12], 
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[13], [15], [17], we decided to use the design and statistical 
analysis of experiments to optimize two penalty factors in our 
reliability fitness function using GA. We used a full factorial 
design with three levels. This classification will allow us to 
determine the ranges of values of these two factors of penalty 
giving the best values of reliability using GA. We did 10 
simulations for every point of our design of experiments and 
used the average of the ten reliability values found to improve 
the accuracy of our coming statistical analysis. The best 
configuration of each point corresponding to the biggest 
reliability value is given with the corresponding cost and 
weight values. It is known that GA is effective for solving 

complex combinatorial optimization problems with large, and 
complex search spaces. 

Assumptions: 
 All the components rij have different value, and every 

branch has a different number of components in series-
parallel. 

 The failure rate of components in each subsystem is 
constant. 

 Failure rate depends on the number of working elements. 
 Components are not repairable; they are changeable only. 
 Subsystems have internal linking cost. 
 Failed components do not damage the system. 

 
TABLE I 

INPUT DATA FOR RAP [18] 

Gear 
pair 

Stage 

1 2 3 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 
1 
2 
3 
4 
5 

0.855 
0.706 
0.931 
0.737 
0.805 

3 
5 
5 
7 
6 

11 
12 
9 
11 
14 

0.743 
0.882 
0.874 
0.783 
0.9114 

5 
6 
2 
7 
5 

9 
11 
14 
11 
7 

0.828 
0.842 
0.779 
0.911 
0.846 

9 
7 
7 
7 
3 

15 
14 
11 
12 
11 

0.74 
0.922 
0.855 
0.864 
0.816 

6 
5 
11 
9 
9 

10 
10 
15 
13 
12 

 
TABLE II 

THE NOMENCLATURE AND NOTATION USED TO STATE THE MATHEMATICAL 

MODEL 

Rs system reliability 

Cs system cost 

Ws system weight 

Cmax constraint of system cost 

Wmax constraint of system weight 

s number of subsystems in the system 

i index of subsystem, i  (1, 2,…, s) 

j index of component type 

k index of redundancy level 

mi number of available component types in subsystem i 

Pi 
minimum number of components in parallel required for  subsystem i 

to function 
PN maximum number of components in parallel (user define) 

Ni a set of component types, Ni = [1, 2,…,mi] 

xki 
a component type is assigned at the position k of subsystem i xki  (1, 

2,…,mi,mi+1) 
x system configuration matrix 

ni(x) total number of redundant components used in subsystem i 

n(x) = [n1, n2,…,ns] 

rij reliability of the jth component type for subsystem i 

cij cost of the jth component type for subsystem i 

wij weight of jth component type for subsystem i 

Ri(x) reliability of subsystem i 

Ci(x) total cost of subsystem i 

Wi(x) total weight of subsystem i 

 
The input data for the reliability optimization of series-

parallel systems problem are summarized in Table I. Zhao et 
al. [18] have provided this example problem. The system 
consists of four subsystems, and each subsystem has different 
design component type with same or different characteristics 
as reliability, cost, transmission ratio, material, dimension, 
weight, etc. The minimum gear pair pi = 2 and the maximum 
gear pair PN = 5 will be used in the gearbox for all stages. 

Each of the subsystems is represented by PN positions with 
each component listed according to their reliability index. The 
input data in Table I contain component reliability, weight, 
and cost. The objective is to maximize the system reliability 
with k-out-of-n subsystem connected in the series-parallel 
system under the given system requirement constraints. 

 
TABLE III 

CERTAIN SYSTEM CONSTRAINTS VALUE USED 

No. 
System constraint 

Cmax Wmax 

1 40 115 

2 55 125 

3 65 130 

4 60 120 

5 60 130 

6 60 140 

7 60 150 

8 65 120 

9 65 140 

10 65 150 

11 70 120 

12 70 130 

13 70 140 

14 70 150 

15 75 120 

16 75 130 

17 75 140 

18 75 150 

 
Fig. 1 presents a typical example of a series-parallel system 

configuration with k-out-of-n subsystem reliabilities. The 
system is separated into s subsystem indicated by the index i (i 
= 1, 2,…,s). pi number of effective components is required for 
the function at least in subsystem i. Each subsystem involves 
one or various components organized in parallel, and it 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:5, 2017

962

constitutes the lower bound of the redundancy level for 
subsystem i. The upper bound of the component redundancy 
level in subsystem i is PN. The system configuration can thus 
be described as a matrix of size PN x s: The column index i (i 
= 1, 2,…,s) represents subsystem i, and the row index k (k =1, 
2, …, PN) of the matrix represents the position where a 
component will be used in the subsystem. Redundancy 
allocation problems (RAP) consist of defining the number of 
components of each type, so that the complete reliability 
system will be maximized by considering the given constraints 
such as cost and weight. The content of the case study is 
shown in Fig. 2. The problem used in this test to demonstrate 
the ability of this algorithm for solving RAP is a gearbox 
reliability optimization problem obtainable in Zhao et al. [18]. 
The authors in this reference presumed, in order to apply their 
method for all stages, that the minimum number of 
components is equal to 2, and the maximum number of 
components is equal to 5. The problem in the reference Zhao 
et al. [18] is to decide how many gear pairs and what kind of 
gear pair selected to be used in each stage to give maximum 
reliability of the gearbox with minimization of both system 
cost and weight. By assuming that all the gear pairs are active 
components in the stage, then the gearbox is analogous to a 
series-parallel system with k-out-of-n: G subsystems. 
 

 
Fig. 1 Series-parallel system 

 

 

Fig. 2 Series-parallel system case study 
 
The studied problem is modeled by Zhao et al. [18], and the 

mathematical model formulated as 

ሻݔሺ	௦ܴ		݁ݖ݅݉݅ݔܽܯ ൌ 	∏ ൣሺ1 െ ∏ 1 െ ௜௫ೖ೔ሻݎ
௉ே
௞ୀଵ ൧௦

௜ୀଵ         (1) 
 

Subject to 
 

ሻݔሺ	௦ܥ ൌ ∑ ሻݔሺ	௜ܥ ൌ ∑ ∑ ௜௫ೖ೔ܥ 		൑ 		 ௠௔௫ܥ
௉ே
௞ୀଵ 		 ,௦

௜ୀଵ
௦
௜ୀଵ        (2) 

 

௦ܹ	ሺݔሻ ൌ ∑ ௜ܹ	ሺݔሻ ൌ ∑ ∑ ௜ܹ௫ೖ೔ 		൑ 		 ௠ܹ௔௫
௉ே
௞ୀଵ 		 ,௦

௜ୀଵ
௦
௜ୀଵ 	    (3) 

 

௜ܲ ൑ ݊௜ ൑ ܲܰ		ܽ݊݀		∀݅, ݅ ൌ 	1, 2,… ,  (4)              	ݏ
 

A technique based on GA to optimize series-parallel 
systems reliability is developed (Fig. 3) in order to find out the 
best compromise (optimal) solution of the problem. The 
different steps of the developed technique are given in the 
chart Fig. 3. 

 

 
Fig. 3 Flow chart of the proposed GA for optimizing system 

reliability 
 

We used the fitness function f(i) to do the reliability 
optimization of the series-parallel systems using GA in the 
following form:  
 

  )); W- (i)(w*(WPen - (i)f = (i)f    :then

; W> (i) wif       );C - (i)(c*(CPen - (i)f = (i)f    :then

;C>(i)c if;(i)rel(i)f

max

max)max

max
 

 
where rel(i) is the reliability, c(i) is the cost, w(i) is the weight, 
Cmax is the maximum cost, and Wmax is the maximum weight. 
CPen is the cost penalty factor, and WPen is the weight 
penalty factor. The range of the values in Table IV for cost 
penalty factor and weight penalty factor was found using trial 
and error. The dynamic penalty function was defined 
increasing the penalty for infeasible solutions as the search 
progresses. The GA implementation is doing with this 
experimental procedure for determining the initial population 
size considering the following GA parameters: 
 The population size, which determines the size of the 

population at each generation is 1000, and our maximum 
number of iteration is 10000. 

 We used 20 integers to code our chromosomes (maximum 
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of five gear pair and four stages). 
 The value 6 from the configuration means that this 

position is empty. 
 We used four points of crossover generated randomly 

corresponding to our four subsystems to improve our GA 
search. 

 We could obtain a better result by increase the population 
size to enable the GA to search for more points.  

 Nevertheless, when the population size is large, the GA 
will take a long time to compute each generation  

 Finally, it is very important to note that we set the 
population size to be at least the value of number of 
variables, so the individuals in each population span the 
space being searched.  

III. RESULTS AND DISCUSSION 

A numerical application has been demonstrated with the 
data obtained from test problem 1 of Zhao et al. (2007) [18], 
and the obtained results are presented. 

We used Cmax = 65, and the Wmax = 130 for our GA fitness 
function cost penalty (CPen), and weight penalty (WPen) 
statistical analysis. We used a 3-level full factorial design. 

Our statistical analysis in Figs. 4 and 5 shows that all the 
residuals are zero, which means that our prediction is very 
good. 
 

TABLE IV 
GA RESULTS OF THE DESIGN OF EXPERIMENTS POINTS IS USED FOR 

APPLYING STATISTICAL ANALYSIS DATA 

No.  CPen WPen Average Reliability

1  0.1 0.1 0.9961 

2  0.1 0.55 0.9965 

3  0.1 1 0.9956 

4  0.55 0.1 0.9967 

5  0.55 0.55 0.9961 

6  0.55 1 0.9967 

7  1 0.1 0.9961 

8  1 0.55 0.9964 

9  1 1 0.9960 

 
The contour plot in Fig. 6 displays the three-dimensional 

relationship in two dimensions. This plot is on the x-axis and 
y-axis scales factors by the predictor and the response values 
represented by contours. The contour plot can be used to 
investigate the possible relation between the three variables. 
We have an average reliability, cost penalty, and weight 
penalty. This plot shows how cost penalty on the x-axis and 
the weight penalty in y-axis affect the quality result. The 
darker indicates to the higher quality of the average reliability. 

The response surface (Fig. 7) is obtained using the 
statistical analysis software STATISTICA and it generates the 
optimal designs. These numbers of the statistical analysis 
obtained are to choose the best GA for the selection of the 
optimal designs. The techniques for experimental model 
design objective are to optimize the response of the output 
variable (average reliability) which is influenced by cost 
penalty factor, and weight penalty factor. The response can be 
represented graphically in the contour plots that help us to 

visualize the shape of the response. The darker regions 
indicate higher quality. The response surface plot for the cost 
penalty strength where the axis x is the redder color, the 
weight penalty for the axis y is the less red color, and the axis 
z is the average reliability.  

 

 

Fig. 4 Model ANOVA result 
 

 

Fig. 5 Display observed, predicted, and residual values 
 

Fitted Surface; Variable: Average Reliability

2 factors to 3 level, 1 Blocks, 9 Runs

DV: Average Reliability
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Fig. 6 Contour plot of average reliability versus WPen, CPen 
 

The response curves (Fig. 6) and response surface (Fig. 7) 
show that the best parameters are around the cost penalty 
CPen = 0.55 and the weight penalty factor WPen = 0.1. 

We show here one of the ten results running our GA on the 
center of our design of experiments (CPen = 0.55, WPen = 
0.55): the configuration is      6     3     6     3     3     5     5     6     
3     6     5     6     3     4     5     6     2     2     2     6, the 
reliability = 0.997743, the cost = 62, the weight = 130, and the 
fitness = 0.997743. The reliability, cost, weight, and fitness 
graphics of this result are showed respectively on Figs. 8-11. It 
can be observed that from the plots which show that GA has 
already achieved the maximum score at the iteration of 10000. 
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Fig. 7 3D Surface plot of average reliability versus CPen and WPen 
 

Table V reports all the allocated components for each 
subsystem that we have in our system. For example, at 
admissible constraint weight = 115 and constraint cost = 40, 
the best configuration of the 10 simulations that we obtained is 
= [3, 3, 6, 6, 6, 6, 3, 3, 3, 6, 5, 6, 5, 5, 6, 6, 2, 2, 6, 6], which 
means that, from the 20 positions, result is illustrated as: 
 The first subsystem has two components of type 3. 
 The second subsystem has three components of type 3. 
 The third subsystem has three components of type 5. 
 The fourth subsystem has two components of type 2. 

The result obtained in Table V was just change by the 
values of the constraints. The cost penalty = 0.55 is constant, 
and the weight penalty = 0.1 is constant. These results are 
obtained using the maximum possible improvement with the 
best feasible solution, which improves the system reliability, 
cost, and weight. 

 

 

Fig. 8 Maximum and mean reliability 
 

 

Fig. 9 Maximum and mean fitness 
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Fig. 10 Minimum and mean cost 
 

 

Fig. 11 Minimum and mean weight 
 

TABLE V 
THE RESULTS OBTAINED BY GA 

No. CMax WMax 
Our obtaining result using GA 

Best Configuration of 10 simulations Reliability Cost Weight Fitness 

1 40 115 3     3     6     6     6     6     3     3     3     6     5     6     5     5     6     6     2     2     6     6 0.9836 35 113 0.9836 

2 55 125 1     6     3     3     6     5     6     2     6     3     4     5     5     6     6     2     6     2     6     2 0.9954 54 125 0.9954 

3 65 130 3     6     6     3     3     5     6     5     3     1     6     6     4     4     5     2     2     6     2     6 0.9977 64 129 0.9977 

4 60 120 3     3     6     6     3     3     5     6     5     6     4     4     5     6     6     6     2     1     2     6 0.9959 60 120 0.9959 

5 60 130 3     3     6     3     6     5     3     6     5     6     5     5     4     5     6     2     6     6     2     2 0.9979 58 130 0.9979 

6 60 140 3     1     3     6     1     2     6     6     5     5     6     5     5     5     5     6     2     2     6     2 0.9979 59 139 0.9979 

7 60 150 3     6     3     3     6     5     3     5     3     6     4     5     5     5     6     6     6     2     2     2 0.9987 60 144 0.9987 

8 65 120 3     3     6     3     6     5     5     5     6     6     4     6     5     4     6     6     2     2     2     6 0.9973 62 113 0.9973 

9 65 140 3     3     3     1     6     5     5     6     6     5     5     4     5     6     5     6     2     2     6     2 0.9985 64 134 0.9985 

10 65 150 3     3     6     6     3     6     3     3     5     5     6     5     5     5     4     2     6     2     6     2 0.9987 60 144 0.9987 

11 70 120 6     3     3     3     6     6     5     6     2     5     6     4     4     6     4     2     2     2     6     6 0.9976 67 118 0.9976 

12 70 130 3     3     3     6     6     1     5     5     6     5     4     6     4     5     6     6     2     2     6     2 0.9978 67 122 0.9978 

13 70 140 3     1     6     6     3     3     6     5     5     5     6     4     5     3     4     2     6     2     6     2 0.9985 69 140 0.9985 

14 70 150 3     3     1     6     6     3     5     5     5     6     5     6     5     4     5     2     2     1     6     2 0.9988 67 149 0.9988 

15 75 120 6     3     3     3     6     5     6     5     6     5     4     4     6     6     4     2     6     6     2     4 0.9974 70 117 0.9974 

16 75 130 3     3     6     3     6     5     5     3     6     5     4     4     6     4     6     6     6     2     2     2 0.9984 68 128 0.9984 

17 75 140 3     6     6     3     3     5     5     5     3     6     4     6     5     3     4     6     2     2     6     2 0.9988 71 138 0.9988 

18 75 150 3     3     6     3     6     5     5     3     6     1     4     5     6     5     4     2     2     2     6     1 0.9991 73 150 0.9991 
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TABLE VI 
THE COMPARISON OF ZHAO ET AL. [18] ANT COLONY SYSTEM (ACS) RESULT AND OUR GA RESULT 

No. CMax WMax 
Our GA result 

Zhao, J. H., Liu, Z., & Dao, M. T. 
results using ACS–RAP 

Reliability Cost Weight Reliability Cost Weight 

1 40 115 0.9836 35 113 0.9861 40 114 

2 55 125 0.9954 54 125 0.9973 55 124 

3 65 130 0.9977 64 129 0.9977 58 130 

4 60 120 0.9959 60 120 0.9968 59 120 

5 60 130 0.9979 58 130 0.9977 58 130 

6 60 140 0.9979 59 139 0.9985 60 140 

7 60 150 0.9987 60 144 0.9987 60 149 

8 65 120 0.9973 62 113 0.9968 59 120 

9 65 140 0.9985 64 134 0.9988 65 140 

10 65 150 0.9987 60 144 0.9990 64 150 

11 70 120 0.9976 67 118 0.9968 59 120 

12 70 130 0.9978 67 122 0.9988 66 130 

13 70 140 0.9985 69 140 0.9990 65 140 

14 70 150 0.9988 67 149 0.9992 70 149 

15 75 120 0.9974 70 117 0.9968 59 120 

16 75 130 0.9984 68 128 0.9988 66 130 

17 75 140 0.9988 71 138 0.9992 71 140 

18 75 150 0.9991 73 150 0.9995 70 150 

 
IV. CONCLUSION 

We determined the best combination and the redundancy 
level for a case study of the series-parallel system reliability 
optimization problem and improved our GA implementation 
using statistical analysis. We used STATISTICA software to 
do our statistical analysis experimental which gave us to 
choose the best penalty factor values that improved our GA 
parameters. The best configuration of 10 simulations obtained 
gave us the best reliability as one can see in Table V.  
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