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Sparse-View CT Reconstruction Based on
Nonconvex L1 − L2 Regularizations
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Abstract—The reconstruction from sparse-view projections is one
of important problems in computed tomography (CT) limited by
the availability or feasibility of obtaining of a large number of
projections. Traditionally, convex regularizers have been exploited
to improve the reconstruction quality in sparse-view CT, and the
convex constraint in those problems leads to an easy optimization
process. However, convex regularizers often result in a biased
approximation and inaccurate reconstruction in CT problems. Here,
we present a nonconvex, Lipschitz continuous and non-smooth
regularization model. The CT reconstruction is formulated as a
nonconvex constrained L1 − L2 minimization problem and solved
through a difference of convex algorithm and alternating direction
of multiplier method which generates a better result than L0 or L1

regularizers in the CT reconstruction. We compare our method with
previously reported high performance methods which use convex
regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV)
on the test phantom images. The results show that there are benefits in
using the nonconvex regularizer in the sparse-view CT reconstruction.

Keywords—Computed tomography, sparse-view reconstruction,
L1 −L2 minimization, non-convex, difference of convex functions.

I. INTRODUCTION

COMPUTED Tomography (CT) is used as a screening

method for medical diagnostics, non-destructive testing

and airport security. For medical, security or industrial

applications of CT a limited number of views is an option

for whether reducing the radiation dose or screening time,

and obviously the operation cost. In applications, such as

non-destructive testing or inspection of a large object, like a

turbine or a cargo container one angular view can take up to a

few minutes for only one slice. Furthermore, some views could

be simply unavailable due to the system configuration. On the

other hand, exposure to radiation is a concern in medical CT,

specifically when the frequency of test is high [1].

A computed tomography system can be modelled as a linear

system in two different scenarios: Noise-free (1) and noisy (2):

Ax = b. (1)

Ax + n = b. (2)

where b ∈ RN is the projection data, x ∈ RM is the

reconstruction image, A ∈ RN×M is the system geometry

matrix, and n is the approximation of the interference of noise,

error, and other factors present in a practical imaging process.
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TABLE I
PSNR (DB) VALUES FOR ALL THE METHODS IN OUR EXPERIMENT

Method SheppLogan FORBILD
Wavelet 19.2 22.0
Curvelet 26.6 28.7
TV 31.4 29.6
CTV 37.7 36.2
Proposed 39.8 38.7

The reconstruction problem can be solved using a constrained

optimization problem,

minimize
x

‖x‖0 subject to Ax = b (3)

Here l0-norm is denoted by ‖.‖0. Minimizing the L0 norm

is equivalent to finding the sparsest solution and since L0

minimization is NP-hard [2], a popular approach is to replace

L0 by a convex L1 norm, which often gives a satisfactory

sparse solution.

Assuming noise and given the sparse-view model, the

reconstruction problem is ill-posed for minimizing the

least-squares function. Therefore, the following cost function

with a regularization term has been considered.

minimize
x

‖φ(x)‖1 subject to ‖b−Ax‖22 ≤ σ (4)

where φ is a sparsifying transform and σ is an upper bound of

the uncertainty in the projections (b). Here l1-norm is denoted

by ‖.‖1 and l2-norm by ‖.‖2. The constrained optimization in

(3) is equivalent to the following unconstrained optimization

problem [3], [4]:

minimize
x

1

2
‖b−Ax‖22 + λ‖φ(x)‖1 (5)

where λ > 0 is a balancing constant which relies on the

sparsity of the underlying image x under linear transformation.

In (5), the L1 norm represents the convex relaxation of L0 that

counts the nonzeros. Such matrix A has incoherent column

vectors. Considering the problem, the convex sparsifying term

φ(x) can include different regularizers. In the past few years,

research efforts have been made to exploring efficient and

stable convex regularizers.

The total variation as a convex regularizer have been widely

used in the area of image denoising and restoration [5],

[6], sparse-view CT reconstruction, and interior tomography

[7]-[9]. Transform based methods are proposed generally for

inverse problems and CT reconstruction [10]-[13]. Wu et al.

[11] introduced to use curvelet as the convex sparsifying

transform in the CT reconstruction framework. Curvelet
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Fig. 1 Left: SheppLogan phantom, Right: FORBILD head phantom

transform, proposed by Candes [10] in 2002 has better

L1-norm sparsity than that by wavelets and does not generate

the staircase-type noise which make it very suitable for

sparse-view CT reconstruction. In 2016, a new regularization

model for CT reconstruction has been proposed by combining

regularization methods based on TV and the curvelet transform

(CTV) [14]. It was demonstrated that the method has had

superior quality of CT reconstruction when compared to the

above mentioned methods.

Recently, there has been a flow of attempts [15]-[17] in

developing nonconvex regulaizers to promote sparsity while

solving the linear system. Although nonconvex regularizers are

generally more challenging to minimize, they have advantages

over convex L1 norm, since convex L1 norm regularizers

do not perform well on practical problems with coherent A
matrix. Nonconvex functions were introduced as substitutes

to L0. The quasi-norm (Lq : q < 1) [18], [19] and the

log-det functional [20] are two examples of these nonconvex

functions.

Esser et al. in [21] have first addressed the L1 − L2

minimization in the context of nonnegative least square

problems with applications to spectroscopic imaging. In [15],

[17], authors studied the use of a nonconvex functional

L1 − L2 for compressed sensing application and proved the

convergence of the nonconvex optimization.

In this paper, we study a nonconvex, Lipschitz continuous

and non-smooth regularization model by considering the

difference of L1 and L2 norms for CT reconstruction. We

compare it with a number of CT reconstruction methods

including methods using convex regulaizers such as TV,

wavelet, curvelet, and CTV.

The paper is organized as follows: In Section II, the

nonconvex model for computed tomography system is

formulated and the optimization problem is presented. Results

are demonstrated in Section III. Conclusions are drawn in

Section IV.

II. METHOD

A constrained L1−L2 minimization problem can be defined

by replacing L0 in (3) with L1 − L2:

minimize
x

‖x‖1 − ‖x‖2 subject to Ax = b (6)

In the optimization problem, to minimize L1 − L2, a

difference of convex algorithm (DCA) [22] is utilized. DCA

includes linearization of the nonconvex term (second term) in

the cost function to raise a new term by solving the L1-norm

subproblem

xk+1 = argmin
x

{‖x‖1 −
〈
pk, x

〉
s.t. Ax = b

}
(7)

where pk = xk

‖xk‖2
.

The DCA method handles the minimization of a cost

function in a form of Q(x) = f(x) − g(x). f(x) and

g(x) are lower semi-continuous convex functions, f − g
is a DC decomposition of Q. g and f are considered as

DC components of Q. In the DCA method, we build two

sequences xk and zk as nominees for primal and dual optimal

solutions. They are computed by iterating over the following

equations:

⎧⎨
⎩

zk ∈ ∂g(xk)

xk+1 = argmin
x

f(x)− (g(xk) +
〈
zk, x − xk

〉
)

(8)

where zk is a subgradient of g(x) at xk.

The unconstrained minimization for (6):

minimize
x

1

2
‖b−Ax‖22 + λ(‖x‖1 − ‖x‖2) (9)

The unconstrained cost function in (9) has the following DC

decomposition:

Q(x) =

(
1

2
‖b−Ax‖22 + λ‖x‖1

)
− λ‖x‖2 (10)

Considering |x‖2 is differentiable with gradient x
‖x‖2

and for

x = 0, 0 ∈ ∂|x‖2, the following can be written:

xk+1 =

⎧⎨
⎩

argmin
x

1
2‖b−Ax‖22 + λ‖x‖1 if xk = 0

argmin
x

1
2‖b−Ax‖22 + λ‖x‖1 −

〈
x, λ xk

‖xk‖2

〉
otherwise

(11)

In each DCA iteration, the following L1-norm convex

subproblem is solved:

minimize
x

1

2
‖b−Ax‖22 + λ‖x‖1 −

〈
x, u

〉
(12)

Equation (12) can be solved using alternating direction of

multiplier method (ADMM) [23]. First (12) can be rewritten

as

minimize
x

1

2
‖b−Ax‖22 + λ‖v‖1 −

〈
x, u

〉
s.t. x − v = 0

(13)

Then we create the Lagrangian as

L(x, v, ρ) = 1

2
‖b−Ax‖22 + λ‖v‖1 −

〈
x, u

〉
+ρT (x − v) +

η

2
‖x − v‖22

(14)

where η is the penalty parameter and ρ is the Lagrangian

multiplier. ADMM iterations are as:
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Fig. 2 Left to right: SheppLogan phantom reconstruction result using Wavelet, Curvelet, TV, CTV, and the proposed methods

Fig. 3 Left to right: FORBILD head phantom reconstruction result using Wavelet, Curvelet, TV, CTV, and the proposed methods

⎧⎪⎪⎨
⎪⎪⎩

xi+1 = argmin
x

L(x, vi, ρi)
vi+1 = argmin

v
L(xi+1, v, ρi)

ρi+1 = ρi + η(xi+1 − vi+1)

(15)

The closed-form solution for v in the second step of (15)

can be found using a shrinkage operator:

vi+1 = shrink(
xi+1 + ρi

η
,
λ

η
) (16)

where

shrink(x, ξ)n = sign(xn).max
{|xn| − ξ, 0

}
(17)

Since A matrix is not a square matrix and thus the normal

inversion cannot be obtained, the conjugate gradient method

[24] has been chosen as a solution for the first step of (15).

A pseudo-code of the solution for each DCA iteration in

(12) is depicted here.

Define x0, v0, ρ0

for i = 1, 2, ..., iteration
xi+1 = argmin

x
L(x, vi, ρi)

vi+1 = shrink( xi+1+ρi

η , λ
η )

ρi+1 = ρi + η(xi+1 − vi+1)
end.

Algorithm 1: DCA iteration solution

III. RESULTS

We evaluate the method on two sets simulated data, i.e.,

SheppLogan phantom [25] and the head phantom which

is built based on the work by FORBILD group [26]

(Fig. 1). The data have the size of 256 × 256 pixels

and they are simulated with only 100 equally spaced

projections. We have reconstructed these phantoms using five

methods: Four previously reported high performance methods

with convex regulaizers including TV-based regularization

(TV), wavelet-based regularization (Wavelet), curvelet-based

regularization (Curvelet), curvelet+TV regularization (CTV),

and the presented method. Figs. 2 and 3 show the outcomes of

the methods, i.e., a substantial reduction of visible artifacts by

the proposed method. The peak signal-to-noise ratio (PSNR)

represents the objective metrics presented in Table I, and also

demonstrates the high performance achieved by the developed

method.

IV. CONCLUSION

The paper has presented a nonconvex, Lipschitz continuous

and non-smooth regularization model for CT reconstruction by

considering the difference of L1 and L2 norms. In our method,

a nonconvex constrained L1 − L2 CT reconstruction problem

is formulated. We have used an approach of combining

difference of convex algorithm, and alternating direction

method of multiplier (ADMM) to solve the formulated

optimization problem. The performance of the method has

been demonstrated based on the presented images for visual

evaluation. The visible artifacts are greatly reduced and the

improvement in objective quality over the reference methods

is visible. Objectively, PSNR values are also higher that proves

a higher performance of the developed method.
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