
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

468

Sampled-Data Model Predictive Tracking Control
for Mobile Robot

Wookyong Kwon, Sangmoon Lee

Abstract—In this paper, a sampled-data model predictive tracking
control method is presented for mobile robots which is modeled as
constrained continuous-time linear parameter varying (LPV) systems.
The presented sampled-data predictive controller is designed by linear
matrix inequality approach. Based on the input delay approach, a
controller design condition is derived by constructing a new Lyapunov
function. Finally, a numerical example is given to demonstrate the
effectiveness of the presented method.

Keywords—Model predictive control, sampled-data control, linear
parameter varying systems, LPV.

I. INTRODUCTION

MOBILE robots nowadays move autonomously by

recognizing external environment and determining the

situation through the remote control. With the development of

network communication, implementation employing wireless

& wired network is widespread [1]. Though control

through network is advantageous in maintenance, installation,

flexibility and cost, it has to be carefully designed in reality.

It may cause instability and performance degradation without

considering network induced delay or data packet losses.

Therefore, the design of control scheme should consider with

aspects and performances of whole systems.

Model predictive control (MPC) scheme is very useful since

it provides good tracking performance and the MPC tuning

parameters are explicitly related to the key characteristics

safety, comfort, and fuel economy. But if the model is

not accurate, the control technique does not guarantee the

stability and performance [2]. Also, an important issue in

the implementation of MPC algorithm is the discretization. A

continuous-time model is much more natural and accurate in

terms of describing the behavior of a system, Also, in network

control systems, choosing proper sampling interval is very

important for designing suitable controllers. It is clear that

a longer sampling period will lead to lower communication

channel occupation, few actuation of the controller, and less

signal transmission. Thus, it is very important to consider the

stabilizing control design problem under a bigger sampling

period [5]. For sampled-data systems, the input delay approach

has been widely used [4], which is based on the representation

of the sampled-data system as a continuous-time system
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Fig. 1 Mobile robot in X-Y coordination

with a delayed control input. Then, the Lyapunov Krasovskii

functional (LKF) method can be used to establish the stability

conditions. Recently, based on the input delay approach, the

sampled-data control problem of dynamical systems with

time-varying delay has been investigated in [3], [4].

In this paper, we consider a continuous-time LPV model to

handle mobile robot systems and present a model predictive

control method for the systems with sampled-data. To

the best of authors’ knowledge, there are no approaches

considering sampled-data MPC for mobile robots. The

presented synthesis condition is formulated by construction

of a suitable Lyapunov-Krasovskii’s functional and control

inputs are obtained by minimizing the upper bound of the

cost function satisfying the cost monotonicity. Finally, we

demonstrate the effectiveness of the proposed approach via

numerical simulation.

II. DESCRIPTION OF MOBILE ROBOT

The dynamics of mobile robot with a rigid body and wheels

can be described as follows [1]⎧⎨
⎩

ẋ = vcos(θ(t)),
ẏ = vsin(θ(t)),

θ̇ = w(t)
(1)

where [x, y, θ] denotes the position and orientation of the

center with respect to a global frame, v is the translational

velocity, and w is the angular velocity.

For the given mobile robot, the reference trajectory is set to⎧⎨
⎩

ẋr(t) = vr(t)cos(θr(t)),
ẏr(t) = vr(t)cos(θr(t)),

θ̇r(t) = ωr(t),
(2)
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where xr, yr, θr are references in Cartesian coordination, vr
is the reference translational velocity, and ωr is the reference

angular velocity. Considering local coordinate frame, define⎡
⎣xe(t)
ye(t)
θe(t)

⎤
⎦
⎡
⎣ cos(θ)(t) sin(θ)(t) 0
−sin(θ)(t) cos(θ)(t) 0

0 0 1

⎤
⎦
⎡
⎣xr(t)− x(t)
yr(t)− y(t)
θe(t)− θ(t)

⎤
⎦ . (3)

From (1)-(3), the error dynamics is obtained as⎧⎨
⎩

ẋe(t) = ω(t)ye(t) + vrcos(θe(t))− v(t),
ẏe(t) = −ω(t)xe(t) + vr(t)sin(θe(t)),

θ̇e(t) = ωr(t)− ω(t),
(4)

In general, systems represented by nonlinear systems can

be transformed into Linear Parameter Varying (LPV) systems

Ẋ(t) = A(v̄(t), ω̄(t), vr(t))X(t) +BU(t),

where A(·) is system matrices containing a time varying

parameter vector v̄(t), ω̄(t), vr(t), X = [xe, ye, θe] −
[x̄e, ȳe, θ̄e], and U = [v − v̄, ω − ω̄]. By computing Jacobian

matrix, the system matrices are given as

A(v̄(t), ω̄(t), vr(t)) =

⎡
⎣ 0 ω̄(t) 0
−ω̄(t) 0 vr(t)

0 0 0

⎤
⎦ , B =

⎡
⎣1 0
0 0
0 −1

⎤
⎦ .

For a given sampling rates, the matrix A(v̄(t), ω̄(t), vr(t)) is

subject to a polytope set Ω.

A(v̄(t), ω̄(t), vr(t)) =
L∑

i=0

λiAi, Ai ∈ Ω (5)

where Ω = {A1, A2, . . . , AL} is the convex hull.

In the typical system architecture, control signals are

conveyed through network communication. In network

environments, the control signals pass through zero-order-hold

(ZOH) which generate functions with a sequence of hold times

0 ≤ t0 < t1 < · · · < tk · · · < lim
k→∞

tk = +∞. Taking

consideration of ZOH, the control input is

U(t) = KX(tk), t ∈ [tk, tk+1). (6)

where K is the control gain matrix. Without loss of generality,

it is assumed that the sampled time interval is bounded by

h(t) ≤ hM

where h(t) = tk+1 − tk, and hM is the maximum sampled

delay. Using sampled signals, the systems are expressed as

delayed LPV systems

Ẋ(t) = AiX(t) +BU(t− h(t)). (7)

Lemma 1. [5] For given matrices Λ1,Λ2,Ψ, and a scalar 0 ≤
τ(t) ≤ τM , if the following conditions hold

τ(t)Λ1 + (τM − τ(t))Λ2 +Φ < 0, (8)

then, it is equivalent to

τMΛ1 +Φ < 0, τMΛ2 +Φ < 0. (9)

Lemma 2. [6] For given matrices H,N,R > 0 and a

continuously differentiable function x(t) in [a, b] ∈ R
n, the

following inequality is ensured.

−
∫ b

a

ẋT (α)Rẋ(s)ds ≤ (10)

Sym{εT1 Hε2 + εT1 Nε3} (11)

+ (b− a)εT1 (
3HR−1H +NR−1N

3
)ε1,

where ε1 is any vector, ε2 = x(b)−x(a), and ε3 = x(b)+x(a)

− 2
b−a

∫ b

a
x(s)ds.

III. MAIN RESULTS

The main purpose of this paper is to design a proper

sampled-data model predictive controller. Model Predictive

Control is used to approximately obtain optimal trajectories.

Therefore, choosing the following performance index is

reasonable:

J =

∫ ∞

0

XT (t)QX(t) + UT (t)RU(t)dt (12)

where Q, R are coefficients. For the given performance index,

if the following condition is satisfied

V̇ (t)+ ‖ X(t) ‖2Q + ‖ U(t) ‖2R< 0. (13)

where ‖ · ‖ denotes 2-norm, then the upper bound of

the performance index can be derived instead of directly

minimizing performance index. By integrating (13) from i = 1
to i = ∞, one can notice the upper bound of the performance

index is less than the Lyapunov function.

Before presenting main results, we employed the following

representations for simplicity. The matrices ei = R4n×n for

i = 1, 2, . . . , 4 are matrices composed of nth zero elements

with ith identity matrix. (For example, e1 = [I 0 0 0]
and e3 = [0 0 I 0]).

D1 =
[
I −I 0 0

]
,

D2 =
[
I I −2I 0

]
,

D3 =
[
0 0 0 0

]
,

Ēi = [AiG BY 0−G] ,

Ei =
[
Ai BK 0 −I

]
,

ζ(tk) =

[
X(t) X(tk)

1

t− tk

∫ t

tk

X(s)ds Ẋ(t)

]
.

With predefined Lemmas and notations, we present

design methodology of model predictive control for delayed

LPV systems by deriving a set of linear matrix inequality

conditions.

Theorem 1. For a given parameter hM and a vector X(tk), if

there exist positive matrices G, P̄1 > 0, P̄2 > 0,

[
Ū1 Ū2

∗ Ū3

]
>

0, V̄ > 0, Y , Z̄1, Z̄2, satisfying the following LMI conditions,

the control input at time instant tk guarantees the performance
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index (12) with γ .

min γ (14)[
1 XT (tk)
∗ GT +G− P̄1

]
≥ 0, (15)

Σi
1 < 0, for i = 1, 2, . . . , L, (16)

Σi
2 < 0, for i = 1, 2, . . . , L, (17)[
GT +G− P̄1 Y

∗ u2
max

]
≥ 0 (18)

where

Σi
1 =

⎡
⎢⎢⎣
Σi

11 Σ12 hM ·D1Z̄1 hM ·D1Z̄2

∗ Σ22 0 0
∗ ∗ −hM · Ū1 0
∗ ∗ ∗ −3hM · Ū1

⎤
⎥⎥⎦ ,

Σi
2 =

[
Σ2i

11 Σ12

∗ Σ22

]
,

Σ1i
11 = Σ1 + hMΣ2,

Σ2i
11 = Σ1 + hMΣ3,

Σ12 = diag[G, Y ],

Σ22 = diag[−γQ−1,−γR−1],

with

Σ1 = eT1 P̄1e3 + eT3 P̄1e1 − eT2 Ū2(e1 − e2)− (eT2 Ū2

(e1 − e2))
T + sym{Z̄1D1 + Z̄1D2}

+

[
e1
e2

]T
V̄
[
e1 e2

]
+ (e1 + αe4)

T Ēi

+ ((e1 + αe4)
T Ēi)

T ,

Σ2 = eT3 P̄2e1 + (eT3 P̄2e1)
T − eT2 Ū3e2

+

[
e1
e2

]T
V̄

[
e4
D3

]
+

[
e4
D3

]T
V̄

[
e1
e2

]
,

Σ3 =

[
e4
e2

]T
Ū

[
e4
e2

]
.

then, the state feedback gains are given as K = Y G−1.

Proof. Choosing the following Lyapunov-Krasovskii

functional (LKF) for t ∈ [tk, tk+1) yields

V (xt) = V1(t) + V2(t) + V3(t) (19)

where

V1(t) =

[
X(t)∫ t

tk
X(s)ds

]T [
G−TP1G

−1 0
0 P2

] [
X(t)∫ t

tk
X(s)ds

]
,

V2(t) = (hM − h(t))

∫ t

tk

[
Ẋ(s)
X(tk)

]T
U

[
Ẋ(s)
X(tk)

]
ds,

V3(t) = h(t)

[
X(t)
X(tk)

]T
V

[
X(t)
X(tk)

]
.

Differentiate the LKF

V̇1 =2XT (t)G−TP1G
−1Ẋ(t)

+ 2

∫ t

tk

X(s)dsP2X(t), (20)

V̇2 =−
∫ t

tk

ẊT (s)U1Ẋ(s)ds− 2XT (tk)U2

(X(t)−X(tk))− h(t)XT (tk)U3X(tk)

+ (hM − h(t))

[
Ẋ(s)
X(tk)

]T
U

[
Ẋ(s)
X(tk)

]
, (21)

V̇3 =

[
X(t)
X(tk)

]T
V

[
X(t)
X(tk)

]

+ 2h(t)

[
X(t)
X(tk)

]
V

[
Ẋ(t)
0

]
. (22)

From Lemma 2, the following holds

−
∫ t

tk

ẊT (α)U1Ẋ(s)ds (23)

≤ Sym{εT1 Z1ε2 + εT1 Z2ε3}

+ h(t)εT1 (
3Z1U

−1
1 Z1 + Z2U

−1
1 Z2

3
)ε1

where Z1, Z2 are auxiliary variables. Taking into account

system dynamics (7),

2[XT (t)G−1 + αẊT (t)G−1][−Ẋ(t)+

AiX(t) +BKX(tk)]. (24)

Summing up from (20) to (24) leads to

V̇ +XT (t)QX(t) + UT (t)RU(t) ≤ ζ(tk)Σ̄ζ(tk) (25)

where

Σ̄ = Σ̄1 + h(t)Σ̄2 + (hM − h(t))Σ̄3,

Σ̄1 = eT1 P1e3 + eT3 P1e1 − eT2 U2(e1 − e2)− (eT2 U2

(e1 − e2))
T + sym{Z1D1 + Z1D2}

+

[
e1
e2

]T
V
[
e1 e2

]
+ (e1 + αe4)

TEi

+ ((e1 + αe4)
TEi)

T

+ eT1 Qe1 + e2K
TRKe2,

Σ̄2 = eT3 P2e1 + (eT3 P2e1)
T − eT2 U3e2

+

[
e1
e2

]T
V

[
e4
D3

]
+

[
e4
D3

]T
V

[
e1
e2

]

+ ZT
1 U

−1
1 Z1 +

1

3
ZT
2 U

−1
1 Z2,

Σ̄3 =

[
e4
e2

]T
U

[
e4
e2

]
.

Pre-and post-multiplying with a matrix γ1/2 ×
diag{G,G,G,G}, the followings are satisfied with Lemma

1.

Σ1 + hMΣ2 + hM Z̄T
1 Ū

−1
1 Z̄1

+
1

3
hM Z̄T

2 Ū
−1
1 Z̄2) < 0, (26)

Σ1 + hMΣ3 < 0 (27)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:4, 2017

471

time (sec)
0 10 20 30 40 50 60 70 80 90 100

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

xr-x(t)

yr-y(t)

θr-θ(t)

Fig. 2 error response of the system in Example 1

where Ū = GUG, V̄ = GV G, Z̄1 = GZ1G, Z̄2 = GZ2G,

and K = Y G−1. Using Schur complement, The equations in

(25) and (26) are equivalent to those of (16) and (17). For

every sampling instance, V2 and V3 vanish. Then, the upper

bound of LKF is expressed in terms of V1.

XT (tk)GP̄1GX(tk) ≤ γ, (28)

where γ denotes the bound of optimal performance index.

The effect of input saturation is considered similar to the

method in [7]. This ends the proof. �

IV. NUMERICAL EXAMPLE

Example 1 This example considered the dynamical equations

of the system represented from error dynamics.

Ẋ(t) = AiX(t) +BU(t− h(t)) (29)

where

A1 =

⎡
⎣ 0 ωr − 0.05 0
ω − 0.05 0 vr(t)

0 0 0

⎤
⎦ ,

A2 =

⎡
⎣ 0 ωr + 0.05 0
ω + 0.05 0 vr(t)

0 0 0

⎤
⎦ ,

B =

⎡
⎣−1 0

0 0
0 −1

⎤
⎦ .

The model parameters are calculated with a sampling time

0.1s. The sampling time h(t) is less than 0.1 s. Along the

reference trajectory, the input is constrained to −0.1 ≤ u(1) ≤
0.1 and −0.05 ≤ u(2) ≤ 0.05.

The corresponding controller gain matrix is

K =

[ −0.5777 0.3442 2.6729
−0.2079 0.1255 0.9746

]

Fig. 2 shows the simulation result which is obtained with

the above controller gain, taking Q = I, R = I, α = 0.1.

V. CONCLUSION

The sampled-data MPC method for mobile robot systems

have been investigated by considering constrained polytopic

LPV model. Based on the input delay model, sufficient

conditions for the sampled-data MPC controller design are

obtained by constructing a new Lyapunov functional. The

effectiveness of the presented method has been verified by

illustrating numerical simulation.
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