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Abstract—Secure computations are essential while performing
privacy preserving data mining. Distributed privacy preserving data
mining involve two to more sites that cannot pool in their data to a
third party due to the violation of law regarding the individual. Hence
in order to model the private data without compromising privacy and
information loss, secure multiparty computations are used. Secure
computations of product, mean, variance, dot product, sigmoid
function using the additive and multiplicative homomorphic property
is discussed. The computations are performed on vertically partitioned
data with a single site holding the class value.

KeyWOI’dS—Homomorphic property, secure product, secure mean
and variance, secure dot product, vertically partitioned data.

1. INTRODUCTION

ULTIPLE parties need to collaborate to carry out
computations on their private data that is horizontally or
vertically partitioned. Secure multiparty computations indicate
calculating a function on their inputs, without revealing any
other information as mentioned in [1]. The joint computations
should be constructed such that parties learn nothing except the
correct output. As per the literature [2], these protocols can be
used in electronic voting, electronic auctions, electronic cash
schemes, contract signing, anonymous transactions, private
information retrieval schemes, identifying fraud, disease
outbreaks. The essential definitions that effect the secure
multiparty computations are privacy, correctness of the output,
independence of the inputs, guaranteed output delivery and
fairness. It is also observed [3], [4] that secure computations
work best when cryptographical methods are used. The
concepts of cryptography are provided in [5]-[8] , discusses the
purpose of homomorphic cryptographic property to perform
secure computations. Paillier has proved to having a
semantically secured homomorphic cryptographic protocol.
The Paillier’s key generation and encryption technique, results
in satisfying the homomorphic property. This homomorphic
property enables computations on encrypted data. [9] builds a
secure backpropagation protocol using secure computation of
the sigmoid function. Privacy preserving Naive Bayes classifier
is constructed using secure dot product and secure sum
protocols [10].
Secure Homomorphic protocols have been constructed for
vertically partitioned data with only a participating party
holding the class label attribute. These protocols are built for
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multiple parties who do not want to disclose the value that they
encompass. The master party (with the class label) initiates the
process of computation and is the one that maintains the final
computed result. These secure protocols have been used in
constructing the privacy preserving data mining algorithms.

A.Homomorphic Property

The probabilistic asymmetric  algorithm for public  key
cryptography is discussed in [12]. An important property of the
Paillier cryptosystem (1999) as seen in [11] assists in
performing definite types of computations on the ciphertext and
produce an encrypted result which when decrypted equates the
outcome of an operation carried out on the plaintext.

The two main homomorphic properties used are

1. Homomorphic Addition

Let E(vi) indicate the encryption of a plaintext v; and D(v;)
indicate decryption of value v; then,

D(E(vi)*E(v2)*E(v3)*........... *E(vn) mod nsquare ) = (vi + vat+
V3t +vn) mod n
In our case the values vi, va,....... , vn are the locally

computed values at each site.

2. Homomorphic Multiplication

Let E(vi) indicate the encryption of a plaintext v; and D(v;)
indicate decryption of value v; then,

D(((E(v1)¥?)¥3)-)'") mod nsquare)=(v1*v2*v3*. ... *yn) mod n

In our case the values vi, va,....... , vn are the locally
computed values at each site. This property is used to securely
compute the product, mean and variance.

1. P1generates private( A, )
and publicin,z) keys.
2.Evalue= Paillier.encryptsfy )
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Fig. 1 Secure Product computation
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II. SECURE MULTIPARTY PROTOCOLS

A. Secure Sigmoid Calculation

Partyl(master party) locally computes s; = (Xi*wij+x2
Wt +X n*W nj) and e*!. Remaining parties i=2 to k
locally compute $; = (Xnt1* Wt 1)j+..... 7Xs*wyj) and e,

Party 1 to k use Algorithm 1 (secure product) to obtain e =
esl* g% % ek Fig. 1 shows the diagrammatic
representation of secure product.

Algorithm 1: Secure Product Computation

Input: k parties have values vi,va..... Vk.

Output: Product = vi*v2*...... *Vk
1. Party 1 with v generates the private and public keys.

2. Party 1 paillier encrypts vi = (int)(v1*100) (as only integer values
can be encrypted) to obtain evalue and forwards it to neighboring
party 2.

3. Party I =2 to k update evalue = evalue.modpow((int)vi* 100) and
forward it to its neighbor.

4. Party k forwards evalue back to Party 1.

5. Party 1 now performs Product = Paillier.decrypts(evalue)/100 to
get Product= vi*vo*... ... *vk without knowing the values

B. Secure Mean and Variance Computation

To compute the mean for a class label Y, we need to add only
those numeric values that belong to the class Y. But a site k
(that is not a master site) is not aware of the class to which their
numeric value belongs to, hence mean has to be securely
computed.

Mean (class_label = “Y’) = sum_of numeric_valuesk/(number of
tuples belonging to class = ‘Y”)
sum_of numeric_valuesk = );[-; numericvalue *
class_value(given as 1 or 0)

The sum_of numeric_valuesk is to be computed securely as
the class_value is not known to site k (that has the numeric
value). Hence the homomorphic property is used to perform this
computation as follows:

sum_of numeric_valuesk =
1L (Y_Encrypt[ilmodulos(numericvalue))
Master Site (party 1 computes mean)
Mean (class_label = “Y”) = Decrypt (sum_of numeric_valuesk) /
(number of tuples belonging to class = “Y”)

To compute the variance the following principle is used.
Non-secure computation of variance of n numbers:

[(numericvaluei-mean)®+(numericvaluez-
mean)’+........... +(numericvalue,-mean)?]/n
= [numericvaluei? + numericvalues? +.....+ numericvalue,®+ n*mean?
—n * mean *(numericvalue; +
numericvaluext............. +numericvaluen)]/n

For secure computation, the value of mean and n is known
only to the master site, but site k (with the numeric attribute)
only is aware of the remaining values numeric value;, numeric
value,... numeric value, . Hence site k obtains:

sum_of_numeric_valuesi® =
L, (Y_Encrypt[ilmodulos(square(numericvalue;)))

and forwards to master site. Master site computes:

variancex = [decrypt (sum_of numeric_valuesi?) +n * mean® —
n*mean * decrypt(sum_of numeric_valuex)]/n

A detailed description of computing the mean and variance
for numeric values available at participating sites is provided in
Algorithm 2.

Algorithm 2: Secure Multiparty Mean and Variance Computation
Master Site (two class labels Y and N)

1. Fori=1to N //N is the number of tuples
Begin

if class label value = Y’

{Y_Encrypt[i] = Paillier Encrypt(1);
N_Encrypt[i] = Paillier Encrypt(0);

}

else

{Y_Encrypt[i] = Paillier_Encrypt(0);
N_Encrypt[i] = Paillier_Encrypt(1);

Forward Paillier.nsquare, vectors Y Encrypt and N_Encrypt to the
remaining sites.
Paillier.nsquare is the square (p*q) where p and q are 2 large prime
numbers.
2. Sitep=2tok
2a. Obtains Mean_Numerator p_Y=

H:‘:l Y_Encrypt [1] modpow(numericval [1] Paillier. nsquare)
where numericval[i] is the numeric value of the attribute in tuple i in
party p
2b. Computes variance p_ Y=

. Y_Encrypt[i] modpow(square(numericval[i]), Paillier. nsquare)

2c. Obtains Mean Numerator p N =

[TiL; N_Encrypt[i] modpow(numericval[i], Paillier. nsquare)
where numericval[i] is the numeric value of the attribute in tuple i.
2d. Computes
variance p N =

[T, N_Encrypt[i] modpow(square(numericval[i]), Paillier. nsquare)

2e. Forwards  Mean Numerator p Y, Mean Numerator p N,
variance k Y and variance k N to master site.
3. Master Site computes mean and variance of the numeric attribute
r of site k as follows
3a. Meanr kY =
no_tuples Y
Where no_tuples_Y indicates the number of tuples belonging to class
Y.
3b. To compute variance r k Y
i. Temp_vall =2* Mean r k Y*
Paillier_Decrypt(Mean_Numerator p_Y);
it.variance_r_k_Y=(Paillier_Decrypt(variance p_Y)-Temp vall+
no_tuples Y*square(Mean r k Y))/no_tuples Y.
3c. Mean r k N = Paillier Decrypt(Mean Numerator p N)/
no_tuples N
where no_tuples N indicates the number of tuples belonging to class
N.
3d. To compute variance r k N
i. Temp val2 =2* Mean r k N*
Paillier Decrypt(Mean Numerator p_N);
ii.variance r k N=(Paillier Decrypt(variance p N)-
Temp_val2+no_tuples N*square(Mean r k N))/no tuples N.
Once the Variance and Standard Deviation= squareroot(variance)

Paillier Decrypt(Mean Numerator p Y)/
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C. Secure Dot Product Computation

K (xixj) is a dot product for linear SVM classifiers. The dot
product of tuples xi and xj , K(xixj) = Zﬁ:l Xy * Xgj, where p
indicates the number of features of the tuples. Algorithm 3 gives
a detailed description of this protocol.

Algorithm 3: Multiparty Secure Dot product
1. Party k locally computes the dot product from tuple x to x* as
follows Fk(x,x') = (x1*x"1)+(x2*x"2)+........ +(xn*x'n) for each
of its n features other than the class attribute, paillier encrypts to
obtain Ek=E(Fk(x,x")) .It broadcast its public keys (n,g) to all the
remaining parties(1 to k-1).
2. Party I(I=1 to k-1 i.e remaining parties) locally compute the dot
product
2.1, FI(xx") = (x1*x" )+(x2*x"2)+........ +(xm*x'm) for each of its
m features for samples x and x".
2.2. Obtains EI = E(FI(x,x")) using the keys sent by party k.
3. Party 1 forwards its val= E1 to neighboring party 2 party I =2 to
k-1 update val = val *EI and forward it to its neighbor I+1.
4. Party k on receiving the encrypted value val from (k-1)th party
performs
Encrypt_dot_prod(x,x") = val *Ek

It further obtains F(x,x") i.e the final dot product from tuple
x to x* for all the features distributed from site 1 to site k i.e.
F(x,x )=F1(x,x")+F2(x,x )*......... +Fk(x,x") by decrypting the
Encrypt_dot_prod(x,x’) i.e D(Encrypt dot prod(x,x’). It is
important to note that the homomorphic property of Paillier is
used to obtain the dot product of tuples x and x* with distributed
features at multiple sites. Fig. 2 gives a diagrammatical
representation of the above protocol. The numbers of parties
involved in mining are 5 with party 5 considered as the master
site that initiates the secure dot product computation process by
broadcasting the paillier public keys n and g to all the
participating parties.
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val =
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val ) e B
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Fig. 2 5- party Secure Dot product computation from tuple x to x’

III. RESULTS OBTAINED

Because of the cryptographic nature, each of the parties does
not learn anything about the other inputs hence privacy of the
data is maintained during computation. Also due to the
homomorphic property, the parties obtain the result as desired
by the function indicating the correctness of the input. Privacy
preserving Naive Bayes classifier is built using the secure mean
and variance protocols. Secure sigmoid protocols are used to
construct privacy preserving back propagation algorithms.
Similarly secure dot product protocols are used for the
construction of privacy preserving linear support vector
machines. The results are as shown in Fig. 3.

The constructed protocols are compared with the protocols in
[9], [10]. As observed algorithms build using homomorphic
secure methods discussed above perform better.
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IV. CoNCLUSION

This paper discusses the secure protocols that can be used for
privacy preserving data mining. The commonly used methods
are secure product, sigmoid, dot product, mean, and variance.
Classifiers build using these secure computations perform
better than the previous classifier models as the communication
cost is lower. In future, we extend our work for parties that
behave as malicious adversaries. These secure computations
with their homomorphic nature can also be used for cloud
computing.
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