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Abstract—The article presents an application of Fractional Model 
Predictive Control (FMPC) to a fractional order thermal system using 
Controlled Auto Regressive Integrated Moving Average (CARIMA) 
model obtained by discretization of a continuous fractional 
differential equation. Moreover, the output deviation approach is 
exploited to design the K -step ahead output predictor, and the 
corresponding control law is obtained by solving a quadratic cost 
function. Experiment results onto a thermal system are presented to 
emphasize the performances and the effectiveness of the proposed 
predictive controller. 
 

Keywords—Fractional model predictive control, fractional order 
systems, thermal system. 

I. INTRODUCTION 

RACTIONAL calculus is a mathematical discipline with a 
300-years-old history. The goal was to extend the 

integration or derivation of fractional order by using not only 
integer orders but also fractional orders [1]. Later, on the 20th 
century Grünewald-Letnikov introduced the notion of a 
fractional-order discrete difference. In recent years, non 
integer order calculus, also known as fractional calculus, has 
attracted the attention of researcher in several fields such as 
engineering [2], biology [3], economics [4] etc. It was found 
that many physical systems have shown a dynamic behavior of 
non integer order, probably the first dynamic physical system 
to be widely recognized is the diffusion of heat into semi-
infinite (thermal system), other fractional systems that are 
known, such as the viscoelastic systems, the electrode-
electrolyte polarization, electromagnetic waves and many 
others [5]. The fractional system appears also in the process 
industries, in particular through application of modeling, 
identification and control [6], [7]. Moreover, the MPC has 
become a mature control strategy over the last few years. The 
reason of this success is attributed to the consideration of 
different types of constraints on input and output signals, and 
also it can handle a large class of systems such as open-loop 
unstable systems, non-minimum phase systems, delayed 
systems and multivariable systems [8]. Therefore, the model 
predictive control is widely encountered in the industrial 
processes [9]. The originality of this work lies in applying the 
MPC of fractional order systems. The system is approximated 
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with a direct method that is based on the numerical evaluation 
of non integer order operators. Consequently, a fractional 
order model is achieved and FMPC is developed. 

II. FRACTIONAL ORDER SYSTEMS 

Fractional order calculus is a generalization of 
differentiation and integration to non-integer orders operator 

0t tD  which is defined as: 
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where  is the order, R  , 0 and t t  are the upper and lower 

limits of the operation. The Grunwald–Letnikov’s definition 
(GL) is the most popular definition to fractional order control 
and its application, it has defined as: 
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The G-L definition of function ( )f t is defined as: 
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Expression (2) may be used to numerically evaluate the 

integral or the derivative of fractional order using some 
suitably chosen value of sampling rate as follows [10]. 
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As 
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 does not converge rapidly when  is a fractional, 

non integer operators are known to have a long memory 
behavior. For real implementation, by using the short memory 
principle [11], (4) can be rewritten using only the recent past 
values of ( )f t as [12]: 
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where N  is an integer equals to /T h . 
The Laplace transform of G-L definition for zero initial 

conditions can be given as [13]: 
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In general, a fractional model can be described by a 

fractional differential equation characterized by: 
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Using the Laplace transform in (5), the fractional-order 

system can be represented by the following transfer function: 
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where    2 2, ,  ,l m al bma b R R    . 

The use of the numerical approximation, allows rewriting 
(5) as: 
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The objective of the next section is to propose the FMPC 

that is based on the use of a fractional order model which is 
obtained by using the direct method. 

III. FRACTIONAL MODEL PREDICTIVE CONTROL 

In this section, we introduce the needed steps to find the 
optimal control law using the new proposed approach of 
FMPC for the fractional systems. Consequently, the direct 
method represented in Section II of the fractional system will 
be used to obtain the fractional order model. 
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11 q    is an integral action introduced in order to 

obtain, in closed loop, a nil steady state error. 

By using (10), we obtain the predicted output of the system 
in 1k  : 
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response of the system: 
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The 2-step ahead predictor is given by: 
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If we replace ˆ( 1/ )y k k  by its expression (13), we obtain: 
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Consequently, the expression of the j-step ahead predictor 
( / )y k j k  is as: 
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The future control sequence over a control horizon Hc is 

computed by minimizing a cost function which indicates how 
well the process follows the desired trajectory. This function 
can be expressed by the future errors between output signals 
and setpoints, and the future incremental control signals. The 
cost function is given by: 
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The output sequence on the prediction horizon Hp  is 

written as: 
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The cost function of (17) is expressed as: 
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where   is the weighting factor, cY  is the sequence of set-

points on the prediction horizon. 
Minimizing (19), we obtain the optimal control sequence.
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IV. PRACTICAL RESULTS 

This section provides an application of the predictive 
control proposed in this paper (FMPC) to a thermal system 
depicted in Fig. 1. Indeed, this system can be defined with 
fractional order model [14], [15]. 

The thermal system is composed by an aluminum rod of 41 
cm length and 2 cm of section heated by a resistor. The input 
signal of this system is the voltage applied to the power circuit 
feeding the heating resistor, and the output is the rod 
temperature measured with a distance ‘d’ from the heated 
surface by an LM35DZ sensor, expressed by a voltage varying 
from 0v to 5v. 

Several approaches have been proposed to model the 

phenomenon of a thermal system. A solution was proposed by 
Cois [16], it is to show that the model of this phenomenon is 
of fractional order medium which has a commensurable order 
of 0.5. 

 

 

Fig. 1 Thermal system 
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Fig. 2 Identification data 
 

To model the thermal system, the injected input signal is a 
pseudo random binary sequence (PRBS) varying from 0v to 
5v, as given in Fig. 2. The simplified, refined instrumental 
variable for continuous-time fractional models (SRIVCF) 
method [17] is used for the identification of the system based 
on measurement data plotted in Fig. 2. Based in these results, 
a time lag is illustrated between the heating resistor and the 
temperature measurement, probably due to the flux diffusion 
in the medium. Therefore, by using the SRIVCF method, we 
were able to determine the fractional order model which is 
given by: 
 

100
1.5 0.5

0.5623
( )

506.2843 135.3925 6.3598 1
sH s e

s s s
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  (21) 

 
The objective of the control system is to maintain the 

temperature at a desired value. In all experiences, the sample 
time is equal to 40 sec. Firstly, we have applied the model 
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predictive control based on fractional model (FMPC) with the 
following design parameters: 8,  1 and =0.2Hp Hc   . The 

obtained experimental results are plotted in Fig. 3. 
Based on practical results shown in Fig. 3, it is clear that the 

temperature follows the desired setpoints. Consequently, these 
results show good performances of the proposed approach. 
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Fig. 3 Closed-loop results for FMPC with 8.Hp  (a) setpoint and 
output, (b) Control Signal) 

 
In these experiences, the control signal is saturated and 

attained the maximal value. In order to avoid the control input 
saturation, we have introduced a model for the sequence of 
setpoints, which is given by: 
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The constant  is used to modify the closed loop dynamic 

system. In this case, we choose this constant equals to 2800 
sec. The evolutions of the set point, the control signal and the 
measured temperature (output signal) obtained with the 
proposed MPC with Hp = 12 are represented in Fig. 4. Based 
in these results, we notice that the measured temperature 
meets the desired requirements. We remark also that the 
control signal is not saturated. 
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Fig. 4 Closed-loop results for FMPC with 12.Hp  (a) set point and 
output, (b) Control Signal) 

V. CONCLUSION 

In this paper, a new method of FMPC has been introduced. 
This method consists to obtain a fractional order model from 
the fractional system. Therefore, the output deviation approach 
is used to design the j-step ahead output predictor and the 
control law is obtained by solving a quadratic cost function. 
Experimental results on a thermal system show that the 
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predictive controller using a fractional order model exhibits 
good performance and it is more efficient than the classical 
MPC. Indeed, the control law obtained by the FMPC 
algorithm is more smooth than one obtained by MPC. 
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