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 
Abstract—This paper aims to present non-population search 

algorithms called tabu search (TS), simulated annealing (SA) and 
variable neighborhood search (VNS) to minimize the total cost of 
capacitated MRP problem in multi-stage assembly flow shop with 
two alternative machines. There are three main steps for the 
algorithm. Firstly, an initial sequence of orders is constructed by a 
simple due date-based dispatching rule. Secondly, the sequence of 
orders is repeatedly improved to reduce the total cost by applying TS, 
SA and VNS separately. Finally, the total cost is further reduced by 
optimizing the start time of each operation using the linear 
programming (LP) model. Parameters of the algorithm are tuned by 
using real data from automotive companies. The result shows that 
VNS significantly outperforms TS, SA and the existing algorithm.  

 
Keywords—Capacitated MRP, non-population search algorithms, 

linear programming, assembly flow shop. 

I. INTRODUCTION 

NTERPRISE resource planning (ERP) is a powerful 
system to manage business activities throughout the 

supply chain. Unfortunately, a planning tool of the ERP 
system called material requirement planning (MRP) is 
reported that it generates a capacity problem on shop floor [1]-
[3]. A reason for this is that MRP assumes infinite resource 
capacity or constant lead-time [4]-[6]. This problem is then 
later called capacitated MRP. Since the capacitated MRP 
problem for industrial scale instances is normally the NP-hard 
class, the metaheuristic algorithm is one of the appropriate 
approaches to solve the problem [7]-[9]. 

There are two concepts of the metaheuristic algorithms 
developed for the capacitated MRP problem as shown in Table 
I. The first concept is called population search algorithm. It 
includes genetic algorithm (GA), particle swarm optimization 
(PSO), ant colony optimization (ACO) and cuckoo search 
(CS). The second concept is called non-population search 
algorithm. It includes TS, iterated local search (ILS), VNS, 
and SA [7]-[33].  

Based on the literature as shown in Table I, the population 
search algorithm seems to be more popular than the other. 
However, there is no strong conclusion that the population 
search approach is always better than the non-population one. 
It depends on mostly about the problem characteristics. 

This paper presented three non-population search 
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algorithms, which are TS, SA and VNS to solve the industrial 
scale capacitated MRP problem. Our objective is to improve 
the solution obtained from the existing capacitated MRP 
algorithm by [6]. The presented algorithm is intently 
developed for multi-stage flow shop with two alternative 
machines. The planning horizon is one month without 
overtimes and preemptive options. 

The remaining of the paper is organized as follows. Section 
II deals with details of the presented algorithm. The 
experiments for parameter tuning for our case studies are 
explained in Section III. Results and discussions are provided 
in Section IV. Finally, the conclusion of this paper and 
recommendations for future research are given in Section V. 

II. DETAILS OF PRESENTED ALGORITHM 

The presented algorithm has three main steps as shown in 
Fig. 1. They are explained as follows. 

 

 

Fig. 1 Pseudo code of the proposed algorithm 

Step 1: Construct Initial Sequence of Orders 

The objective of this step is to construct an initial sequence 
of orders by a simple dispatching rule called minimum slack 
time (MST). This rule schedules the order with the MST first, 
and schedules the order with the relatively long slack time 
later (see [6] for details of applying this rule). The reason to 
select this rule is that it obtains a good performance for the 
existing capacitated MRP algorithm. Thus, applying this rule 
to both algorithms, a fair comparison can be made.  
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TABLE I 
LITERATURE REVIEW 

Approach References Characteristics of problem Objectives with minimizing 

Population search 

GA Zandieh and Karimi, 2011 [7] Hybrid flexible flow shop  Total weighted tardiness and maximum completion time 

 Chang et al., 2013 [8] Permutation flow shop  Makespan 

 Pang, 2013 [9] Flow shop  Maximum lateness 

PSO Zhang et al., 2008 [10] Flow shop  Makespan 

 Tang and Wang, 2010 [11] Hybrid flow shop Total weighted completion time 

 Eddaly et al., 2016 [12] Blocking flow shop  Makespan  

ACO Gajpal and Rajendran, 2006 [13] Flow shop  Completion time  

 Yagmahan and Yenisey, 2010 [14] Flow shop  Makespan and total flowtime 

 Zhang and Jing, 2012 [15] Permutation flow shop Makespan 

CS Marichelvam et al., 2014 [16] Hybrid flow shop Makespan 

 Dasgupta and Das, 2015 [17] Flow shop  Makespan and mean flow time 

 Wang et al., 2016 [18] Flow shop scheduling Makespan 

Non-population search 

TS Ekşioğlu et al., 2008 [19] Flow shop scheduling Makespan 

 Wang and Tang, 2009 [20] Hybrid flow shop  Sum of weighted completion time 

 Chen, Pan and Wu, 2009 [21] Permutation flow shop Makespan 

 Liao and Huang, 2011 [22] Two machine flow shop Makespan 

ILS Dong, Chen and Huang, 2011 [23] Permutation flow shop Total flow time 

 Dong et al., 2013 [24] Permutation flow shop Total flow time 

 Wang et al., 2014 [25] Permutation flow shop Makespan 

 Ribas et al., 2013 [26] Blocking flow shop  Total tardiness 

VNS Li, Pan and Wang, 2014 [27] Hybrid flow shop Maximum completion time 

 Moslehi and Khorasanian, 2014 [28] Permutation flow shop Makespan 

 M’Hallah, 2014 [29] Permutation flow shop Earliness and tardiness 

 Lei, 2015 [30] Flow shop Makespan of the first and the total tardiness of the second agent 

SA Jungwattanakit et al., 2009 [31] Flexible flow shop Sum of makespan and the number of tardy jobs 

 Zhang and Wu, 2011 [32] Job shop Total weighted tardiness 

 Jarosław et al., 2013 [33] Flow shop Makespan and the sum of tardiness 

 Nikzad et al., 2015 [34] Flexible flow shop Maximum completion time 

 

 

Fig. 2 TS algorithm 

Step 2: Improve the Initial Sequence by Non-population 
Search Algorithms 

This step tries to improve the sequence of orders obtained 
from the first step by applying non-population search 
algorithms. Three non-population search called TS, SA and 
VNS are proposed and their conventional mechanisms are 
shown in Fig. 2, 3 and 4, respectively. The fitness function 
(FIT) is shown in (1). Let i be an order index from 1 to n. Qi, 
ti, ei, fi be the order quantity, tardiness, earliness and flow-time 
of order i. Ti, Ei, Fi be the cost per unit of tardiness, earliness 
and flow-time of order i. 

 
1 1 1

n n n
FIT T Q t E Q e F Q fi i i i i i i i ii i i

    
  

 (1) 

 
To obtain the FIT, a sequence of orders of each iteration is 

exploded by variable lead-time MRP (VMRP) in order to 
determine details of operations. These operations are then 
scheduled to less tardiness machines by forward with 
permutation scheduling. After that the tardiness, earliness and 
flow-time of each order is calculated and finally the FIT value 
can be obtained. To illustrate how this step works, details of 
the required operations of the four orders after VMRP 
explosion shown in Fig. 5 are used. Suppose that the sequence 

of orders of an iteration of VNS is O1  O3  O2  O4. All 
operations of order O1 are scheduled to less tardiness machines 
first, and the operations of order O3 are scheduled next and so 
on. The result is shown in Fig. 6. It is obvious that all 
machines have the same sequence of operations complying 
with the permutation sequencing concept. 
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Fig. 3 SA algorithm  

Fig. 4 VNS algorithm 
 

 

Fig. 5 Example of BOMs, machines and operations after VMRP explosion 
 

O3,3

p3,3,4 = 7
p3,3,6 = 9
Due date = 27
Release date = 19

O3,2

p3,2,3 = 4
p3,2,4 = 6
Due date = 19
Release date = 14

O3,1

p3,1,1 = 7
p3,1,2 = 7
Due date = 14
Release date = 7

Order O3

Q3 = 14 pcs
T3 = $2.5/pcs/day
E3 = $0.2/pcs/day
F3 = $0.1/pcs/day

O1,4

p1,4,5 = 9
p1,4,6 = 11
Due date = 26
Release date = 16

O1,2

p1,2,2 = 6
p1,2,3 = 6
Due date = 16
Release date = 10

O1,1

p1,1,2 = 5
Due date = 10
Release date = 5

Order O1

Q1 = 12 pcs
T1 = $4/pcs/day
E1 = $0.2/pcs/day
F1 = $0.1/pcs/day

O1,3

p1,3,4 = 7
Due date = 16
Release date = 9

O2,4

p2,4,5 = 8
p2,4,6 = 8
Due date = 30
Release date = 22

O2,3

p2,3,5 = 6
Due date = 22
Release date = 16

O2,1

p2,1,1 = 9
p2,1,2 = 7
Due date = 16
Release date = 8

Order O2

Q2 = 10 pcs
T2 = $3/pcs/day
E2 = $0.2/pcs/day
F2 = $0.1/pcs/day

O2,2

p2,2,3 = 4
p2,2,4 = 4
Due date = 16
Release date = 12

O4,5

p4,5,5 = 8
p4,5,6 = 6
Due date = 29
Release date = 22

O4,3

p4,3,3 = 5
p4,3,4 = 5
Due date = 22
Release date = 17

O4,1

p4,1,1 = 5
p4,1,2 = 7
Due date = 17
Release date = 11

Order O4

Q4 = 8 pcs
T4 = $2/pcs/day
E4 = $0.1/pcs/day
F4 = $0.05/pcs/day

O4,2

p4,2,3 = 6
Due date = 18
Release date = 12

O4,4

p4,4,5 = 4
Due date = 22
Release date = 18

All ratios of
Parent : Child

1 : 1

Oi,j = Order i Operation j

pi,j,k = production lead-time of order i operation j
on machine k
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Fig. 6 Results of the proposed algorithm before LP 
 

Step 3: Optimize the Start Times of Operations 

This step tries to optimize the start times of operations on 
the selected machines obtained from step 2 by the LP model. 
Before our formulation, the orders are renumbered, where the 
first order in the sequence has i = 1, and the second order in 
the sequence has i = 2, and so on. The problem is formulated 
by using indices, parameters, variables and decision variables 
as follows. 

Indices  

i = index of order starting from 1 to n 
j = index of operation of order i starting from 1 to m 
j* = index of the last operation of order i 
k = index of machine which is already specified from step 2  

Parameters 

pi,j,k = processing time of order i operation j on machine k 
di  = due time of order i 
Ti  = tardiness cost per unit of order i 
Ei  = earliness cost per unit of order i 
Fi  = flow-time cost per unit of order i 
Qi  = quantity of order i 

Variables 

ci =  completion time of order i 
ti = tardiness of order i 
ei = earliness of order i 
fi =  flow-time of order i 
Z =  total cost 

Decision Variable 

xi,j = start time of order i operation j 

Objective Function: 

  
1 1 1

n n n
Minimize Z T Q t E Q e F Q f

i i i i i i i i i
i i i

    
  

 (2) 

Subject to: 

To facilitate how to construct the constraints for our 
formulation, the schedule shown in Fig. 6 is used. 

a) Constraints to Maintain the Sequence of Operations of 
Each Machine 

There are four operations on machine 3 (O1,2, O3,2, O2,2 and 
O4,2), and three operations on machine 4 (O1,3, O3,3 and O4,3). 

These sequences can be constructed by (3)-(7). Note that the 
sequence of operations for our case studies can be further 
developed based on this idea. 

For Machine 3: 

4,2 2,2 2,2,3             x x p 
 (3) 

 

2,2 3,2 3,2,3             x x p 
 (4) 

 

3,2 1,2 1,2,3             x x p 
 (5) 

For Machine 4: 

4,3 3,3 3,3,4             x x p 
 (6) 

 

3,3 1,3 1,3,4             x x p 
 (7) 

b) Constraint to Maintain the Precedence Relationships of 
Operations of an Order 

, ,,, 1    ; ; 1, 2,3,.., 1                    i j ki ji j p i k j mx x        (8) 

c) Constraints for Completion Time, Tardiness, Earliness 
and Flow-Time 

The completion time of an order can be constructed by (9): 
 

, *,, *   ; *; ;i j ki i jC p i j kx      (9) 

 
 The tardiness of an order can be constructed by (10): 

 

0,            if 
            

,  otherwise
i i

i
i i

C

C

d
t i

d


  

 (10) 

 
The earliness of an order can be constructed by (11): 

 

0,            if 
            

,  otherwise
i i

i
i i

C

C

d
e i

d


  

 (11) 

 
 The flow-time of an order can be constructed based on bill 

of materials shown in Fig. 5. The flow-times of the four orders 

On-time Operation Tardy Operation Early Operation

=

=

=

=

Day

Flow-time cost $92.60

Total cost (FIT ) $938.60

M 6 O 2,4

M 5 O 1,4 O 2,3 O 4,4

M 4 O 1,3 O 3,3

M 3 O 1,2 O 3,2

O 4,3

O 2,2 O 4,2

O 2,1

O 4,1

O 4,5

M 2 O 1,1

M 1 O 3,1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Tardiness cost $846.00

Earliness cost $0.00

35 45 46 47 48 49 5036 37 38 39 40 41 42 43 44
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are shown in (12)-(18). Note that the flow-time for our case 
studies can be further developed based on this idea. 

 

 

 

Fig. 7 Results of the proposed algorithm after applying the LP model 
 

1,11 1f c x 
 (12) 

 

1,31 1f c x 
 (13) 

 

2,12 2f c x 
 (14) 

 

2,22 2f c x 
 (15) 

 

3,13 3f c x 
 (16) 

 

4,14 4f c x 
 (17) 

 

4,24 4f c x 
 (18) 

d) The Non-Negativity of Decision Variable 

, 0i jx   (19) 

 
The result after applying the LP model is shown in Fig. 7.  

It is obviously seen that the total cost before applying the LP 
model is dramatically reduced to $388.20. 

III. CASE STUDIES AND EXPERIMENTS 

This section consists of two parts. The first part deals with 
the details of case studies. The second part deals with an 
experiment for parameters tuning of TS, SA and VNS. They 
all are explained as follows.  

A. Details of Case Studies 

Our case studies are derived from three automotive-part 
companies. The different characteristics are summarized in 
Table II, whereas the common characteristics are summarized 
as follows. 
a) The production shop is a multi-stage assembly flow shop 

with alternative machines. 
b) The planning horizon is one month. 
c) No preemptive schedule and overtime. 

B. Experiments for Parameters Tuning of TS, SA and VNS 

The required parameters for TS, SA and VNS are 
summarized in Table III. For the parameter tuning, these 
parameters are considered as independent variables for a 
factorial experiment. The experiment is conducted with five 
replicates for all case studies to obtain the total cost. The 
stopping criterion for each run is 2 hours. Note that data in 
Table III are obtained by a set of screening experiments. 

 
TABLE II 

DIFFERENT CHARACTERISTICS OF CASE STUDIES 

Characteristics Case 1 Case 2 Case 3 

Number of finished products 16 19 18 

Number of order quantities 1,512 1,735 1,986 

Min/Max levels in bill of materials 2/5 3/5 4/6 

Number of operations 520 610 690 

Number of work centres 18 20 20 

IV. RESULTS AND DISCUSSION 

Based on the parameter tuning experiment, the best setting 
for each case study is varied depending on the different 
characteristics of case studies. Therefore, a common setting 
for all case studies is more useful for the planner. To 
determine the best common setting, the relative percentage 
deviation (RPD) and its average (ARPD) are used. Both of 
them are calculated by (20) and (21), where TCALG is the total 
cost obtained from each run, TCBEST is the minimum total cost 
across all runs, v is the index of case study and V is the 
number of case studies. The best common setting is a setting 
obtained the minimum ARPD since it guarantees that the total 
cost obtained from this setting is very close to its best total 
cost. 

 

 ( (

(

) )

)

x 100%
ALG BEST

BEST

v v

v

v
TC TC

RPD
TC


   (20) 

 

 
1

1
( )

V

TC v
v

ARPD RPD
V 

   (21)

On-time Operation Tardy Operation Early Operation

=

=

=

=

Day

M 6 O 2,4

M 5 O 1,4 O 4,4O 2,3

Tardiness cost

M 2 O 1,1

M 1 O 3,1 O 4,1

$264.00
M 4 O 1,3 O 3,3

O 2,2

Earliness cost $20.00
M 3 O 1,2 O 3,2 O 4,2

O 4,3

Flow-time cost $104.20

1 2 3 4 5 6 7 8 269 10 11 12 13 14 15 16 17 46 47 48 49 5036 37 38 39 40 41 42 43 44 4527 28 29 30 31 32 33 34 3518 19 20 21 22 23 24 25

$388.20Total cost (FIT )

O 2,1

O 4,5
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TABLE III 
PARAMETERS FOR TS, SA AND VNS 

Algorithm No. of NBH sequences NBH operators TL size 
No. of iterations for each 

temperature 
Initial temperature Alpha Shaking operators 

TS 10, 15 SWAP, INSERT 30, 40, 50 - - - - 

SA 5, 10 SWAP, INSERT - 1, 10 80, 100 0.8, 0.9 - 

VNS 70, 90 SWAP and INSERT - - - - SWAP, INSERT 

 
TABLE IV 

BEST COMMON SETTINGS FOR ALL CASE STUDIES AT MINIMUM ARPD 

Algorithm No. of NBH sequences NBH operators TL size 
No. of iterations of each 

temperature 
Initial temperature Alpha Shaking operators 

TS 10 SWAP 30 - - - - 

SA 5 INSERT - 1 100 0.9 - 

VNS 70 SWAP and INSERT - - - - SWAP 

 

 

Fig. 8 Solution development characteristics 
 

TABLE V 
VALUES OF BEST TOTAL COSTS, NEAR BEST TOTAL COSTS AND RPD AT 

MINIMUM ARPD 

Algorithms 
Best total costs ($)/Near best total costs ($)/RPD Min. 

ARPD Case 1 Case 2 Case 3 

TS 
8,247 / 8,277 / 

0.36% 
13,470 / 13,534 / 

0.47% 
17,971 / 18,027 / 

0.31% 
0.38% 

SA 
10,082 / 10,082 / 

0.00% 
15,162 / 15,589 / 

2.82% 
19,965 / 19,965 / 

0.00% 
0.94% 

VNS 
7,824 / 7,883 / 

0.75% 
12,688 / 12,825 / 

1.08% 
16,996 / 16,996 / 

0.00% 
0.61% 

 
TABLE VI 

IMPROVED TOTAL COSTS AND RPI AFTER APPLYING LP 

Algorithms 
Improved total costs ($)/RPI 

Case 1 Case 2 Case 3 Average 

Existing 
FCMRP 
(2014) 

9,424 
(Worst) 

16,016 
(Worst) 

19,280 
(Worst) 

14,906.58 
(Worst) 

TS 
7,540 / 

19.99% (2) 
12,480 / 

22.07% (2) 
14,116 / 

26.79% (2) 
11,378.91 / 
22.95% (2) 

SA 
8,305 / 

11.87% (3) 
12,770 / 

20.27% (3) 
13,894 / 

27.94% (3) 
11656.33 / 
20.03% (3) 

VNS 
6,629 / 

29.66% (1) 
11,476 / 

28.35% (1) 
13,583 / 

29.55% (1) 
10562.67 / 
29.18% (1) 

 
The best common setting shown in Table IV is the setting at 

the minimum ARPD. By this setting, it guarantees that the 

total cost from this setting is very close to its best total cost 
(near best). Table V shows the best total cost, near best total 
cost and RPD at minimum ARPD. Based on ARPD, it can be 
seen that TS obtains the smallest deviations, whereas SA 
obtains the highest deviation. However, the deviation gap is 
less than 1%, which means that the best common setting 
concept is very efficient. It also observes that VNS 
outperforms TS and SA for both the best and near best total 
costs. 

Fig. 8 shows the total cost development characteristics of 
the proposed algorithm. It can be seen that TS and SA reach 
their steady state very fast, while VNS reaches its steady state 
slower. However, the planner should wait a slightly longer to 
obtain a significantly better solution. 

To further improve the total costs, the LP model is applied 
to all solutions from the best common settings. The improved 
total costs are shown in Table VI. It is obvious that the near 
best total costs shown in Table V are substantially reduced. 
This proves that the LP model is very efficient. To compare 
the improved total costs of TS, SA and VNS with the best total 
cost of the existing algorithm, the relative percentage 
improvement over the best total cost of the existing algorithm 
(RPI) is used. It is calculated from (22), where IMTCALG is the 

0 1 2 3 4 5 6 7 8 9 10

10,000

20,000

30,000

Computational time (minutes)

T
ot

al
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t 
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)
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improved total cost of each algorithm, TCEX is the best total 
cost from the existing algorithm. Based on the RPI value, 
VNS significantly outperforms other algorithms. VNS 
improves the total cost of the existing algorithm about 29.18% 
on average, while TS and SA improve the total cost from of 
the existing algorithm about 22.95% and 20.03%, respectively. 

 

x 100%
ALG EX

EX

IMTC TC
RPI

TC


   (22) 

V. CONCLUSIONS AND FUTURE RESEARCH 

In this study, the non-population search algorithms called 
TS, SA and VNS are presented to solve the industrial scale 
capacitated MRP problem to minimize the total cost. There are 
two mechanisms of the proposed algorithm. Firstly, the total 
cost is improved by non-population search algorithms. 
Secondly, this total cost is further improved by applying the 
LP model. 

The performance of the presented algorithm is evaluated by 
many industrial scale instances in order to ensure that it can be 
implemented to various industrial situations. The result shows 
that VNS obtains the best total cost. It reduces the total cost 
obtained from the existing algorithm almost 30% on average. 

There are some interesting research gaps for future 
investigations as: (1) Performance evaluation of population 
search algorithm, (2) effectiveness comparison between non-
population and population search algorithms, (3) 
modifications of conventional non-population and population 
search algorithms to make them faster and better, (4) 
implementation of the proposed algorithm to other 
manufacturing shops such as job shop and open shop, (5) time 
extended decision and other lot-sizing methods. 
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