
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

359

Pose Normalization Network for Object
Classification

Bingquan Shen

Abstract—Convolutional Neural Networks (CNN) have
demonstrated their effectiveness in synthesizing 3D views of object
instances at various viewpoints. Given the problem where one
have limited viewpoints of a particular object for classification, we
present a pose normalization architecture to transform the object to
existing viewpoints in the training dataset before classification to
yield better classification performance. We have demonstrated that
this Pose Normalization Network (PNN) can capture the style of
the target object and is able to re-render it to a desired viewpoint.
Moreover, we have shown that the PNN improves the classification
result for the 3D chairs dataset and ShapeNet airplanes dataset
when given only images at limited viewpoint, as compared to a
CNN baseline.

Keywords—Convolutional neural networks, object classification,
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I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNN) have been

shown to be effective on a variety of computer vision

tasks, such as classification [1], [2], detection [3], [4],

semantic segmentation [5], and image captioning [6]. Its

success could be attributed to the increase in computing

power and the availability of big data sets such as the

PASCAL VOC [7] and ImageNet [8].

For object recognition, the typical approach is to train

the network with multiple images of the object undergoing

a combination of variations such as lighting, pose and

background [9], and the network is expected to implicitly

learn the variations from the data. However, when one have

limited viewpoints of a particular object for classification,

this method would not be feasible.

Recent works have shown that CNN is capable of

generating 2D projections of 3D objects [10] given the

desired model parameters, such as viewpoint and color. In

[11], they found that one can disentangle the network’s latent

variables to represent object style and variations, such as

out-of-plane rotation.

In this paper, we aim to use these prior knowledge of

3D object rotation to aid in classification task. Given the

problem of limited viewpoints of a particular object for

classification, we propose the Pose Normalization Network

(PNN) to transform the object to an existing viewpoint in

the training dataset for before classification.
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Fig. 1 Classification using PNN

The paper is organised as follows. Firstly, we begin with

a review of the related works of using CNN for modeling

of out-of-plane rotation and image pre-processing networks.

Next, we introduce the PNN architecture, datasets used and

the methodology used for training and classification. Then,

we compare the classification results of the PNN to a baseline

CNN trained with the same training dataset. Finally, we

conclude that PNN yield better classification results than the

baseline CNN.

II. RELATED WORK

As mentioned, there are a number of works which utilizes

CNN for modeling out-of-plane rotations.

In [10], a CNN was trained to generate 2D projections of

3D objects given specific parameters in a supervised setting.

Their approach requires the input of the desired object class,

and hence cannot generalizes to unseen classes. On the other

hand, our method uses an encoder to encode the style of the

object, so it is able to generalise to novel objects.

A. Network Architecture

Recently, [12], [13] have shown that variational

autoencoder (VAE) can disentangle variations between

style and label of MNIST images. Based on the VAE,

[11] developed the Inverse Graphics Network (IGN),

which is able to disentangle factors of variation, including

out-of-plane rotations, from the style of the object within

the image in its learnt image representation. By varying

the image representations, the IGN is able to re-render an



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:3, 2017

360

Fig. 2 Overview of Pose Normalization Network (PNN) Architecture

object undergoing various transformations. Nonetheless, the

IGN is unable to output a desired viewpoint of the image

as variation is encoded in latent space. On the contrary,

our model takes in a desired viewpoint signal that allows

re-rendering the input object in that viewpoint.

Our work is related to [14] who have developed a recurrent

CNN encoder-decoder network which can incrementally

applies out-of-plane rotations to the object within the

image with control signal provided by the user. However,

their method accumulates error at each increment, and

reconstruction error builds up as rotation steps increases.

Moreover, their work focus on the image reconstruction of

the transformed object which differs from ours.

Similarities are seen in [15], [16] whereby input images

are transformed to a canonical form to simplify inference

in the subsequent layers. In [16], they generalised these

network to enable end-to-end training. Still, their methods

only considered affine transformations of a 2D plane. On

the other hand, our work deals with the normalization

of out-of-plane rotation of a 3D object for classification

purpose.

III. METHOD

The overall architecture of the Pose Normalization

Network (PNN) is shown in Fig. 2. It consists of several

sub-networks, namely image encoder net, transformation

encoder, fusion net, image decoder net and classification net.

The image encoder network (Fig. 3) takes the RGB and

mask channel of a 64 × 64 image data as input. It consists

of 4 convolutional and max pooling layers followed by a

fully connected layer. The first 2 convolutional layers uses

32 and 64 filters of 5 × 5 respectively, while the next 2

convolutional layers both uses 128 filters of 3×3. The output

of the final convolutional layer is flattened and fed through

a fully connected layer with 1024 neurons.

The transformation encoder network consists of 3 fully

connected layers which takes in the desired viewpoint as

input. Following [10], the azimuth transformations θ and

elevation transformations φ are encoded as {cosθ, sinθ} and

{cosφ, sinφ} respectively, to ensure continuity. All fully

connected layers in this sub-network consists of 64 neurons

for each transformation.

The fusion network takes the concatenated outputs of the

image encoder network and transformation encoder network

as input. It consists of 3 fully connected layers with 1024,

1024 and 2048 neurons respectively. The purpose of the

fusion network is to combine the style information and

the new viewpoint information, which are provided by the

image encoder network and transformation encoder network

respectively.

The image decoder net (Fig. 4) reshapes the 2048 output

vector of the fusion network into a 128 × 4 × 4 tensor and

uses it as input. It is made up of 4 deconvolutional layers.

The first 2 deconvolutional layers uses 128 and 64 filters

of 2 × 2 with a stride of 2 respectively, while the next 2

dedconvolutional layers both uses 32 and 4 filters of 4 × 4
with a stride of 2 respectively. The output is a 4× 64× 64
tensor which is used to compared with the target chairs RGB

and mask data.

The classification net takes the 2048 output vector of the

fusion network as input. It consists of 2 fully connected

layers with 1024 and 809 neurons respectively. The number

of output neurons correspond to the number of classes of

chairs in the dataset.

For all layers, except the classification net output layer,

used a leaky rectified linear (ReLU) activation function [17]

with a negative slope of 0.2.

A. Dataset

1) Chairs Dataset: The 3D chairs dataset consist of 1393

chairs CAD models made public by Aubry et al. [18], as

shown in Fig. 5. A reduced dataset of 809 chairs are selected

for our experiments. These are selected by Dosovitskiy et

al. [10] to remove near-duplicate models. The preprocessing

done are similar to Yang et al. [14]. It consists of 31

viewpoints of each chair rotated from 0o to 360o about

the azimuth. The elevation is fixed at 20o. Firstly, the

rendered images are cropped to the chair. Next, a small white

border is added to the image before they are all resized to

64× 64 pixels. A binary mask of each image is obtained by

subtracting the white background. The mask and RGB layers

are concatenated to form a 64× 64× 4 data tensor. The first

500 models are used as training set and the remaining 309

models are used as the test set with limited viewpoint data.

2) ShapeNet Dataset: Airplane 3D models are taken from

ShapeNet [19], as shown in Fig. 6. The 1359 airplanes

are selected out of the 4045 models, where low-resolution

and non-realistic models are removed. Following the chairs

dataset, each airplane consists of 31 viewpoints rotated from

0o to 360o about the azimuth. In addition, the elevation

is varied from 20o to 50o with increments of 5o for 7

elevation variation per azimuth viewpoint, giving rise to 217

images per model. Rendering are done in blender [20]. The

preprocessing are similar to the chairs dataset. The first 700
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Fig. 3 Image encoder net

Fig. 4 Image decoder net

Fig. 5 Example images from chair dataset

Fig. 6 Example images from ShapeNet dataset

models are used as training set and the remaining 659 models

are used as the test set with limited viewpoint data.

B. Training Details

All networks are trained using Torch [21] and the training

process is split into two parts.

For the first part, the concept of out-of-plane rotation is

introduced to the network. This is achieved by training the

network to predict the target image, given an input image of

arbitrary viewpoint and the desired viewpoint. The network

was trained using mean square error (MSE) loss function:

loss(p, t) =
1

N

N∑

i=1

|pi − ti|2, (1)

where p, t and N are the reconstructed image, target image

and total number of elements respectively. The reconstructed

image is output of the network based on an input image

and target viewpoint, while the target image is the actual

rendering of the selected class at the target viewpoint.

The network was trained using ADAM [22] with a learning

rate of 0.0001, β1 = 0.9, β2 = 0.999 and ε = 1e−8. At each

iteration, the chair class and target viewpoint are selected at

random to form a batch of 32, before it is fed through the

network. The network is trained until the loss stop decreasing

significantly (approximately 10 million iterations).

All the viewpoints from the 500 models in the train set

are used for this first part of training.

During the second part, the network is made to exploit its

learnt rotation for classification. Therefore, only the weights

of the classification net are adjusted, while the remaining

weights of the network are fixed. Similar optimization

parameters were used to trained the classification net, except

the learning rate, which was reduced to 1e − 5. At each

iteration, a batch of 32 chair classes and target viewpoints

are selected at random to train the network. A loss function

of the negative log likelihood over all classes was used.

To account for the additional test classes for the

classification task, 3 out the 31 azimuth viewpoints from

each model in the test set are selected (azimuth viewpoints

3,13 and 23) and merge with the train set for training

classification.

C. Classification

The computation of the classification output of the PNN is

as shown in Fig. 1. Firstly, each image from the test dataset
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TABLE I
CLASSIFICATION RESULTS

Method Accuracy (%)
(Chairs Dataset)

Accuracy (%)
(ShapeNet Dataset)

CNN baseline 69.11 45.43
Pose Normalization Network 95.98 85.40

Fig. 7 Reconstructed results of chair dataset

was normalized to the 3 selected viewpoint used during

training. This is achieved by passing the input image and

desired viewpoint to the PNN. Next, the pose normalized

features are passed through the classification network. The

PNN output for each selected viewpoint is denoted as,

Pn = [pn,1, pn,2, ..., pni ], (2)

where Pn is the output from the PNN at the n-th selected

viewpoint and pn,i is the softmax output of the i-th class at

the n-th PNN. The maximum activated prediction from the

set of results is selected as the classification output.

IV. RESULTS AND DISCUSSION

A. Reconstruction Results

For the chairs dataset, the average reconstruction error

of 0.0104 is achieved. The qualitative result of the

reconstruction is shown in Fig. 7. It is observed that the

network can capture the style of the target chair and is able

to re-render it to the desired viewpoint. Next, we measure

the reconstruction error with respect to the difference in

viewpoint between the input and target. Chairs in the test

set are uniformly sample and the desired viewpoint is

varied with respect to the selected input. The result is as

shown in Fig. 8. As expected, the lower reconstruction error

corresponds to smaller difference in viewpoint. However, it

is interesting to note that reconstruction error is highest when

viewpoint differs from between 6 to 10, which approximately

correspond to 66 to 116 degrees. Reconstruction error

decrease from viewpoint difference of 10 onwards. This

could be due to the symmetry of the chair during rotation.

For the shapenet airplane dataset, similar reconstruction

results (Fig. 9) is observed even when an additional elevation

variation is added. The network is able to capture the style

of the target airplane and re-render it to the azimuth and

elevation of choice.

Fig. 8 Reconstruction loss to difference in viewpoint

Fig. 9 Reconstructed results of shapenet dataset

B. Classification Results

To test the effectiveness of the PNN, we compare the

classification result of the PNN to a baseline convolution

neural network (CNN) which was train using similar training

dataset. For a fair comparison, the architecture of the baseline

CNN is similar to the image encoder net, fusion net and

classification layers of the PNN. In addition, the number of

training iterations was comparable to the PNN.

The classification results, as shown in Table I, show

that the PNN performs significantly better as compared to

the CNN baseline. A breakdown of classification accuracy

over viewpoint for the chairs dataset and shapenet dataset

are shown in Fig. 10 and Fig. 11 respectively. Viewpoints

3, 13 and 23 are in the classification training dataset,

hence the corresponding bars depicts the training accuracy

results. In general, the classification accuracy decreases

as the viewpoint deviates from the viewpoint provided

during training. However, the performance of the PNN is

more consistent when compare to the CNN baseline. The

classification accuracy of the CNN dropped more than the

PNN as the viewpoint deviation increase.

For the chairs dataset, it is noticed that there is a major

drop in performance for both networks between viewpoints 6
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Fig. 10 Accuracy over viewpoints of chairs dataset

to 10. Studying the dataset, it is found that these viewpoints

correspond to the back views of the chairs and they

appear mostly similar. Hence, these viewpoints are more

challenging to classify. For the more challenging shapenet

dataset, accuracy of the CNN is consistently lower across all

viewpoint deviations.

The results clearly depicts the robustness of the PNN in

out-of-plane rotated object classification as compared to the

CNN baseline. Similar training dataset are used, however

the training methodology enables the PNN to capture the

concept of out-of-plane rotation. Hence, the PNN is able to

draw relation of similar objects that are rotated significantly

from before. This shows that prior specialized training of

the network to model variation (out-of-plane rotation) is

beneficial to subsequent classification task, both in terms of

accuracy and the number of training data required.

However, this study does have some limitations. Firstly,

the dataset is rendered from 3D CAD models and hence

clean, as there are no background noise and the object

is always well-centered without occlusions. Secondly, the

transformation learned is specific to the object class, either

chairs or airplanes.

Therefore, future works of this study includes extending

the PNN to more realistic datasets with the presence of

background and the absence of mask. Recent techniques

on object detection [3], [4] and object segmentation from

background [23] could supplement the PNN on these realistic

datasets. In additional, knowledge transfer of the PNN across

different object class would be explored.

V. CONCLUSION

This paper presented a pose normalization network (PNN)

for effective object classification under the condition of limit

data. By imparting prior knowledge of pose and rotation

concepts within the network, we have shown that the PNN

is able to improve classification results for objects that are

rotated out-of-plane significantly with only limit viewpoints

information provided. More importantly, it shows that a

network that specializes in modeling a known variation

(out-of-plane rotation in this case) can significantly reduce

the data required for classification task.

Fig. 11 Accuracy over viewpoints of ShapeNet dataset
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