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 
Abstract—Electrical discharge machining (EDM), a non-

conventional machining process, finds wide applications for shaping 
difficult-to-cut alloys. Process modeling of EDM is required to 
exploit the process to the fullest. Process modeling of EDM is a 
challenging task owing to involvement of so many electrical and non-
electrical parameters. This work is an attempt to model the EDM 
process using artificial neural network (ANN). Experiments were 
carried out on die-sinking EDM taking Inconel 825 as work material. 
ANN modeling has been performed using experimental data. The 
prediction ability of trained network has been verified 
experimentally. Results indicate that ANN can predict the values of 
performance measures of EDM satisfactorily. 

 
Keywords—Artificial neural network, EDM, metal removal rate, 

modeling, surface roughness. 

I. INTRODUCTION 

NCONEL 825, a nickel-based super alloy, is widely used in 
many applications such as the manufacturing of aerospace, 

marine, spacecraft, pumps, and nuclear reactors components 
[1]. It is extremely useful in turbine blades, aerospace 
fasteners, and heat treatment apparatus demanding high yield 
strength, resistance to oxidation, high corrosion characteristics 
[2]. This alloy often possesses difficulty during conventional 
machining processes due to its poor thermal diffusivity which 
generates high temperature at the tool tip leading to tool 
failure. Owing to its typical mechanical and metallurgical 
properties, it is difficult to machine by conventional processes 
and moreover by conventional tools. A non-conventional 
process such as EDM is found to be suitable to machine this 
alloy. EDM is a thermo-electrical process in which metal 
removal takes place by the action of electrical discharges 
(sparks) occurring between the tool electrode and the work 
piece with a dielectric media in the gap between them. The 
specialty of the process is that it can machine any material 
irrespective of its hardness, strength, and toughness. 

In EDM, the high specific energy consumptions, 
productivity, and precision of the dimensions of the EDM 
surface are the major concerns in the die sinking EDM 
process. These inadequacies mostly limit the uses of EDM. 
Furthermore, it is very difficult to control the dimensions in 
EDM, owing to the complexity of the EDM parameters. 
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Hence, researchers are often captivated with the process 
modeling of EDM to increase the accuracy of the process. In 
the past, extensive development has been dispensed to 
increase the cutting speed and surface quality of EDM 
process. Process modeling of EDM has been done by different 
methods by several researchers, e.g. empirical, statistical, and 
regression [3]-[5]. Due to one problem or several ones, these 
techniques do not provide satisfactory results in reference of 
process modeling of EDM. ANN is found to be an alternative 
that can model EDM process efficiently. The application for 
ANN for various machining process has been shown by 
various researchers [6]-[8]. Several researchers have used 
ANN to model EDM process. 

Anitha et al. [9] presented optimization of process 
parametric combinations by modeling the EDM process using 
ANN. Bharti et al. [10] obtained the pareto optimal solution 
during EDM on Inconel 718. They modeled EDM process by 
ANN and then employed controlled elitist non-dominated 
sorting genetic algorithm (NSGA) to find the pareto optimal 
solution. Pandey and Brahmankar [11] studied a new 
technique to create ANN model which is trained using 
experimental data. This model will predict whether a set of 
selected parameters in EDM machining may cause arcing or 
not. Chandramouli and Eswaraiah [12] attempted to map the 
input parameters current, pulse-on-time, pulse off time with 
performance measures metal removal rate (MRR) and tool 
wear rate to model the complex EDM process using ANN 
with back propagation algorithm. Markopoulos et al. [13] 
utilized two well-known programs, MATLAB and Netlab, for 
modeling the surface roughness in EDM process for various 
steel grades. Assarzadeh and Ghoreishi [14] adopted a neural 
network based approach to optimize machining parameters in 
die sinking EDM process. They used the back propagation 
neural network model to measure the performance (MRR and 
Ra) to be predicted in terms of three control parameters. 
Mandal et al. [15] carried out the mapping of input parameters 
(current, Pulse-on-time, pulse-off-time) with output 
parameters (MRR, tool wear rate) to model the EDM process 
using ANN with back propogation algorithm. Tarng et al. [16] 
employed a feed forward neural network to link the cutting 
parameters with the cutting performance in wire-EDM 
process. Speeding and Wang [17] discussed the optimization 
of the process parametric combination by modeling the wire-
EDM process using ANN.  

In this work, ANN tool has been used to model the EDM 
process parameters by taking Inconel 825 nickel-based super 
alloy as workpiece. The experiments have been designed as 
per L36 (21x 36) orthogonal array. Seven parameters (1 is of 2 
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levels, 6 are of 3 levels) and two performance measures, i.e. 
MRR and surface roughness (SR), have been taken into 
consideration. 

II. EXPERIMENTAL PROCEDURE 

Experiments were designed using Taguchi’s L36 (21x 36) 
orthogonal array. The combination of input parameters and 
their levels is shown in Table I. MRR and SR were taken as 
the performance measures. To carry out the machining 
experiments, EDM PS50 ZNC die sinking machine was 
utilized. The dielectric fluid has been taken as a noise factor in 
this work. The dielectric selected for the work is of IPOL 
Spark erosion oil SEO-250 and commercial grade EDM oil. 
The specimen used in the present work is Inconel 825, having 
a density of 0.00814 g/mm3. Copper (Cu), copper-tungsten 
(Cu 20% W80%), and graphite (Gr) are used as the electrode 
material with a diameter of 12 mm each. MRR is evaluated by 
weight loss of work piece using (1), respectively. 

 

min/3mm
t

WW
MRR fi




        (1) 

 
where Wi and Wf are the initial and final weights of the work 
piece in gram, ρ is the density of work piece in g/mm3, and t is 
the machining time in seconds. To determine the centre line, 
average (CLA) surface roughness parameter Ra was used to 
quantify SR.  

III. NEURAL NETWORK MODELING OF EDM 

ANN is the mathematical representations of the animal 
brain function. It is made up of multi-processing elements 
which are connected through inter connection weights and 
these weights are attuned during the learning phase. In ANN, 
each input is associated with some weight. The weighted 
inputs are combined at the node which in turn is transformed 
into output by using activation function. For creating the 
architecture of the network and the weights, we use back 
propagation training algorithm method which is capable of 
calculating a wide range of Boolean functions rather than 
network with a single layer of computing units [18]. This 
algorithm is most studied for neural networks learning. Back 
propagation is a supervised learning method which involves 
two phases, a forward phase and a backward phase. The feed 
forward network involves nodes which are the main 

computing units which provide numerical information from 
node to node through connections. The networks are generally 
a series of function composition which convert input to an 
output. The learning phase comprises of finding the optimal 
combinations of weights so that network function	߮ 
approximates a given function f as closely as possible [19]. 
Error function of network is given by (2) 
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where oi is the network produced output, ti is the target, and p 
is the number of input patterns. Backward phase uses back 
propagation neural network (BPNN) algorithm which applies 
the gradient search method, which adjusts the weights in its 
simple form by an amount proportional to the partial 
derivative of the error function (E) in relation to given weight 
[12]. 

Experimental data are used for training the ANN model. For 
these data are tabulated in Table II. These data were treated in 
order to become suitable to be used in the program. In this 
work, we have taken two types of dielectric fluid that were 
assigned a number; from 1 to 2 similarly in tool electrode 
material number from 1 to 3 were assigned, in order to 
become arithmetic: only numeric values are allowed as input 
data. From the different architecture studied, 7-15-15-2 
architecture was found to be the best amongst the studied 
architecture. Architecture 7-15-15-2 denotes the number of 
nodes in input, hidden, and output layer. In the present study, 
7 is the number of nodes used in the input layer, 15, 15 
indicates the number of nodes in hidden layer, and 2 is the 
number of nodes in output layer. As the input and output 
parameters are in different ranges, normalization is done to 
make the data in a comparable form which is done in the range 
between -1 to 1for input parameters, whereas for output 
parameters scaling is done in between 0 to 1 which is shown 
by (3) 
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where pn= normalized value, p= value to be normalize, minp= 
minimum of all the values, maxp= maximum of all the values

 
TABLE I 

MACHINING PARAMETERS AND THEIR LEVELS 

Input Parameters Unit Symbol Levels and values 

   1 2 3 

Dielectric fluid - DF First oil Second oil - 

Pulse-on-time µs Ton 20 40 75 

Discharge Current A ID 4 8 12 

Duty cycle % ζ 10 11 12 

Gap voltage V Vg 40 60 80 

Tool Electrode Material - TM Copper (Cu) Copper tungsten (CuW) Graphite (Gr) 

Tool lift time sec TL 0.1 0.2 0.3 
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TABLE II 
INPUT PARAMETERS AND EXPERIMENTAL RESULTS 

Exp No. DF Ton (µs) ID (A) ζ (%) Vg (V) TM TL (sec) MRR (mm3/min) SR (µm) 

1 1 1 1 1 1 1 1 3.063 4.347 

2 1 2 2 2 2 2 2 4.812 6.53 

3 1 3 3 3 3 3 3 11.51 7.777 

4 1 1 1 1 1 2 2 2.147 3.864 

5 1 2 2 2 2 3 3 4.318 5.789 

6 1 3 3 3 3 1 1 3.981 8.284 

7 1 1 1 2 3 1 2 1.191 5.741 

8 1 2 2 3 1 2 3 5.068 6.492 

9 1 3 3 1 2 3 1 5.507 8.388 

10 1 1 1 3 2 1 3 2.260 4.544 

11 1 2 2 1 3 2 1 3.427 5.916 

12 1 3 3 2 1 3 2 5.303 7.859 

13 1 1 2 3 1 3 2 4.445 4.644 

14 1 2 3 1 2 1 3 4.281 6.824 

15 1 3 1 2 3 2 1 1.657 5.844 

16 1 1 2 3 2 1 1 3.746 5.287 

17 1 2 3 1 3 2 2 5.1329 6.872 

18 1 3 1 2 1 3 3 3.590 5.093 

19 2 1 2 1 3 3 3 10.44 4.689 

20 2 2 3 2 1 1 1 4.887 7.426 

21 2 3 1 3 2 2 2 1.762 5.605 

22 2 1 2 2 3 3 1 3.378 4.991 

23 2 2 3 3 1 1 2 4.368 6.204 

24 2 3 1 1 2 2 3 2.478 6.528 

25 2 1 3 2 1 2 3 10.01 5.387 

26 2 2 1 3 2 3 1 1.836 5.309 

27 2 3 2 1 3 1 2 8.077 8.386 

28 2 1 3 2 2 2 1 5.741 5.488 

29 2 2 1 3 3 3 2 2.443 5.192 

30 2 3 2 1 1 1 3 4.790 7.432 

31 2 1 3 3 3 2 3 4.845 5.53 

32 2 2 1 1 1 3 1 2.303 4.988 

33 2 3 2 2 2 1 2 4.498 8.635 

34 2 1 3 1 2 3 2 4.420 4.995 

35 2 2 1 2 3 1 3 2.542 5.646 

36 2 3 2 3 1 2 1 3.136 7.081 

 

The value of learning rate coefficient is taken as 0.01. The 
tan-sigmoid transfer function is used for two hidden layers and 
purelin transfer function for output layer. The tan-sigmoid is a 
hyperbolic tangent sigmoid transfer function, whereas purelin 
is a linear transfer function. These transfer functions evaluate 
their output as: 

 

1
1

2
)(tan 2 


 

e
nnsig                                    (4) 

 

nnpurelin )(                                     (5) 
 
where n input to the function. 

The whole network is trained by Levenberg-Marquardt 
algorithm. To predict the model ability, sequential mode of 
training has been performed for training the network. The 
prediction error in each output node has been computed using 
(6) 

100(%) 



eactualvalu

aluepredictedveactualvalu
errorprediction        (6) 

IV. RESULTS AND DISCUSSIONS 

In the present work, BPNN model has been employed to 
model the process. The input of the model is dielectric fluid, 
pulse-on-time, discharge current, duty cycle, gap voltage, tool 
electrode lift time, and tool electrode material. The two hidden 
layered BPNN were trained with different number of neurons. 
After completing the training of the data through different 
combinations of number of neurons, the comparison analysis 
of the experimental versus ANN was obtained. Prediction 
error has been calculated as absolute percentage error (APE). 
Mean absolute percentage error (MAPE) is basically a mean 
of APE, i.e. MAPE= APE of all nodes/number of nodes. 
MAPE for all networks is calculated, and the MAPE which is 
minimum (i.e. 3.10%) is chosen for the prediction. Prediction 
ability of the trained network has been verified experimentally 
and the results are reported in Table III. The average 
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percentage difference between the ANN predicted value and 
the experimental one is 0.25 in the case of MRR and 0.37 in 
the case of SR. The graphs shown as Figs. 1 (a) and (b) 
indicate the variation in ANN and experimental model values 
for MRR and SR. It is observed from the figures that the 
predicted values of the MRR and SR are very close to the 
experimental values.  It indicates that trained ANN is able to 
predict the values of performance measures (for a given set of 
input parameters) efficiently. Another aspect has also been 
considered to compare the proposed ANN model results with 

experimental results, and that is regression analysis or R-
value. The linear fit is presented in Fig. 2 indicating the target 
and output representing the experimental results and output of 
the model respectively. The best linear fit function is 
calculated as: Output= 0.97 Target +0.16, while the regression 
coefficient was evaluated as R= 0.9947. The mean square error 
(MSE) of training of the selected ANN was about 0.0477 and 
its training took almost 33 epochs to complete, which is shown 
in Fig. 3. Fig. 4 shows the validations of the performance 
results. 

* 
TABLE III 

COMPARISON OF EXPERIMENTAL RESULTS WITH THE ANN MODEL PREDICTION 

Exp. No 
Machining parameters MRR(mm3/min) SR (µm) Relative error (%) 

DF Ton ID ζ (%) Vg (V) TM TL (sec) ANN predicted Experimental ANN predicted Experimental Error in MRR Error in SR

1 1 40 8 11 60 2 0.2 4.76 4.81 6.60 6.53 1.17 1.11 

2 1 20 4 11 80 1 0.2 1.23 1.19 5.64 5.74 3.03 1.73 

3 1 40 8 10 80 2 0.1 3.44 3.43 6.07 5.92 0.21 2.53 

4 1 40 12 10 80 2 0.2 5.02 5.13 5.98 6.87 2.25 13.05 

5 1 20 8 12 40 3 0.2 4.41 4.45 4.53 4.64 0.87 2.52 

6 2 20 8 10 80 3 0.3 9.71 10.45 4.93 4.69 6.99 5.07 

7 2 40 12 12 40 1 0.2 4.31 4.37 6.24 6.20 1.29 0.63 

8 2 20 12 11 60 2 0.1 5.63 5.74 5.72 5.49 1.87 4.27 

9 2 75 8 11 60 1 0.2 4.42 4.50 8.53 8.64 1.74 1.19 

10 2 75 8 12 40 2 0.1 3.30 3.14 6.71 7.08 5.34 5.28 

Average error%  0.25  0.37 

 

 

Fig. 1 Comparison between ANN predicted and experimental value for (a) MRR (b) SR 
 

 

Fig. 2 Correlation between experimental data and neural network 
output 

 

Fig. 3 Results of the neural network training 
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Fig. 4 Validation performance results 

V. CONCLUSIONS AND FUTURE SCOPE 

In this work, process modeling of EDM of Inconel 825 has 
been successfully done with help of ANN. The prediction 
ability of trained model has been verified experimentally. The 
average percentage difference between ANN predicted value 
and experimental value is 0.25 and 0.37 for MRR and SR, 
respectively. Prior to this, experimental runs were conducted, 
and the neural network was trained using experimental results. 
From the various ANN architectures, best results were 
obtained by 7-15-15-2 architecture in the instant case. The 
network which gave the minimum error (MAPE =3.10) was 
selected as the trained network. The process model of EDM by 
ANN is capable to predict the values of MRR and SR for a 
given set of input parameters. This process model may be used 
by the researchers in this field for the better understanding the 
relationship between input parameters and performance 
measures. This model may also be used for the parametric 
optimization for the best yield of the process.  
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