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Abstract—One of the biggest challenges in nonparametric
regression is the curse of dimensionality. Additive models are known
to overcome this problem by estimating only the individual additive
effects of each covariate. However, if the model is misspecified, the
accuracy of the estimator compared to the fully nonparametric one
is unknown. In this work the efficiency of completely nonparametric
regression estimators such as the Loess is compared to the estimators
that assume additivity in several situations, including additive and
non-additive regression scenarios. The comparison is done by
computing the oracle mean square error of the estimators with regards
to the true nonparametric regression function. Then, a backward
elimination selection procedure based on the Akaike Information
Criteria is proposed, which is computed from either the additive or
the nonparametric model. Simulations show that if the additive model
is misspecified, the percentage of time it fails to select important
variables can be higher than that of the fully nonparametric approach.
A dimension reduction step is included when nonparametric estimator
cannot be computed due to the curse of dimensionality. Finally, the
Boston housing dataset is analyzed using the proposed backward
elimination procedure and the selected variables are identified.

Keywords—Additive models, local polynomial regression,
residuals, mean square error, variable selection.

I. INTRODUCTION

IN nonparametric regression analysis, the focus is on

studying and exploring the relationship between a possible

set of independent variables denoted by X = (X1, ..., Xd) and

the response variable Y through a regression function m(·)
[1]. In the simple case, X can be considered as a fixed design

with observation in a grid, but in the general case we consider

X to be random with a multivariate density function fX(x)
(see [2], [3]).

The function m is called the regression function, usually

considered to be a smooth function such that

m(X) = E(Y |X). (1)

It is typically assumed that the conditional variance of Y
given X is constant, but in a more general case, we can relax

this assumption and let the variance depend on the explanatory

variables X. Thus, the general heterocedastic nonparametric

regression model is [4]

Yi = m(Xi) + σ(Xi)εi, i = 1...n (2)

where εi are independent identically distributed random

variables with mean 0 and constant variance.
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Exploring relationships between variables is widely used

when applied statistics is used in many different areas of

research. Regression tools are hence necessary for the analysis

of data coming from experiments in biology, engineering,

chemistry, physics, and others. Constantly, we search for

techniques of generalizing the models so that they can be

useful in more complicated scenarios, and thus the goal is

to relax assumptions to obtain less restrictive models while

maintaining flexibility to incorporate a wide range of practical

applications.

Recently a great amount of data is being collected due to the

advance of computer technology. Various datasets containing

variables with non-trivial/nonlinear relationships are more and

more common, and hence the use of flexible models is

crucial (see [5], [6]). The flexibility of a regression model

is one of the fundamental aspects of modeling, together with

the dimensionality and interpretability [7]. When focusing in

flexibility, if the dimension of the variables is large, fitting the

model becomes problematic, causing the well-known curse

of dimensionality [8]. Moreover, not only should the model

be flexible and deal with higher dimensions, but also have

easy interpretation for the researcher. In this paper we focus

mainly on the issue of flexibility, where model checking and

variable selection can be performed without strong restrictions

or assumptions on the regression function.

Nonparametric regression was initially developed as a way

of generalizing the classical parametric regression

Yi = m(θ,X) + εi, i = 1...n (3)

where β are the parameters and m(θ,X) is of a parametric

form. This model generally assumes that the family of

models {m(θ, x), θ ∈ Θ} contains the true underlying model

that generated the data. Such restriction can cause serious

disadvantages, yielding disastrous estimations and prediction

if the assumptions do not hold [9].

The first and most commonly used parametric regression

model, a particular case of (3), is the parametric linear

regression [10], which assumes that the effects of the

predictors on the response variable are additive and linear,

which is a very strong assumption. Even though this is very

restrictive, it is widely used and does apply to many situations,

there is an increasing amount of data from several areas

that can not be fit by a linear model, see [11]-[14] just to

cite a few. An alternative of the linear model that considers

nonlinear effects of the independent variables adds powers

of the covariates as linear regressors, however the number of
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parameters to estimate increases and leads to an over-fit and

lack of interpretability when many powers are required.

In this paper we study the contrast between flexibility and

interpretability of nonparametric models, more specifically,

those who consider the fully nonlinear model on all predictors

and the additive regression model. The idea is to compare these

techniques when they are correctly and incorrectly specified.

II. NONPARAMETRIC METHODS

There are many alternatives for linear regression to

consider nonlinear effects of the independent variables. The

Nadaraya-Watson Kernel estimator [15], [16] was one of

the first methods to establish this technique. It is actually

a special case of the Local Polynomial regression [17]-[21].

Consider first the univariate case where X is uni-dimensional.

In estimating of m(x) with Local Polynomial Regression, the

classical weighted least squares regression is used to fit a q
degree polynomial

β0 + β1(.− x) + ...+ βp(.− x)q

to the data (Xi, Yi), where the weights are the kernel functions

Khn
(Xi − x) = 1

hn
K(Xi−x

hn
), for a function K such that∫

K(x)dx = 1 called the kernel function (usually taken to be

a density). Therefore, the goal is to minimize

n∑
i=1

(Yi − β0 − β1(Xi − x)− . . .− βp(Xi − x)q)
2
Khn

(Xi−x)

(4)

with respect to (β0, . . . , βp). The estimated mean regression

function m(·) is computed by β̂0. In order to derive this

estimator it is assumed that the function m has q+1 derivatives

continuous at x. This assumption is necessary because a

Taylor expansion m(Xi) ≈ m(x) + m′(x)(Xi − x) + . . . +
m(q)(x)

q! (Xi − x)q is used as an approximation to m(Xi). For

simplicity, assume that the support of fX is on [0,1] and the

kernel is supported on [-1,1]. Also assume that m′′, f ′, and

σ are continuous, the kernel is symmetric about 0 and the

bandwidth hn is such that hn → 0 and nhn → ∞. In matrix

form, let Y = (Y1, . . . , Yn)
′,

Xx =

⎛
⎜⎝

1 X1 − x . . . (X1 − x)q

...
...

. . .
...

1 Xn − x . . . (Xn − x)q

⎞
⎟⎠ (5)

and Wx = diag{Khn
(X1 − x), . . . ,Khn

(Xn − x)} is the

diagonal matrix of weights. It is clear that the solution of

this weighted least squares problem is

β̂ = (XT
x WxXx)

−1XT
x WxY (6)

assuming that (X ′
xWxXx) is invertible. The estimator of m(x)

is

m̂(x; q, hn) = eT1 (X
T
x WxXx)

−1XT
x WxY, (7)

where e1 = (1, 0, . . . , 0) of size (q + 1)× 1.

Now consider the case where X is d-dimensional. Assume

that the regression function m(z) is such that q+1 derivatives

exist and are continuous at x. Then we can approximate m(z)
by a multivariate polynomial

m(z) ≈
∑

0≤|k|≤q

1

k!
Dkm(y)|y=x(z− x)k (8)

where

k = (k1, . . . , kd), k! = k1!× . . .× kd!, |k| =
d∑

i=1

ki

xk = (xk1
1 × . . .× xkd

d ),
∑

0≤|k|≤q

=

q∑
j=0

j∑
k1=0

. . .

j∑
kd=0

k1+...+kd=j

,

(Dkm)(y) =
∂km(y)

∂yk1
1 . . . ∂ykd

d

.

In this case, the solution is the minimizer of the multivariate

least squares

n∑
i=1

(
Yi − β′(Xi − x)k

)2
KHn

(Xi − x), (9)

where Hn is the d × d bandwidth matrix, assumed to be

symmetric and positive definite and the kernel KHn
is a

d-variate form of the kernel K. The kernel can have many

forms, including product of univariate kernels or d-variate

probability density functions, but usual assumptions are that∫
K(u)du = 1 and KHn(u) = |Hn|−1/2K(H

−1/2
n u). See

[22] for details.

In the following example, we will demonstrate the

performance of nonparametric regression models and the

parametric linear regression model.

Example 1: Suppose that we have pairs of observations

(Yi, Xi) from the unknown models Model 1: Y =
6X cos(6πX) + ε and Model 2: Y = 4X cos(5πX) + ε,
where X ∼ U(0, 1) and ε ∼ N(0, 1). Table I shows the

residual sums of squares for the simple linear regression (SLR)

including the powers of the independent variable up to p,

local linear and Splines [1]. The results reported in Table

I suggest that the nonparametric models (local linear and

splines) yield much lower residual sum of squares compared

to the parametric simple linear regression. Even with the

increase of the polynomial order of the variables used, the

simple linear regression continues to achieve higher residual

sum of squares compared to the nonparametric methods. This

demonstrates the great importance of having a flexible model

that does not restrict the estimation to a small range of

parametric families, when the true model can have nonlinear

effects on the response. A widely used alternative to the

TABLE I
COMPARISON OF RSS FOR DIFFERENT METHODS OF REGRESSION

ESTIMATION

SLR SLR SLR Local Linear Splines

(p=1) (p=2) (p=5)

Model 1 737.1 703.3 543.3 83.1 69.5

Model 2 414.4 410.4 210.5 89.9 61.6

local regression fitting is a generalization of the parametric
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linear regression. [23], [24] considered this case, known as

nonparametric additive models, where

Y = m1(X1) +m2(X2) + ...+md(Xd) + ε, (10)

for the covariates X1, ..., Xd (see also [25]). For identifiability

of the model, it is required that E(Xi) = 0, i = 1, . . . , d. The

effect of the covariates on the response variable in this model

is not linear, but it is additive. This relates each explanatory

variable Xj to the response Y in an additive way, but the

functions mi are not parametrically specified in advance, but is

determined by the data analytically through local smoothing.

Furthermore, one fundamental property of the linear model

is retained: easy interpretation. The advantage here is that,

after fixing the values of all other covariates, the effect of a

specific covariate on the response is a curve that can be seen

as univariate.

Once again the trade off between interpretability and

flexibility comes into play, especially if the number of

available covariates is high. The additive model maintains the

asymptotic convergence rates of a single predictor, no matter

how many dimensions (number of predictors). However it

does not incorporate more complex models, as for example

interactions, ratios, or any non-additive function of two or

more covariates. If an interaction is in the true underlying

model for instance, the change in the response variable is

more complex than just an additive effect of variables. In

fact, in practical applications found in several scientific areas

interaction terms are commonly identified and are in fact

critical to the inferential conclusions.

We can find many cases in applied statistics where the

additive model may not be the correct one. For example,

if we have a study of HDL Cholesterol predicted by BMI

(body mass index) and Total Cholesterol, the additive effect

of the predictors may not be correct, since BMI probably has a

interaction with Total Cholesterol. Another example would be

the regression of two different medications in a situation where

covariates are the levels of different treatments (in medicine

or agriculture) and the response is some measure of a reaction

against a particular disease.

Consider the additive model in (10), where we assume

without loss of generality that the Yi has expected value 0.

Note that in this model, for any k = 1 . . . d,

E(Y −
d∑

j �=k

mj(Xj)|Xk) = mk(Xk). (11)

Following [26], let mj = (md(Xj1), . . . ,mj(Xjn))
T be

the vector corresponding to the function m(·) at the observed

covariate values. These additive components are estimated by

solving the set of normal equations⎡
⎢⎢⎢⎣

I S1 . . . S1

S2 I . . . S2

...
...

. . .
...

Sd Sd . . . I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

m1

m2

...

md

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

S1

S2

...

Sd

⎤
⎥⎥⎥⎦Y, (12)

where Sj is the linear smoother matrix with respect to the

Xj = (Xj1, . . . , Xjn) covariate vector.

Intuitively from this formulation, an iterative algorithm is

designed in order to solve these equations. This well-know

algorithm is called the backfitting algorithm, which has been

shown to converge to the solution

⎡
⎢⎢⎢⎣

m̂1

m̂2

...

m̂d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

I S1 . . . S1

S2 I . . . S2

...
...

. . .
...

Sd Sd . . . I

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

S1

S2

...

Sd

⎤
⎥⎥⎥⎦Y = M−1CY,

(13)

if M−1 exists. Hence, the backfitting algorithm can be

described in the following way

1) Initialize: μ̂ = Ȳ , set mj = 0, j = 1 . . . p
2) for j = 1 . . . d

m̂k = Sk(Y − μ̂−∑d
j �=k mj |Xk)

3) repeat 2) until convergence

In each step of the algorithm, the estimated mean function

mj is readjusted, after the removal of the effects of the other

predictors. This takes advantage of the additive effects with

the partial residuals in each iteration. This algorithm is similar

to the well-known Gauss-Seidel algorithm, which iterates the

algorithm in the same way, readjusting each step. Here we

set the initial functions mj to be equal to 0, but a better

idea would be to start these functions with some previous

knowledge or even a simple fit (simple linear regression for

instance).

Using the notation in [26], in order to have an interpretable

expression for each m̂j , define the additive smoother

matrix Wj = EjM
−1C, where Ej is a partitioned n × nd

matrix with the j-th block being a nxn identity matrix and

zeros elsewhere. In this way, we have m̂j = WjY and

m̂ =
∑d

j=1 m̂j = WY , for W = W1 + . . .+Wd.

Other models can be derived as variations of the

additive model, and those include semi-parametric

models, varying-coefficient models, partially linear models,

varying-coefficient partially linear models, etc. In all of these

cases, the effect of each covariate is assumed to be additive,

and a more general model is always of interest.

III. NUMERICAL RESULTS

In this section, we analyze the finite sample performance

of the additive models and the local polynomial estimators

(degree of polynomial 1) in several scenarios. The additive

model was computed using the mgcv package and the local

polynomial using the loess function in the statistical software

R. The goal is to study their results under several models,

some whose underlying generating process is additive and

other with interactions. All data in this section is generated

from the general nonlinear model

Y = mk(X) + ε, k = 1, . . . , 10,

where ε is Normally distributed with mean value 0 and

variance σ2 = 1. The independent variables X are generated

from a Uniform distribution with support [0,5]. First, a sample

of size ntrain is generated and the models are constructed. The
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first measure of comparison for the additive and local linear

methods we consider is the residual sum of squares

RSS =

ntrain∑
i=1

(Yi − m̂k(Xi))
2,

where m̂(·) is the regression estimator, either additive using

the backfitting algorithm or local polynomial in all dimensions.

Note that the comparison of RSS is standard in regression

analysis, however it is only fair if the selection of the

tuning parameters, i.e. bandwidths, are properly chosen for

comparison. If the bandwidths are chosen too small, then the

RSS can be as close to 0 as desired, induced by interpolation.

This is the case of over-fitting, causing poor prediction of new

observations. In order to assess the ability of the models to

predict new observations, we also report what we call the

oracle RSS. After constructing the model with ntrain, we

generate ntest samples Xnew from the original model and

compare the predictions at the new observations with the actual

values. This measure is defined as

ORSS =

nt∑
i=1

(m̂k(X
new
i )−mk(X

new
i ))2.

Obviously in a real data situation the original function mk(·)
is not known. However in this simulation setting we use it

as an oracle way of comparing the performance of the two

methods. We exclude from the results those Xnew that are

outside the range of the original ones since the models do not

predict outside the range.

In this simulation section, we study two scenarios: The

first with 2 independent covariates and the second with 3

independent covariates. In both scenarios we generate additive

and non-additive models in order to analyze how much

gain/loss is obtained by using the correct/wrong model in each

case. The models for two-dimensional scenario are:

m1(X1, X2) = X1 +X2,

m2(X1, X2) = X2
1 +X2,

m3(X1, X2) = X3
1 +X2

2 ,

m4(X1, X2) = sin(X1) +X2,

m5(X1, X2) = X1X2,

m6(X1, X2) = X1 sin(X2),

m7(X1, X2) = sin(X1) sin(X2),

m8(X1, X2) = X1/X2,

m9(X1, X2) = X3
1X2,

m10(X1, X2) = exp(X1 −X2).

The average results of 1000 simulation runs for the scenario

with two covariates can be found in Table II. For the additive

models m1, . . . ,m4, the residual sum of squares of both

methods are very similar, however the additive regression

method obtains smaller oracle residual sum of squares in

all cases. On the other hand, the local polynomial estimator

obtains much smaller RSS and ORSS in all non-additive

models m5, . . . ,m10. In fact for small sample size 50, the

ORSS achieved by the local polynomial estimator is 3.55

times smaller than that obtained by the additive regression

in average for m5, . . . ,m10, while only 1.28 times larger for

m1, . . . ,m4. For large sample size 300 the differences are

even larger for m5, . . . ,m10, where the local polynomial has in

average 5 times smaller ORSS compared to that of the additive

model, while yielding only 1.3 larger ORSS for m1, . . . ,m4.

This suggests that the gain of using additive nonparametric

regression for this simulated scenario is small when the true

underlying model is additive, while the loss is much larger for

non-additive cases.

TABLE II
MSE AND MSE ORACLE FOR MODELS WITH 2 COVARIATES

ntrain Model Additive Local Polynomial
RSS ORSS RSS ORSS

50 m1 40.9 13.5 37.5 16.2
m2 40.1 14.4 37.7 16.5
m3 75.7 30.2 78.4 47.0
m4 39.9 14.2 38.4 17.4
m5 196.1 72.8 37.3 16.1
m6 80.8 40.0 42.3 21.6
m7 49.6 24.1 38.5 18.1
m8 213313.6 323.6 178711.9 232.0
m9 96591.8 1685.6 1067.5 193.5
m10 3046.5 246.6 283.7 70.4

150 m1 139.3 8.3 137.7 9.4
m2 140.6 9.0 137.6 9.4
m3 264.8 27.8 300.3 46.2
m4 139.4 8.5 138.9 10.4
m5 728.7 76.5 136.5 9.5
m6 285.8 40.2 154.8 16.7
m7 175.3 21.4 142.5 11.8
m8 11854754 460.5 11119423 380.1
m9 359558.2 1788.3 4255.1 194.5
m10 10923.3 265.7 1197.5 71.5

300 m1 289.9 5.8 288.2 6.6
m2 291.1 6.8 286.6 6.8
m3 543.7 27.2 639.6 47.0
m4 290.2 6.1 291.1 8.1
m5 1530.7 77.4 286.8 6.8
m6 599.5 40.4 328.9 15.3
m7 362.8 20.9 295.8 9.8
m8 156429178 815.3 141777570 857.2
m9 746330.2 1830.3 9126.4 198.7
m10 23088.1 266.7 2659.6 71.9

The models for three-dimensional case are:

m1(X1, X2) = X1 +X2 +X3,

m2(X1, X2) = cos(X1) + exp(X2)− exp(X3),

m3(X1, X2) = X2
1 +X3

2 +X3,

m4(X1, X2) = sin(X1) +X2 + sin(X3),

m5(X1, X2) = X1X2X3,

m6(X1, X2) = sin(X1) + sin(X2) sin(X3),

m7(X1, X2) = X1 +X2
2 ∗X1/2

3 ,

m8(X1, X2) = X1 +X2 ∗X3,

m9(X1, X2) = sin(X1 +X2 +X3),

m10(X1, X2) = exp(X1/4 +X2/4−X3/2).

The average results of 1000 simulation runs is reported on

Table III. The same pattern observed in the two-dimensional

cases is observed for the three-dimensional case. As the

sample size increases the local polynomial estimator seems
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to significantly improve (lower ORSS) for most additive

and non-additive models, while the additive regression only

improves for additive models. Note that, for sample size 300,

the interaction model m5 is extremely difficult for the additive

regression. The ORSS is almost 18 times larger than that of

the local polynomial regression.

TABLE III
MSE AND MSE ORACLE FOR MODELS WITH 3 COVARIATES

ntrain Model Additive Local Polynomial
RSS ORSS RSS ORSS

50 m1 35.2 16.2 27.3 24.4
m2 598.9 118.2 1283.1 278.1
m3 70.9 33.5 97.4 71.2
m4 35.3 16.6 29.3 26.2
m5 2957.6 322.7 34.9 36.0
m6 44.2 25.2 29.4 27.3
m7 516.8 130.4 35.5 32.5
m8 178.9 74.1 27.2 24.2
m9 51.6 32.8 32.9 32.6
m10 44.8 24.4 27.8 24.7

150 m1 133.6 9.8 124.2 13.0
m2 2105.3 115.4 6139.1 275.5
m3 256.7 29.0 452.1 70.8
m4 137.4 10.2 132.4 16.0
m5 11952.0 335.5 154.1 22.4
m6 168.5 22.5 133.1 17.2
m7 2134.9 138.9 164.4 24.5
m8 699.9 76.6 126.1 12.9
m9 202.0 31.9 154.4 24.1
m10 172.8 21.5 126.3 13.5

300 m1 282.0 7.2 273.3 9.0
m2 4382.3 113.1 13721.0 278.8
m3 535.4 28.4 1001.3 72.1
m4 284.4 7.6 288.5 13.0
m5 25869.1 338.2 333.4 19.1
m6 354.4 21.4 296.3 14.8
m7 4620.4 139.1 366.5 22.5
m8 1507.8 77.3 275.4 8.9
m9 423.2 31.6 337.4 22.6
m10 372.1 20.2 275.3 9.7

IV. VARIABLE SELECTION

Now suppose we have a set of available predictors X =
(X1, . . . , Xd), however only a subset of them, whose indices

we denote by I0 = (i1, . . . , id0
) are significant in predicting

the response Y .

In order to select the predictors, the classical linear

regression uses stepwise procedures such as the backward

elimination of the forward selection. These methods are

usually based on the AIC, BIC or Mellow’s Cp criteria to

add or exclude a variable from the model at each step. The

algorithm usually stops when adding or excluding a variable

does not decrease the chosen criterium. We propose using

a backward elimination procedure for the local polynomial

regression and for the additive regression based on the AIC

computed from these procedures [27], [24].

We simulated data from the model

Y = m(X) + ε,

where X = (X1, . . . , X4), Xj , j = 1, . . . , 4 are i.i.d. Uniform

in [0,5], and ε ∼ N(0, 1). The average of correctly selected

models for 1000 simulation runs is shown in Table IV for

several different models. Note that out of 4 total available

predictors, only 2 or 3 of them should be selected as significant

depending on the true underlying data generating model.

Clearly, the local polynomial regression always selects all

important predictors and never selects unwanted ones. On the

other hand, the additive regression always selects significant

predictors but in 15 to 42 percent of the time includes

predictors that are not significant.

TABLE IV
MSE AND MSE ORACLE FOR MODELS WITH 3 COVARIATES

Model Additive Local Polynomial
m(X) correct incorrect correct incorrect

n = 100 X1 +X2 2 .42 2 0
X1X2 2 .38 2 0
X1 +X2 +X3 3 .17 3 0
X1X2X3 3 .20 3 0

n = 200 X1 +X2 2 .32 2 0
X1X2 2 .39 2 0
X1 +X2 +X3 3 .19 3 0
X1X2X3 3 .15 3 0

V. REAL DATA ANALYSIS

We applied the variable selection with backward elimination

and local polynomial fit to the Boston housing dataset [28].

The variable Y = median value of owner-occupied homes in

$1000’s was used and the predictors were: Per capita crime

rate by town, proportion of residential land zoned for lots over

25,000 sq.ft., proportion of non-retail business acres per town,

nitric oxides concentration (parts per 10 million), average

number of rooms per dwelling, proportion of owner-occupied

units built prior to 1940, weighted distances to five Boston

employment centres, pupil-teacher ratio by town, 1000(Bk -

0.63)2 where Bk is the proportion of blacks by town, and %

lower status of the population.

The proposed procedure selected: Proportion of residential

land zoned for lots over 25,000 sq.ft., proportion of non-retail

business acres per town, average number of rooms per

dwelling, proportion of owner-occupied units built prior to

1940, weighted distances to five Boston employment centres,

pupil-teacher ratio by town, 1000(Bk - 0.63)2 where Bk is

the proportion of blacks by town, and % lower status of the

population, that is, only two predictors were excluded. An

interesting graph is the plot of the weighted distances to five

Boston employment centres and the response Median value

of owner-occupied homes in $1000’s shown in Fig. 1. The

non-linear relationship of these two variable is very easily

seen, which makes nonparametric regression an essential tool

in this analysis.

VI. CONCLUSION

In the search, for regression models that demonstrate easy

interpretation of the relationship of the predictors with the

response, the challenge of avoiding misspecification is of

great importance. In this paper the loss in predicting future

observations when using the additive model was investigated

in comparison with a full non-parametric local polynomial

regression. Although a simpler model and with additive effects

of each predictor, the additive regression obtained much

larger residual sum of squares of future observations for all
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Fig. 1 Scatterplot of Median income and weighted distances to five Boston employment centres

non-additive underlying models, while the local polynomial

regression had performance much closer to that of the additive

regression for additive models. The additive regression did not

improve with increasing sample sizes when the model was

misspecified, while the local polynomial regression always

improved the results with larger samples.

The variable selection procedures using additive regression

and local polynomial estimators, which rely on the fit studied

show that the the local polynomial estimator achieves better

results. The average number of insignificant selected predictors

is always 0 for the local polynomial method, while in average

22% or more of the time the additive model selects unwanted

predictors.
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