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 
Abstract—Based on the conjugate gradient (CG) algorithm, the 

constrained matrix equation AXB=C and the associate optimal 
approximation problem are considered for the symmetric arrowhead 
matrix solutions in the premise of consistency. The convergence 
results of the method are presented. At last, a numerical example is 
given to illustrate the efficiency of this method.  

 
Keywords—Iterative method, symmetric arrowhead matrix, 

conjugate gradient algorithm. 

I. INTRODUCTION 

ET m nR  be the set of m n  real matrices, n nSAR  be the set 
of n n  real symmetric arrowhead matrices and nI  be the 

identity matrix of order n . For any m nA R  , TA , †A , 
F

A  and 

2
A  denote the transpose, Moore-Penrose generalized inverse, 

Frobenius norm and Euclid norm, respectively.  

For any , m nA B R ,  , 0TA B trace B A   denotes the 

inner product of A  and B . Therefore, m nR   is a complete 
inner product space endowed with 2

,A A A . For any 

non-zero matrices 1 2, , , m n
kA A A R , if 

, T
j i iA A trace A   0jA i j  , then it is easy to verify 

that 1 2, , , kA A A  are linearly independent and orthogonal. 

Proposition 1. Let , n nA B R , then 

( ) ( );Ttrace A trace A ( ) ( )trace AB trace BA
( ) ( ) ( )trace A B trace A trace B    

Definition 1. If a matrix   n n
ijA a  R  satisfies the following 

form:  
 

11 12 13 1

21 22

31 33

1
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0 0

0 0

n

n nn

a a a a

a a

A a a

a a

 
 
 
 
 
 
 
 





    


 

 
then we denote that A  is arrowhead matrix, this type of matrix 
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set is denoted as n nAR . If 1 1i ia a ( 1, 2, , )i n  , then we 

denote that A  is symmetric arrow-head matrix, this type of 

matrix set is denoted as n nSAR .  ivec A  denotes a vector 

 11 21 1 22 33, , , , , , ,
T

n nna a a a a a  . 

Symmetric arrowhead matrices have many applications in 
the modern control theory which can represent the parameter 
matrix of nonlinear control systems or the large sparse matrix in 
the linear systems [1], [5]-[7]. With the development of 
electromagnetic compatibility, the mathematical representation 
of the influence factors of electromagnetic interference also has 
potential application value. In this paper, we consider the 
following constrained matrix equation 

 
                  AXB C                                  (1) 

 

in which m nA R , n sB R , m sC R . The above matrix 
equation and other constrained matrix equations have been 
studied in [2], [3], [8], [9], etc. Peng et al. [4] analyzed CG 
algorithm to obtain corresponding symmetric solutions, 
skew-symmetric solutions, centro-symmetric solutions and so 
on. Based on the classical method, we will utilize the operable 
iterative method to find the symmetric arrowhead matrix 
solution of the matrix equation (1). 

II. THE CONJUGATE GRADIENT ALGORITHM 

In this section, by means of the study of the classical CG 
algorithm for solving the linear matrix equation in [4], we 
propose the following algorithm to solve the matrix equation (1) 
for the symmetric arrowhead solution and give some main 
results in detail. 

Firstly, we define the following linear operator: 
 

                        
 

:
n n n n

X X

     

R AR
                               (2) 

 

in which    11 11 11 112 .X E X XE diag X E XE      

According to the properties of the inner product matrix, it is 
easy to verify that 
 

   , , ,X Y X Y X Y   
 

 

in which n nX R , n nY AR . Here we discuss the iterative 
algorithm of the matrix equation (1) as: 
 
 

Conjugate Gradient Algorithm for the Symmetric 
Arrowhead Solution of Matrix Equation AXB=C 

Minghui Wang, Luping Xu, Juntao Zhang 

L



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:11, 2016

594

 

 

Algorithm CG-W. 
Step1. Initialization. For initial matrix 1

n nX SAR , compute 
 

 

   

1 1

1 1

1

1 1 11 1 1 11 1 11 1 11

,

,
2

2 .

TT T T T

R C AX B

A R B A R B
P

Q P E P PE diag P E PE

 




     

 

 

Step2. Iteration. For 1, 2,k   , compute 
 

2

1 2
,k

k k k

k

R
X X Q

Q
    

 
Step3. Compute 

 

 

 
 

1 1

1 1

1

1

1 1 2

,

,
2

.

k k

TT T T T
k k

k

T
k k

k k k

k

R C AX B

A R B A R B
P

trace P Q
Q P Q

Q

 

 



 

 




  

 

 

if 1 0kR   or 1 0kR   , 1 0kQ   , stop; otherwise continue to 

step (2). 
By algorithm CG-W it is clear that: 
 

n n
iP SR , n n

iQ SAR , n n
iX SAR , 1,2,i   . 

 
The following will demonstrate that the algorithm CG-W is 

terminated by a finite iterative step. 

Lemma 1. The sequences  iR and  iQ generalized by 

Algorithm CG-W satisfy 
 

     
2

1 2
,   , 1, 2,iT T

i j i j i j

i

R
trace R R trace R R trace Q P i j

Q
     (3) 

 

Proof: Since T
i iP P , T

i iQ Q , by Algorithm CG-W, we have 
 

   

 

 

2

1 1 2

2

2

2

2

                     

                     

T

T iT
i j i j i i j

i

T i T T
i j i j

i

T T T
i j iiT

i j

i

R
trace R R trace C AX B R trace C A X Q B R

Q

R
trace C AX B R B Q A R

Q

Q A R B Q A RR
trace R R trace

Q

 

                     
 

   
  


 

 

 
 

   

2

2

2

2

2

                     
2

                     .

TT
j

TT T T T
i j j

iT
i j

i

iT
i j i j

i

B

Q A R B A R BR
trace R R trace

Q

R
trace R R trace Q P

Q

 
 
 
 
        
 
 

  

 

Lemma 2. For 2k  , the sequences iR ,  iQ generalized by 

Algorithm CG-W satisfy 
 

   0,  0,T T
i j i jtrace R R trace Q Q  , 1, 2, , ,i j k  i j    (4) 

 

Proof：We shall prove this lemma by induction. 

First, notice that n n
iP SR , n n

iQ SAR , by Lemma 1 and 

Algorithm CG-W, we obtain  
 

     

   

2

1
2 1 1 1 1 12

1

2 2
2 21 1

1 1 1 1 1 12 2

1 1

                   0,

T T

T

R
trace R R trace R R trace Q P

Q

R R
R trace Q Q R trace Q Q

Q Q

 

    

 
as well as 

   
 

     

2 1

2 1 2 1 12

1

2 1 2 1                   0.

T
T

T

T

trace P Q
trace Q Q trace P Q Q

Q

trace P Q trace P Q

  
    
  
   

   

 

 

Suppose that (4) holds for 2k s  and notice that 

 1 0T
s strace Q Q   .According to Lemma 1, we have 

 

        

 

   

2 2
2

1 2 2

2
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12 2

1

2
12

2 2
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s sT T
s s s s s s s s s

s s

T
s ss

s s s s

s s

T
s ss T

s s s

s s

R R
trace R R trace R R trace Q P R trace Q P

Q Q

trace P QR
R trace Q Q Q

Q Q

trace P QR
R trace Q Q t

Q Q












    

  
    

    

    

 

1

2
2

2
                     0 ,

T
s s

s T
s s s

s

race Q Q

R
R trace Q Q

Q



 
 
  

  

 

 
and 

   
 

    

1

1 1 2

1 1                     0.

T
T

s tT
s s s s s

s

T T
s s s s

trace P Q
trace Q Q trace P Q Q

Q

trace P Q trace P Q


 

 

  
    
  
   
     

 

 

Thus, by Lemma 1, it is clear that  1 0T
s jtrace R R   when 

1j  . And we notice that   0T
s jtrace R R  ,   0T

s jtrace Q Q  , 

 1 0T
s jtrace Q Q   for 2,3, , 1j s  . By Lemma 1 and 

Algorithm CG-W, we have 
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        

 

   

2 2

1 2 2

2
1

12 2

1
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2 2
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s sT T
s j s j s j s j

s s

T
j js

s j j

s j

T
j js T T

s j s

s j

R R
trace R R trace R R trace Q P trace Q P

Q Q

trace P QR
trace Q Q Q

Q Q

trace P QR
trace Q Q trace Q

Q Q












    

  
    
  
   

    1 0,jQ 

 
  
 
 

 
 
and 

   
 

      

   

1

1 1 2

1

1 2
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                      .
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s

T
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s j s j

s
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Q

trace P Q
trace P Q trace Q Q

Q

trace P Q trace Q P


 




 

  
    
  
   

    

 

 

which gives 
 

       

   

2

1 1 1 1 12

2

1 1 12
                      0 ,

jT T T
s j j s j s j s

j

j T T
s j s j

j

R
trace Q Q trace Q P trace R R trace R R

Q

R
trace R R trace R R

Q

    

  

    

    

 

 

Thus, (4) holds when 1k s  . By the induction, we know that 
(4) holds for when , 1, 2, , ,i j k  i j . 

Lemma 3. Suppose that the equation is consistent and *X  is 

one solution of (1), then the sequences  iR and  iQ  

generalized by Algorithm CG-W satisfy 
 

       2* ,  1, 2,k k ktrace X X Q R k                         (5) 

 
Proof: We shall also prove this lemma by induction. First of all, 
when 1k   we have 
 

       

   

     

     

 

* * *
1 1 1 1 1 1

1 1*
1

* *
1 1 1 1

* *
1 1 1 1

*
1 1

2

2

2

TT T T T

T
T T

T
T T

T

trace X X Q trace X X P trace X X P

A R B A R B
trace X X

BR A X X X X BR A
trace

A X X BR A X X BR
trace

trace A X X BR trace C

               
     
  
   
      
  
      
  
         2

1 1 1 1 1 ,T TAX B R trace R R R    

 

 

Suppose that (5) holds when k s . Owing to 
 

 

     

2

* *
1 2

2 2
2*

2 2
0,

s
s s s s s

s

s s T
s s s s s s s

s s

R
trace X X Q trace X X Q Q

Q

R R
trace X X Q trace Q Q R trace Q Q

Q Q



  
             

       

 
we obtain 
 

     
 

   
   

     

1* *
1 1 1 1 2

1* *
1 1 12

1 1* *
1 1 1

   

2

T
s s

s s s s s

s

T
s s

s s s s

s

TT T T T
s s

s s s

trace P Q
trace X X Q trace X X P Q

Q

trace P Q
trace X X P trace X X Q

Q

A R B A R B
trace X X P trace X X


   


  

 
  

  
              

          

            
   

     

   

* *
1 1 1 1

2

1 1 1 1 1

2

.

T
T T
s s s s

T T
s s s s s

BR A X X X X BR A
trace

trace C AX B R trace R R R

   

    




      
  

     
 

 

By the induction, we know that (5) holds for 1,2,k   .  
Theorem 1. Suppose that the matrix equation (1) is consistent 

and for any initial matrix 1
n nX SAR , the sequence 

 kX generated by Algorithm CG-W converges to a solution of 

(1) after finite-steps. 
Proof: The proof is by contradiction. Assume that 0iR  , 

1, 2, ,i mp  , then by Lemma 3, we have 0iQ   

1, 2, ,i mp   and can further obtain 1mpX   and 1mpR  . If 

1 0mpR   , then according to Lemma 2 we get the orthogonal 

basis matrix set  1 2 1, , , ,mp mpR R R R  of m pR  , which 

contradicts the assumption. Thus, 1 0mpR   , and 1mpX   is the 

exact solution of (1). 
Theorem 2. Suppose that the matrix equation (1) is consistent, 
then we take the initial matrix 
 

 1 1X P  ,  1 2T T TP A HB BH A  , 

 

with any m sH R  (or specially, for 1 0 n nX  R ), the 

Algorithm CG-W converges to the minimum norm solution of 
(1) after finite-steps. 

Proof: If we take  1 1X P  ,  1 2T T TP A HB BH A   with 

any m sH R , by Algorithm CG-W, we can get a solution X̂  
of the matrix AXB C  after finite-steps, and there exists the 

matrix ˆ m sH R , such that  ˆ ˆX P   with 

 ˆ ˆ ˆ 2T T TP A HB BH A  . From  ˆ ˆA X X B AXB AXB     

we know that all the symmetric arrowhead solution of matrix 

equation AXB C can be expressed as X̂ X  with 
n nX SAR , satisfying 0AXB  . For  X X   , we 
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get   0A X B  , thus we have 

 

 

ˆ ˆ
ˆ ˆ, , ,

2

ˆ            , 0.

T T TA H B BHA
X X P X X

H A X B

 
     

 

  

  


 

 
thus we get 

2 2 22ˆ ˆ ˆX X X X X      

 

X̂  is the symmetric arrowhead minimum norm solution of (1). 
It is not difficult to verify the solution set of (1) is a closed 
convex set, therefore, the symmetric arrowhead minimum norm 
solution of (1) is unique. 

III. NUMERICAL EXPERIMENTS  

In this section, under the compatibility condition of the 
constrained matrix equation AXB C , we give an example to 
illustrate the efficiency and investigate the performance of 
Algorithm CG-W which has been shown to be numerically 
reliable in various circumstances. All functions are defined by 
Matlab 7.0 and all codes are calculated with machine precision 

around 910 . 

Example 1. Given  (1: 30* ), (30* ,11* )A toeplitz i zeros i i of 

row full rank,  (40* ); ( , 40* )B eye i ones i i of column full 

rank for 1,2, 5i   and C AXB .Given 0.5 ( , )Y ones n n  

and    11 1 11 112 .X E Y PY diag Y E YE      Notice that in 

this case, the matrix equation C AXB  is consistent and has a 
unique minimum norm solution. 

 
TABLE I 

THE ITERATIVE STEPS, ITERATIVE TIME AND RESIDUAL NORM OF THE 

ALGORITHM CG-W 
 CG-W 

1i   Iter 94 

CPU 0.282 

kR  
3.8626e-008 

2i   Iter 249 

CPU 1.690 

kR  
4.1348e-008 

3i   Iter 420 

CPU 7.995 

kR  
8.8017e-008 

4i   Iter 609 

CPU 23.669 

kR  
9.5693e-008 

5i   Iter 820 

CPU 62.574 

kR  
9.7150e-008 
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Fig. 1 Relation between error k  and iterative number K when 1i   

 
In Table I, we obtain iterative steps(Iter), Iterative time (CPU) 

and residual norm k k F
R AX B C   of the algorithm 

respectively. We set a stop criterion for 
710k k F

R AX B C    . Then, Fig. 1 plots the relation 

between error 10log ( )k AXB C    and the iterative number 

K  when 1i  . 
We choose the initial matrix 0 (41* ,41* )X zeros i i , the 

unique minimal norm solution of the matrix equation (1) is 
obtained by the algorithm CG-W. It can be seen from the Table 
I, when the order of the matrices A and B  is growing 
exponentially, the iterative steps of the algorithm CG-W is 
growth multiples. 
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