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Stability Analysis of a Human-Mosquito Model of
Malaria with Infective Immigrants

Nisha Budhwar, Sunita Daniel

Abstract—In this paper, we analyse the stability of the SEIR model
of malaria with infective immigrants which was recently formulated
by the authors. The model consists of an SEIR model for the human
population and SI Model for the mosquitoes. Susceptible humans
become infected after they are bitten by infectious mosquitoes and
move on to the Exposed, Infected and Recovered classes respectively.
The susceptible mosquito becomes infected after biting an infected
person and remains infected till death. We calculate the reproduction
number R0 using the next generation method and then discuss about
the stability of the equilibrium points. We use the Lyapunov function
to show the global stability of the equilibrium points.
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I. INTRODUCTION

ONE of the diseases that have constantly had its presence

in human population is malaria. It is caused by the entry

of the malarial parasite, Plasmodium into the bloodstream, due

to the bite of an infected female Anopheles mosquito. Years

have been spent in finding ways to control and completely

eradicate malaria from the human population, but all efforts

have been in vain. The disease was once endemic and confined

to certain parts of the world, but has now even spread to

areas which were previously free of the disease. Even when

eradicated for a period of time, it recurs in certain areas

repeatedly. One major factor which has contributed to the wide

spread nature of malaria is human migration and travel. An

area with an uninfected population of mosquitoes can also get

infected when an infected individual enters the area and is

bitten by these mosquitoes. There are no dormant forms of

malaria. If the parasite enters the body, it will surely cause a

disease, unlike certain other conditions in which the diseased

state does not occur even for years after infection.

It is logical to assume that infected humans will be unable

to travel or migrate due to the symptoms brought on by the

disease. However, there is a period of around 10 days to 4

weeks from the moment of infection to the actual onset of

disease, and unaware people might travel during this time.

During this period, the disease cannot be diagnosed by blood

tests either as the parasite multiplies in the liver, thus allowing

the infection to be carried to a new place. Such people will

become infectious after a certain period of dormancy. As a

result of this, immigration of infected people has a huge impact

on the spread of malaria within, as well as, among populations.

Sunita Daniel (Asistant Professor) is with the Amity School of
Applied Sciences, Amity University, Haryana-1220413, India (e-mail:
sdaniel@ggn.amity.edu).

Nisha Budhwar (Research Scholar) is with the Amity School of Applied
Sciences, Amity University, Haryana-1220413, India.

Even if the infected immigrants are not introducing the parasite

to a new population, their entry into an already infected

population will cause an increase in the infected mosquitoes

of the area as they will be biting more number of infected

people.

Several SEIR models for vector-borne diseases, with refer-

ence to malaria have been formulated [4], [8]-[10] and studied.

The global stability of SEIR and SEIS models have been

discussed in [1], [3], [5]-[7]. However, these models have

not considered the impact of infective immigrants. In [14],

an SIR model for malaria with infective immigrants has been

studied. So far there were no specific SEIR models for malaria

with infective immigrants until recently studied in [13]. In this

paper, we calculate the disease-free equilibrium point and the

endemic equilibrium point of the model formulated in [13]

and analyse the local and global stability of these points.

The paper is organized in the following way: In Section

II, we calculate the equilibrium points and the reproduction

number R0. In Section III, we have study the local stability

of the equilibrium points and in Section IV, we have study the

global asymptotical stability of the disease-free and unique

endemic equilibrium points using the theory of Lyapunov

function [11], [12].

A. Formulation of SEIR Model

Let us denote the total population of human hosts as

Nh(t) and the total population of the female mosquitoes

as Nm(t). The human population Nh(t) is divided into the

following epidemiological subclasses: Susceptible, Exposed,

Infected and Recovered, denoted by Sh(t), Eh(t), Ih(t) and

Rh(t) respectively. Thus,

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t)

The mosquito population Nm(t) is divided into two sub-

classes: Susceptible and Infected, and they are denoted by

Sm(t) and Im(t) respectively. We assume that the mosquito

remains infectious for its entire lifespan. Thus,

Nm(t) = Sm(t) + Im(t)

We now consider a model in which the new members that

flow into the population are either infective or susceptible.

This flow is assumed to occur through birth or immigration at

constant rate Λ. We further assume that a fraction φ is infective

and a fraction α is exposed and the remaining fraction(1−φ−
α) is susceptible.

The system of non-linear differential equations which

describe the dynamics of malaria are formulated as:
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dSh

dt
= (1− φ− α)Λ− μhSh − βhShIm

dEh

dt
= αΛ + βhShIm − μhEh − νhEh

dIh
dt

= φΛ + νhEh − γIh − αhIh − μhIh

dRh

dt
= γIh − μhRh

dNh

dt
= Λ− μhNh − αhIh (1)

dSm

dt
= ρ− βmSmIh − μmSm − αmSm

dIm
dt

= βmSmIh − μmIm − αmIm

dNm

dt
= ρ− μmNm − αmNm

where βh=Interaction coefficient of susceptible human with

infectious mosquitoes, νh=Rate of progression of humans from

the exposed to the infectious state, μh=Natural death rate

of the human population, αh=Disease related death rate of

the human population, γ=Recovery rate of human population,

βm=Interaction coefficient of infected human with suscep-

tible mosquitoes, αm=Death rate due to control measures,

μm=Natural death rate, ρ=Recruitment rate of mosquitoes.

II. EQUILIBRIUM POINTS AND BASIC REPRODUCTION

NUMBER R0

A. Disease-Free Equilibrium

We get the disease-free equilibrium points when we assume

that the new recruits in the population are susceptible and do

not consist of exposed or infected persons. Hence we have

φ = α = 0..
In the absence of the disease, the diseased classes for

the humans viz., Exposed, Infectious and Recovered and the

diseased class for the mosquitoes viz., infectious mosquitoes

do not exist. Hence we have Eh = Ih = Rh = Im = 0. To

find the steady state solution, we set the right hand side of

the non-linear system of differential equations given by (1) to

zero.

Using the two conditions, the system of equations given

by (1) reduces to,

Λ− μhSh = 0
ρ− μmSm − αmSm = 0.

This implies that Sh = Λ
μh

and Sm = ρ
μm+αm

Thus, the disease-free equilibrium point of malaria model (1)

is given by;

E1 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, R

∗
h, S

∗
m, I∗m)

= ( Λ
μh

, 0, 0, 0, ρ
μm+αm

, 0, 0)

We shall now calculate the basic reproduction number R0.

B. Basic Reproduction Number R0

The basic reproduction number R0 is defined as the number

of secondary infectious that one infectious individual would

generate on average over the course of its infectious period.

There are many methods to calculate R0. We use the next

generation operation approach as given in [2]. When R0 < 1,

the disease will decline and eventually die out. When R0 > 1,

the disease will spread in the population. Hence this means that

the threshold quantity to be taken into account to eradicate the

disease is to reduce the value of R0 to be less than one.

According to [2], the matrix of FV −1 is called the next gen-

eration matrix for the model. The basic reproduction number

R0 is given by

R0 = σ(FV −1)

where σ(A) denotes the spectral radius of matrix A and the

spectral radius is the biggest non-negative eigenvalue of the

next generation matrix.

From the system, fi and vi are defined as

fi =

⎛
⎝ βhShIm

0
βmSmIh

⎞
⎠ (2)

and

vi =

⎛
⎝ (μh + νh)Eh

(γ + αh + μh)Ih − νhEh

(μm + αm)Im

⎞
⎠ (3)

The partial derivative of (2) with respect to (Ih, Im) and the

Jacobian matrix of fi at the disease free equilibrium point is:

F =

⎛
⎝ 0 0 βhSh

0 0 0
0 βmSm 0

⎞
⎠

Similarly partial derivative of (3) with respect to

(Eh, Ih, Im) and the Jacobian matrix of vi is

V =

⎛
⎝ μh + νh 0 0

−νh γ + αh + μh 0
0 0 μm + αm

⎞
⎠

The inverse of V is given as:

V −1 =

⎛
⎜⎝

1
μh+νh

0 0
νh

(μh+νh)(γ+αh+μh)
1

(γ+αh+μh)
0

0 0 1
μm+νm

⎞
⎟⎠

Now we have to find FV −1.

FV −1 =

⎛
⎝ 0 0 βhSh

(μm+αm)

0 0 0
βmSmνh

(μh+νh)(γ+αh+μh)
βmSm

(γ+αh+μh)
0

⎞
⎠

(4)

Thus

FV −1 =

⎛
⎝ 0 0 r

0 0 0
s t 0

⎞
⎠

where r = βhSh

(μm+νm) , s = βmνh

(μh+νh(γ+αh+μh))
and t =

βm

(γ+αh+μh)
.
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Now we calculate the eigenvalues of FV −1 and then

consider the largest eigenvalue. Consider |FV −1 − λI| = 0.

Then, the corresponding matrix is⎛
⎝ −λ 0 r

0 −λ 0
s t −λ

⎞
⎠

The characteristic equation is λ(λ2 − rs) = 0 and the

eigenvalues are λ = 0 or λ = ±√
rs.

The dominant eigenvalue of the matrix FV −1 is λ = +
√
rs.

Hence the reproduction number R0 =
√
rs. Thus,

R0 =

√
βhβmρνhΛ

μh(μm + αm)2(μh + νh)(γ + αh + μh)
.

C. Endemic Equilibrium Point

The set of non-linear differential equations given by (1)

can be reduced to the set of equations using conditions that

Sh + Eh + Ih + Rh = Nh and Sm + Im = Nm. The model

(1) reduces to

dEh

dt
= αλ+ βh(Nh − Eh − Ih −Rh)Im − μhEh − νhEh

dIh
dt

= φλ+ νhEh − γIh − αhIh − μhIh

dRh

dt
= γIh − μhRh

dNh

dt
= λ− μhNh − αhIh (5)

dIm
dt

= βm(Nm − Im)Ih − μmIm − αmIm

dNm

dt
= ρ− μmNm − αmNm

The endemic equilibrium point has been calculated in [13].

III. LOCAL STABILITY OF THE EQUILIBRIUM POINTS

In this section, we analyse the stability of the disease-free

equilibrium point and the endemic equilibrium point.

A. Disease-Free Equilibrium

The theorem tells us about the stability of the disease-free

equilibrium point.

Theorem 1: The disease-free equilibrium point

E1(
Λ
μh

, 0, 0, 0, ρ
μm+αm

, 0, 0) of the model (1) is locally

asymptotically stable if R0 < 1, otherwise it is unstable.

Proof: Linearization of system (1) at disease-free equilib-

rium E1(
Λ
μh

, 0, 0, 0, ρ
μm+αm

, 0, 0), gives the Jacobian matrix

as,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μh 0 0 0 0 −βhΛ
μh

0 −B1 0 0 0 βhΛ
μh

0 νh −B2 0 0 0
0 0 γ −μh 0 0

0 0 − βmρ
μm+αm

0 −B3 0

0 0 βmρ
μm+αm

0 0 −B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where B1 = μh+νh, B2 = γ+αh+μh and B3 = μm+αm.
The characteristic equation corresponding to the matrix is

(μh + λ)2(B3 + λ)(λ3 + p1λ
2 + p2λ+ p3)

where

p1 = B1 +B2 +B3

p2 = B1B2 +B1B3 +B2B3

p3 = B1B2B3 − βhβmνhρΛ
μhB3

The eigen values of characteristic equation are −μh,−B3

and roots of the polynomial λ3 + p1λ
2 + p2λ+ p3.

By Routh-Hurwitz criterion, the polynomial λ3 + p1λ
2+

p2λ+ p3 has roots with negative real part if p1p2 − p3 > 0.
Since p1p2−p3 = B2

1B2+(B2+B3)(B1B2+B1B3+B2B3)+
βhβmνhΛρ

μhB3
> 0,

the disease-free equilibrium point is locally asymptotically

stable.

B. Endemic Equilibrium Point

It has been proved in Theorem 3 of [13], that this endemic

equilibrium point is locally asymptotically stable under certain

conditions.

IV. GLOBAL STABILTY OF THE EQUILIBRIUM POINTS

The feasible region for the equilibrium points is given by

Ω = {(Sh, Eh, Ih, Rh, Sm, Im) ∈ R6
+ : 0 ≤ Nh ≤ Λ

μh
;

0 ≤ Nm ≤ ρ

μm + αm
}

A. Global Stability of Disease-Free Equilibrium

We now prove the global stability of the disease-free

equilibrium point.

Theorem 2: Let

μm = βhS
∗
h − αm, μh = βmS∗

m − αh (6)

Then if R0 ≤ 1 the disease-free equilibrium

E1 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
m, I∗m) = ( λ

μh
, 0, 0, 0, ρ

μm+αm
, 0, 0)

is globally asymptotically stable on Ω.

Proof: Consider the Lyapunov’s function,

L1(t) = (Sh−S∗
hlnSh)+Eh+Ih+Rh+(Sm−S∗

mlnSm)+Im

Since we are considering the disease-free equilibrium, we

have the condition that α = φ = 0.

Differentiating with respect to time,

L̇1(t) = Ṡh(1− S∗
h

Sh
) + Ėh + İh + Ṙh + ˙Sm(1− S∗

m

Sm
) + ˙Im

= (Λ − μhSh − βhShIm)(1 − S∗
h

Sh
) + (βhShIm − μhEh−

νhEh) + (νhEh − γIh − αhIh − μhIh) + (γIh − μhRh)+

(ρ − βmSmIh − μmSm − αmSm)(1 − S∗
m

Sm
) + βmSmIh−



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:2, 2017

92

μmIm − αmIm

= Λ(1− S∗
h

Sh
)−μhSh +μhSh + βhS

∗
hIm −μhEh −αhIh−

μhIh − μhRh + ρ(1 − S∗
m

Sm
) − (μm + αm)Sm + βmS∗

mIh+
(μm + αm)S∗

m − (μm + αm)Im.
On Ω, we have S∗

h = Λ
μh

and S∗
m = ρ

μm+αm
.

Substituting for S∗
h and S∗

m in the equation, we have

L̇1(t) = Λ(2− S∗
h

Sh
− Sh

S∗
h
) + Im(βhS

∗
h − μm − αm)− μhRh−

μhEh − Ih(αh + μh − βmS∗
m) + ρ(2− S∗

m

Sm
− Sm

S∗
m
)

Using condition (6), the equation reduces to

L̇1 = −Λ
(Sh−S∗

h)
2

ShS∗
h

−μh(Eh+Rh)−ρ
(Sm−S∗

m)2

SmS∗
m

− (μm+αm)

Hence L̇1(t) ≤ 0
By using LaSalle’s extension to Lyapunov’s method, the

limit set of each solution is contained in the largest invariant

set for which Sh = S∗
h and Sm = S∗

m which is the singleton

E1 = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
m, I∗m).This means that the disease-

free equilibrium E1 is globally asymptotically stable on Ω.

This prooves the theorem.

B. Global Stability of Endemic Equilibrium

We now prove global stability of the endemic equilibrium

E2 = (S∗∗
h , E∗∗

h , I∗∗h , S∗∗
m , I∗∗m ) which satisfies the steady state

equations:

(1− φ− α)λ− μhS
∗∗
h − βhS

∗∗
h I∗∗m = 0

αλ+ βhS
∗∗
h I∗∗m − μhE

∗∗
h − νhE

∗∗
h = 0

φλ+ νhE
∗∗
h − γI∗∗h − αhI

∗∗
h − μhI

∗∗
h = 0

γI∗∗h − μhR
∗∗
h = 0

ρ− βmS∗∗
m I∗∗h − μmS∗∗

m − αmS∗∗
m = 0

βmS∗∗
m I∗∗h − μmI∗∗m − αmI∗∗m = 0

Theorem 3: The unique endemic equilibrium E2 is globally

asymptotically stable in Ω whenever R0 > 1.

Proof: We construct a Lyapunov function of the form,

L2(t) = a1(Sh−S∗∗
h lnSh)+a2(Eh−E∗∗

h lnEh)+a3(Ih−I∗∗h

lnIh) + a4(Rh −R∗∗
h lnRh) + a5(Sm − S∗∗

m lnSm)+

a6(Im − I∗∗m lnIm)

where a1, a2, a3, a4, a5 and a6 will be chosen later.

Differentiating L2 with respect to time t along the solutions

of (1), we have,

˙L2(t) = a1Ṡh(1− S∗∗
h

Sh
) + a2Ėh(1− E∗∗

h

Eh
) + a3İh(1− I∗∗h

Ih
)

+a4Ṙh(1− R∗∗
h

Rh
) + a5 ˙Sm(1− S∗∗

m

Sm
) + a6 ˙Im(1− I∗∗m

Im
)

Substituting the expressions from system (1) at the endemic

steady state, we have

˙L2(t) = a1[μhS
∗∗
h (2− Sh

S∗∗
h

− S∗∗
h

Sh
)+βhS

∗∗
h I∗∗m (1− S∗∗

h

Sh
+

Im
I∗∗m

− ShIm
S∗∗
h I∗∗m

) + a2[αλ(2− Eh

E∗∗
h

− Eh

E∗∗
h

) + βhS
∗∗
h I∗∗m (1− Eh

E∗∗
h

+

ShIm
S∗∗
h I∗∗m

− ShImE∗∗
h

S∗∗
h I∗∗m Eh

)]+a3[φλ(2− Ih
I∗∗h

−I∗∗h
Ih

)+νhE
∗∗
h (1− Ih

I∗∗h
+

4
Eh

E∗∗
h

− EhI
∗∗
h

E∗∗
h Ih

)] + a4[γI
∗∗
h (1 +

Ih
I∗∗h

− Rh

R∗∗
h

− IhR
∗∗
h

I∗∗h Rh
)] + a5

[(μm+αm)S∗∗
m (2− Sm

S∗∗
m

− S∗∗
m

Sm
)+βmS∗∗

m I∗∗h (1− S∗∗
m

Sm
+

Ih
I∗∗h

− SmIh
S∗∗
m I∗∗h

)]+a6[βmS∗∗
m I∗∗h (1− Im

I∗∗m
+

SmIh
S∗∗
m I∗∗h

− SmIhI
∗∗
m

S∗∗
m I∗∗h Im

)]

.

We choose the coefficients, a1, a2, a3, a4, a5 and a6 as:

a1 = a2 =
βmS∗∗

m I∗∗h
βhS∗∗

h I∗∗m
, a3 =

βmS∗∗
m I∗∗h

νhE∗∗
h

, a4 = 0,

and

a5 = 1 = a6

Then L̇2 becomes,

˙L2(t) =
βmμhS

∗∗
m I∗∗h

βhI∗∗m
(2− Sh

S∗∗
h

− S∗∗
h

Sh
)+βmS∗∗

m I∗∗h (5− S∗∗
h

Sh

−S∗∗
m

Sm
− E∗∗

h I∗∗h
EhIh

− ShImE∗∗
h

S∗∗
h I∗∗m Eh

− SmIhI
∗∗
m

S∗∗
m I∗∗h Im

)+
αλβmS∗∗

m I∗∗h
βhS∗∗

h I∗∗m

(2− Eh

E∗∗
h

− E∗∗
h

Eh
) +

φλβmS∗∗
m I∗∗h

νhE∗∗
h

(2− Ih
I∗∗h

− I∗∗h
Ih

)+

(μm + αm)S∗∗
m (2− Sm

S∗∗
m

− S∗∗
m

Sm
)

Since

(2− Sh

S∗∗
h

− S∗∗
h

Sh
) ≤ 0,

(5− S∗∗
h

Sh
− S∗∗

m

Sm
− E∗∗

h I∗∗h
EhIh

− ShImE∗∗
h

S∗∗
h I∗∗m Eh

− SmIhI
∗∗
m

S∗∗
m I∗∗h Im

) ≤ 0,

(2− Eh

E∗∗
h

− E∗∗
h

Eh
) ≤ 0,

(2− Ih
I∗∗h

− I∗∗h
Ih

) ≤ 0, (7)

(2− Sm

S∗∗
m

− S∗∗
m

Sm
) ≤ 0,

We have ˙L2(t) ≤ 0. Hence, by Lyapunov’s first theorem

the endemic equilibrium

E2 = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , S∗∗

m , I∗∗m ) is globally asymptoti-

cally stable.
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V. CONCLUSION AND FUTURE WORK

In this paper, we found the disease free equilibrium point

by assuming that the new immigrants in the population are

susceptible and do not contain any exposed or infected indi-

viduals. The reproduction number R0, was calculated using

the Next Generation Method in order to find the number

of secondary infections that one infectious individual would

generate. The endemic equilibrium point has already been cal-

culated in [13]. The disease free equilibrium and the endemic

equilibrium were found to be stable and the global stability

was found for these equilibrium points using the Lyapunov

function.

In this paper, we have not carried out the numerical sim-

ulation and sensitivity analysis of the given system, which is

necessary to understand the full extent of the effect of infective

immigrants on the spread of malaria in a population. For future

work, it would be interesting to note the change in parameters

which would affect the epidemiology of this highly infectious

disease, thus providing a way to combat the spread of the

disease among new populations.
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