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Abstract—Terms set in power purchase agreements (PPA) 

challenge power utility companies in balancing between the returns 
(from maximizing power production) and securing long term supply 
contracts at capped production. The production limitation set in the 
PPA has driven efforts to maximize profits through efficient and 
economic power production. In this paper, a combined industrial-
scale gas turbine (GT) - absorption chiller (AC) system is considered 
to cool the GT air intake for reducing the plant’s heat rate (HR). This 
GT-AC system is optimized while considering power output 
limitations imposed by the PPA. In addition, the proposed 
formulation accounts for uncertainties in the ambient temperature 
using Type-2 fuzzy programming. Using the enhanced chaotic 
differential evolution (CEDE), the Pareto frontier was constructed 
and the optimization results are analyzed in detail. 

 
Keywords—Absorption chillers, turbine inlet air cooling, power 

purchase agreement, multiobjective optimization, type-2 fuzzy 
programming, chaotic differential evolution. 

I. INTRODUCTION 

HE overall efficiency of the generation system is a key 
element in power production. Optimizing the system 

increases its efficiency resulting in higher power production. 
Most current power producers are bound contractually with the 
consumer by a PPA [1], [2]. Some of these contracts require 
that the amount of power supplied remains fixed throughout 
the period of purchase. Although engineers and plant personnel 
manage to optimize the plant efficiency significantly, the 
surplus power produced could not be sold to the consumer due 
to the terms in the PPA. PPAs impose an upper limit on the 
power that the supplier can produce for the client (according to 
the electricity rates decided in the PPA) above which they 
would not be paid for any excess amounts. Maintaining a 
standby capacity is also sometimes a requirement spelled-out in 
the PPA, and hefty fines could be imposed if these capacities 
are not available. Thus, to optimize a gas power plant, the 
supplier would need to look at other engineering aspects 
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without increasing the GT power output such that the PPAs are 
respected and the overall plant thermal efficiencies are 
increased. One effective approach is to increase the thermal 
efficiency of the GT via reducing its HR while maintaining 
constant power supply. By this way, the overall fuel 
consumption of the GT could be minimized, and power could 
be generated in a more efficient, cheaper, and environmentally 
friendly manner. This increase in efficiency could also 
contribute to the increase in GT engine lifetime since it is 
operating at its optimal setting. This work aims to optimize the 
design and operation parameters related to the cooling of the 
turbine inlet air achieved through an AC system without 
maximizing the total power supplied to the consumer. 

There are several methods used to optimize GT operations. 
For instance, in [3], the thrust and specific fuel consumption 
was optimized using the General Algebraic Modeling System 
(GAMS) computer program. In [4], a GT engine was optimized 
using an evolutionary approach called StudGA. The 
optimization was aimed to improve the GT thrust while 
minimizing the blade temperature and maintaining the fuel 
consumption. Similarly, in [5], a swarm intelligence strategy 
was employed to improve the performance of the turbine by 
optimizing the fuel flow controller. 

As industrial systems become more complex, engineers and 
decision makers often find themselves in situations involving 
multiple objectives or criteria [6]-[8]. Multicriteria scenarios 
have been encountered in power generation and aerospace, 
especially when dealing with GTs. For instance, in [9], a 
Multiobjective Genetic Algorithm (MOGA) was employed for 
optimizing the geometry of aeronautical GT discs. In that work, 
the authors considered fatigue life prediction and total 
geometrical mass as objective functions. In [10], the modeling 
and optimization of a micro turbine cycle was done, where the 
considered design parameters are: compression ratio, 
compressor isentropic efficiency, combustion chamber inlet 
temperature, and turbine inlet temperature. The authors 
considered power exergy efficiency, total cost, and carbon 
dioxide emission of the plant as the three objectives to be 
optimized. In this work the Differential Evolution (DE) 
technique is employed in conjunction to the weighted sum 
approach [11]. To obtain a solution closer to the global optima, 
the random generator of the conventional DE technique is 
enhanced with a chaotic component - producing the Chaotic-
Driven DE Technique (CDDE). The Hypervolume Indicator 
(HVI) was then employed for the purpose of measuring the 
solution quality [12]. 
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This paper presents the novel modeling of a real-world 
combined GT and AC multicriteria optimization problem for 
an open cycle plant. The ambient air conditions directly 
influence the turbine inlet air temperature and subsequently the 
plant’s HR. To account for uncertainties in the ambient air 
temperature, the combined GT-AC system was modeled using 
a Type-2 fuzzy programming approach. This multicriteria 
fuzzy optimization problem was solved using the improved 
CDDE strategy [13]. Optimization results are analyzed and 
discussed in this paper. 

II. AMBIENT TEMPERATURE MODELING USING TYPE-2 FUZZY 

LOGIC 

Type-2 fuzzy sets are generalizations of the conventional or 
type-1 fuzzy sets [14]. The primary feature of the Type-1 fuzzy 

set is its membership function, ]1,0[)( xF  and Xx . 

Type-2 fuzzy logic (FL) employs a membership function of a 

second order, ]1,0[))(,( xy FF   such that Yy  . 

Therefore, ))(,( xy FF   is a membership function that 

requires three-dimensional inputs. The type-2 fuzzy set is 
defined as: 
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The type-2 membership function has two membership 

grades: primary and secondary memberships. Thus, a crisp set 
(or function) undergoes fuzzification twice such that the first 
fuzzification transforms it to a type-1 fuzzy set (via the primary 
membership function). Using the secondary membership 
function the type-1 fuzzy set is transformed to a type-2 fuzzy 
set. In simpler terms; the type-2 fuzzy set results from the 
fuzzification of a type-1 fuzzy set. This operation aims to 
improve its efficacy and accuracy in capturing uncertainties. 
The region covered by the type-1 fuzzy sets in type-2 FL 
systems is represented by the footprint of uncertainty (FOU). 
This region of uncertainty is contained by the uppermost and 

lowermost type-1 membership functions )(xU
F and )(xL

F  

respectively. A type-2 FL system usually consists of four 
subcomponents: fuzzifier, inference engine, type reducer and 
defuzzifier. The fuzzifier directly transforms the crisp set into a 
type-2 fuzzy set. The inference engine functions to combine 
rules to map the type-2 fuzzy set from crisp inputs. Therefore, 
each rule is interpreted as a type-2 fuzzy implication in the 
inference engine. In this work, all the consequent and 
anteCEDEnt sets are generalized type-2 fuzzy sets. The rule, Ri 
from a type-2 FL system could be generally represented as 
follows: 

 

Ri : IF x1 is 1M AND….AND xj is jM  THEN y1 is 1N ,…, yk 

is kN  such that ],1[ Zi                         
(2) 

 

where j is the number of fuzzy inputs, k is the number of fuzzy 
outputs and i is the number of rules. The type reducer functions 
to transform (or reduce) the type-2 fuzzy set to a type-1 fuzzy 
set. Various type-reduction approaches have been developed in 
the past. For instance: centroid type reduction [15] vertical 
slice-centroid type reduction [16], alpha cuts/planes [17] and 
the random sampling technique [18]. Defuzzification on the 
other hand reduces the type-1 fuzzy set to a crisp output similar 
to operations in conventional type-1 FL systems. There are 
various defuzzification techniques which are employed 
selectively to suit specific data representations and applications 
[19]. 

Energy systems that rely on their surroundings are often 
difficult to design if the surroundings contain irregularities or 
uncertainties. In GT-AC systems, the ambient temperature is a 
weather-dependent variable. Using meteorological data, the 
type-2 FL is employed to model and incorporate ambient 
temperature considerations into the problem formulation. The 
meteorological information for Sepang – Kuala Lumpur 
International Airport AB (KLIA) at Malaysia was retrieved 
from the weather database [20]. The daily average ambient 
temperature (K) was obtained for the month of January in 
2016. The primary membership function, )(xF  was 

employed to model the weekly data, while the secondary 
membership function, ))(,( xy FF   was used to model the 

overall monthly data. The S-curve function is employed as the 
primary and secondary membership functions. Therefore type-
2 fuzzification is performed on the ambient temperature using 
the S-curve membership function. This is carried out by 
determining the average, maximum, and minimum values of 
insolation and ambient temperature from the meteorological 
data. The S-curve membership function is as: 
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where B and C are parameters which are tuned heuristically 
such that the membership fits the meteorological data 
effectively. Using Zadeh’s extension principle, all crisp 
variables (ambient temperature (Za) and insolation (Zb)) and 
their respective constraints are transformed via type-2 
fuzzification. Assuming a credibility level , (

C
B
 10   ) 

chosen by the Decision Maker (DM), as the DM takes a risk 
and ignores all the membership degrees smaller than the  
levels [21]. The FOU is the union of all the primary 
memberships [22]. In this case, the union of all the primary S-

curve memberships, )(xF  for each day depicts the FOU: 

Let  ]1,0[)(  i
x

i
F Jx  such that ],[ ULi  , THEN 
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where i
xJ  is the fuzzy set, L is the lower bound and U is the 

upper bound. A graphical depiction of the FOU generated by 
the primary S-curve memberships in this work is given in Fig. 
2. There are many readily available techniques for type-
reduction and defuzzification. In this work, the alpha-plane 
approach [17] was employed for type-reduction, while the 
conventional alpha-cut approach [23] was used for the 
defuzzification. An alpha cut can be defined on a fuzzy set, 

F via its decomposed form as: 
 


]1,0[




 FF    (5) 

 

where F  is an  level set. Similarly, an alpha-cut on a 

type-2 fuzzy set could be performed via the decomposition 
theorem. Since this operation is performed on a type-2 fuzzy 
set, it is defined as an alpha-plane instead of an alpha cut: 
 


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
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 where F   is a type-2   level set. It should be noted that 

by using Zadeh’s extension principle, the alpha-planes could be 
utilized to execute type-2 fuzzy operations using interval type-
2 fuzzy sets. This is analogous to implementations in type-1 
fuzzy sets since the extension principle could be evoked to 
extend functions that interrelate crisp, type-1 fuzzy as well as 
type-2 fuzzy sets. 

III. GT-AC DYNAMIC MODEL 

The model developed in this work is of a combined GT and 
AC system – where the AC is used to cool the compressor inlet 
air of the GT. The AC system uses a lithium bromide (LiBr) - 
water solution as a refrigerant and working fluid. This cooling 
is aimed to enhance the performance of the GT in terms of: 

overall thermal efficiency ( th  ) as well as lowering the HR. 

The GT simulation in this work was modeled based on a V94.2 
Siemens GT with a rated speed of 3000 rpm and a rated 
capacity of 131.5 MW. The GT in the plant as well as in the 
simulation is operated at a base load 123 MW. The heat 
exchangers design, pumps, and compressor formulations were 
neglected in this model since they have very minimal effect on 
the overall optimization. A transient refrigeration load was 
considered in this work. The main components (evaporator, 
condenser, generator and absorber) thermal dynamics and 
balances in the AC are given as: 

 

dt

dQ

dt

dQ
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dQ
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dQ egac   (kcal/hr)         (7) 

 

where Qe, Qc, Qg, Qa are the heat transferred by the evaporator, 
condenser, generator and absorber (in kcal). The AC 
performance is gauged using the real and ideal coefficient of 
performance (COP) along with the relative performance ratio 
(RPR): 
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RPR               (9) 

 
where COPi is the ideal COP. The GT performance indicators 
are specific fuel consumption (SFC) (kg/kWh), HR (kJ/kWh) 
and thermal efficiency, nth: 

 

netfuel WmSFC  /3600             (10) 

 
LHVSFCHR           (11) 

 

LHVSFCnth  /3600               (12) 
 

where fuelm   is the mass flowrate of the fuel fed into the GT 

(in kg/s) and LHV is the lower heating value of natural gas (in 
kJ/kg). This optimization problem is formulated where the 
constraints were based on the chiller design specifications. Due 
to the dynamic nature of the model, the objective functions are 
time-averaged. Since the ambient temperature is fuzzified, the 
objective functions (HR’, COP’ and nth) become fuzzy as well: 

Max  Overall Thermal Efficiency, thn'  

Min  Heat Rate, RH   

Max Coefficient of Performance, PCO   
subject to the following constraints: 
 

3832  at , 185  et , 1000480  gt , 

3832  ct , 10  LE , 200,0  ga MM , 

2040EQ                 (13) 
 

where ta, te, tg, and tc are the component temperatures (ºC) of 
the absorber, evaporator, generator, and condenser. QE is the 
refrigeration load (kcal/h), and EL is the heat exchanger 
effectivity in the AC. Ma and Mg are the mass storage capacity 
of the sumps (kg) in the AC. The PPAs impose an additional 
constraint to the problem formulation. The minimal amount of 
power required to be supplied at all time is 129 MW. The PPA 
considered here allows for a maximal supply of 7.8% above 
minimal supply power which translates to about 10 MW. 
Therefore, the maximum power supply is limited to as follows: 
 

139netW
             

(14) 
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IV. CHAOS-DRIVEN DIFFERENTIAL EVOLUTION (CDDE) 

DE is a class of evolutionary meta-heuristic algorithms first 
introduced in the mid-nineties [24]. The incorporation of 
perturbative methods into evolutionary techniques is the 
fundamental theme of DE. DE starts by generating a population 
of a minimum of four individuals denoted, P. These individuals 
are real-coded vectors with some specified size, N. The DE 
algorithm is augmented to enhance its optimization capabilities 
by the addition of the chaotic component. The chaotic 
component diversifies the population further enabling it to 
thoroughly search the objective space. First, the population of 
vectors, xG

i was generated. The consequent steps are similar to 
the regular DE algorithm where one principal parent, xp

i and 
three auxiliary parents xa

i are randomly selected. Differential 
mutation is then performed and the mutated vector, Vi is 
generated. By recombining Vi with xp

i, the child trial vector, 
xchild

i is created. The obtained xchild
i is used as the input to the 

chaotic map [25]. The CEDE approach employed in this work 
follows closely the technique presented in [13]: 

 

)()( txtN child
ii                  (15) 

 

)()( tNtR ii                      (16) 
 

 )(1)()()1( tNtNtRtN iiii             (17) 
 

 )()1( tRtR ii                        (18) 
 

where N(t) and R(t) are variables in the logistic chaotic map,  
and are predefined relaxation parameters. Then, the logistic 
mapping is performed until a specific number of iteration is 
satisfied. The final value at maximum number of iteration of 
N(tmax) is incorporated into the child trial vector, xchildi. 
Hence, the child trial vector, xchildi undergoes another round 
of mutation by the chaotic map. Survival selection in the next 
generation is performed via ‘knock-out’ competition. The 
fitness function for the child trial vector, xchild

i is evaluated. 
Thus, another variant of the DE algorithm which is chaotically 
driven was developed. In this work, this algorithm is called the 
Chaotic-driven DE (CEDE). The algorithm for the CEDE 
technique is given in Algorithm 1: 
 
Algorithm 1: Chaos-Driven Differential Evolution (CDDE) 
Step 1: Set parameters: N and P. 
Step 2: Deterministically initializ population vectors, xG

i. 

Step 3: Iterate chaotic logistic map. 
Step 4: IF n > Nmax, proceed to next step 
  else go to Step 3. 
Step 5: Randomly select one principal parents, xp

i 

Step 6: Randomly select three auxiliary parents, xa
i 

Step 7: Perform differential mutation & generate mutated 
            vector, Vi 
Step 8: Recombine Vi with xp

i to generate child trial vector,  
            xchild

i 

Step 9: Evaluate fitness of the new xchild
i. 

Step 10: IF the halting conditions are fulfilled halt and print 
              solutions 

 else proceed to step 2 

V. COMPUTATIONAL RESULTS 

The fuzzy multicriteria problem is solved via the weighted-
sum approach. The COP and thermal efficiency objectives are 
in the range of 0 to 2 while the second objective, HR has 
values in the scale of 103. Thus, the HR objective was 
normalized using the high HR value of 8000 kJ/kWh: 
 

8000/RHRH           (19) 
 

The objective functions are optimized to obtain the chiller 
design parameters and the amount of GT air inlet cooling 
required, T  - while accounting for uncertainties in the 
ambient temperature data in the optimization model. The 
CEDE technique was employed in this work is incorporated 
with the chaotic component to boost its optimization 

performance. The relaxation parameter,  was varied to 
increase the degree of chaos in the CEDE. After rigorous 
testing, it was identified that the most optimal frontier is 
obtained when the CEDE is tuned with maximal chaotic 
capability (at 9.0 ). The nadir point (0.1, 1, 0.1) was 
employed as a reference in the HVI.  

The algorithms implemented in this work were developed 
using the C++ programming language on a personal computer 
with an Intel® Core ™ i5 processor running at 3.2 GHz. The 
entire Pareto frontier was constructed using compromised 
individual solutions obtained at different scalarization. Due to 
stochastic nature of the algorithm, the best individual solution 
was taken after five independent runs. The optimization 
carried out in this work was on a dynamic system for a 24-
hour cycle. Therefore, the objective values obtained here are 
time-averaged. The fuzzified ambient temperatures with 
respect to various membership grades are presented in Fig. 1. 

 

 

Fig. 1 Fuzzy Ambient Temperature versus membership grades 
 

The membership grade ))(,( xy FF   is more of a tensor 

since it takes vector values of )(xF as an input. To reduce its 

dimensions, ))(,( xy FF   values are averaged back into a 

vector form as depicted in Fig. 1. The ranges for the 
membership grades are as follows: 
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0.19579] , 0.00546[, SF  

17169]0.06648,0.[, SF          (20) 

 
Using type-2 fuzzy formulation to account for the 

uncertainties in the ambient temperature, the CEDE technique 
applied to the combined multiobjective GT-AC system. The 

optimal values for the overall thermal efficiency, thn'  is given 

in Fig. 2. 
 

 

Fig. 2 Overall Thermal Efficiency versus membership grades 
 

Based on Fig. 2, the variation in the thermal efficiency of 
the GT at all membership grades is 5.146% (corresponding to 
0.01608 differences in thermal efficiency). A maximum 
thermal efficiency of 0.3286 was obtained at 0.04298, TF  

and 0.13811, TF . The minimal thermal efficiency at 

0.00547, TF  and 0.15725, TF  was 0.3125. Figs. 3 and 

4 depict the normalized HR and the COP respectively relative 
to the primary and secondary membership values. 

The maximal variation in terms of the HR relative to the 
membership grades is 376.06 kJ/kWh. The maximum 
normalized HR is 0.72003 (5760.27 kJ/kWh) at 

0.15725, TF  and 0.00547, TF . The minimal 

normalized HR is 0.67302 (5384.22 kJ/kWh) at 
0.13811, TF  and 0.04298, TF . The HR fluctuates by 

about 6.9844%. On the other hand, the COP varies by 
2.08991% (0.04). It can be observed that the uncertainties in 
temperature variation significantly impacts HR and thermal 
efficiency of the GT while affecting the COP of the AC to a 
lesser degree. From these findings, it could be said that 
uncertainty in ambient temperatures highly influences the 
optimization on the GT operations as compared to the design 
of the AC. The temperature data considered here are only for 
over a range of a single month. When projected further to an 
annual scale the minor variations in the COP may translate to 
significant cost savings. Besides, this work focuses on a single 
unit combined GT-AC system; these variations in COP, 
thermal efficiency and HR may compound to produce a 
greater impact when considering multiple GT-AC systems. 

 

 

Fig. 3 Normalized HR versus membership grades 
 

 

Fig. 4 COP of AC versus membership grades 
 

 

Fig. 5 Scatter plot depicting the Pareto frontier at the membership 
values of 0.04298, TF  and 0.13811, TF  

 
The solutions obtained for various membership grades are 

measured using the HVI. The membership grade with the 
highest level of dominance in the objective space is 

0.04298, TF  and 0.13811, TF . The Pareto frontier 

obtained at various scalar values using the weighted-sum 
approach is given in Fig. 5. The ranked solutions (best, median 
and worst) of the Pareto frontier are given in Table I. 

In Table I, T  is the temperature difference achieved by 
the AC for cooling the turbine air inlet. 
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TABLE I 
RANKED SOLUTIONS FOR PARETO FRONTIER OBTAINED AT PARETO FRONTIER 

AT THE MEMBERSHIP VALUES OF 0.04298, TF  AND 

0.13811, TF  

Description Best Median Worst 

Objective Functions 

nth 0.3343 0.324 0.316 

HR 0.673 0.6945 0.7121 

COP 1.9366 1.9395 1.9172 

Decision Variable 

ta 35.8297 35.8152 32.4089 

te 7.9014 7.5902 7.6893 

tg 489.014 485.902 486.893 

tc 37.0986 37.4098 37.3107 

EL 0.5901 0.559 0.5689 

Ma 106.843 103.717 101.302 

Mg 106.843 103.717 101.302 

T  13.6545 7.4167 2.5977 

Parameters 
QE 379.245 395.578 930.307 

netW  133.727 129.59 126.394 

Metric HVI 341.4796 307.9167 113.01 

 
The overall frontier dominance trend follows the trend 

observed in the dominance of the individual solution points 
produced by the techniques employed in this work. It can be 
seen that in Fig. 5, the solutions are diversely spread 
throughout the objective space. The computational time taken 
for the complete construction of the Pareto frontier for each 
membership grade is approximately 50 – 60 seconds. The 
CEDE approach in this work performed stable computations 
exploring the objective space smoothly during program 
executions. All solution points used for constructing the Pareto 
frontier were feasible and no constraints were broken. The 
chaotic component was seen to boost the performance of the 
conventional DE technique enabling it to perform a more 

thorough search - by controlling the relaxation parameter,  . 
The PPA considered in this work limits the power output of 

the GT (14). Further optimization results in the minimization 
of the HR which increases the efficiency of the GT by 
lowering the fuel consumption. During the optimization of the 
GT (while considering the ambient temperature), the HR was 
observed to significantly vary (see Fig. 3). The mass of fuel 
consumed by the GT per kWh of power generated is attained 
by calculating the SFC (in kg/kWh). The SFC could be 
determined from the HR. In Fig. 3, the maximum HR of 
5760.27 kJ/kWh corresponds to 0.144 kg/kWh, while the 
minimum HR of 5384.22 kJ/kWh is about 0.1346 kg/kWh. 
Therefore, the SFC has a reduction of 6.528% from the 
maximum at different membership grades during optimization 
– while considering uncertainties in the ambient temperature. 

VI. CONCLUSIONS 

The Type-2 fuzzy framework was implemented to optimize 
the design and operations of the combined GT - AC system. 
The ambient temperature data contained two moments of 
uncertainty making it suitable to be captured using type-2 fuzzy 
inference. Using the CEDE evolutionary technique, the fuzzy 
formulation was effectively solved with the aid of the weighted 

sum approach. The solutions obtained maximized the GT 
thermal efficiency and HR while minimizing the COP of the 
AC. Due to the GT power output constraint imposed by the 
PPA, the optimization directly impacts the HR – resulting in 
lower fuel consumption (SFC). In future works, other 
metaheuristics could be tested on this problem – e.g. swarm 
algorithms; Bacteria Foraging [26] and Cuckoo Search [27] or 
other hybrid algorithms [28]. In addition, future projections on 
long-term cost-benefit analyses could be carried out to observe 
how the fuzzy optimization in this work affects the GT-AC 
system in fiscal terms. 
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