
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

275


Abstract—We treat the two-dimensional bin packing problem

which involves packing a given set of rectangles into a minimum
number of larger identical rectangles called bins. This combinatorial
problem is NP-hard. We propose a pretreatment for the oriented
version of the problem that allows the valorization of the lost areas in
the bins and the reduction of the size problem. A heuristic method
based on the strategy first-fit adapted to this problem is presented.
We present an approach of resolution by bee colony optimization.
Computational results express a comparison of the number of bins
used with and without pretreatment.

Keywords—Bee colony optimization, bin packing, heuristic
algorithm, pretreatment.

I. INTRODUCTION

HE bin packing problem has many industrial applications,
including the cutting of standardized stock units in the

wood, steel and glass industries, packing on shelves or truck
beds in transportation and warehousing, and the paging of
articles in newspapers. Many real problems can be modeled as
bin packing problems. However, each real problem has its own
specificities. The one-dimensional bin packing problem is
strongly NP-hard. This also applies in BPP-2D, since it is a
generalization of the one-dimensional version [1] and defined
as: Given a set of n rectangular items A = {a1,…,an} and a
number of larger identical rectangles called bins, the problem is
finding the minimum number of bins that must be used to pack
this set of items without overlapping.

Many papers deal with BPP-2D and most of them are
concerned with the case where the items have a fixed
orientation. Lodi et al. [3] have proposed an extensive survey.
We quote Berkey and Wang [4], who have presented a
heuristic version for the problem. Meta-heuristic procedures
have been presented in Lodi et al. [2] and Faroe et al. [5].
Lower bounds have been presented in Carlier et al. [6]. They
dominate the bounds introduced by Boschetti and Mingozzi
[7], Martello and Vigo [8] and Fekete and Schepers [9].

Few papers deal with the version of BPP-2D where items
may be rotated by 90◦. A heuristic method and new lower
bounds have been introduced by Boschetti and Mingozzi [10].
Lodi et al. [2] have presented a meta-heuristic algorithm based
on a tabu search method. Another tabu search method has been
proposed in Harwig and Barnes [11] where items are packed in
bottom left stable positions using the method presented in

Kenza Aida Amara and Bachir Djebbar are with the Department of

Computer Science, Faculty of Mathematics and Computer Science, University
of Science and Technology of Oran "Mohamed BOUDIAF" USTO MB,
B.p.1505 El-M'naouer, 31000, Oran, Algeria, (e-mail: aida.amara@univ-
usto.dz, bachir.djebbar@univ-usto.dz).

Chazelle [12].
In this paper, we are interested in the case where the items

have a fixed orientation. This version is known as 2BP|O|F
according to the classification proposed by Lodi et al. [2],
where the field denoted O means that the items are not rotated
by 90◦ and the field denoted F means that guillotine packing
are not imposed. We consider that each item ai = (Li, li) in A
has a width Li and a height li. We denote as L and l the width
and the height of the bin B, B= (L, l).An instance I of a BPP-
2D|O|F is then defined by the pair (A, B). The minimum
number of bins required to pack all the items of an instance I is
denoted as OPT (I). Li is the greatest dimension of item ai, and
li the other dimension. The largest and smallest dimensions of
the bin are, respectively, L and l.

This paper is organized as follows: In Section II, we
develop mathematically a pretreatment with fixed orientation.
The strategy used to represent a solution based on a first-fit
algorithm adapted to this problem is described in Section III.
In Section IV, we are interested in modeling the problem using
the bee colony optimization. The implementation is to test the
effectiveness of pretreatment; indeed it is to compare the
number of bins used on the same instance, with and without
pretreatment. The principle of creating the sets of tests is
given. A conclusion follows in Section V.

II. PRETREATMENT

The presented pretreatment is based on the concept of
identically feasible function (IFF) defined in Carlier et al. [6]
as: Let I = (A, B) be a BPP-2D instance; a function f is an IFF
associated with instance I iff instance f (I) = (A’, B) obtained
by applying f to all items of A is such that OPT (I) = OPT (f
(I)).

The pretreatment consists in reclaiming lost areas in the
bins. Applying pretreatment to the initial instance allows some
items to be enlarged. If the size of an item is updated to (L, l)
the size of a bin, its optimal packing is then known and it can
be treated separately.

The symbols and abbreviations used to define the
pretreatment are:
 m: number of objects
 n: number of bins
 A: all objects as A = {ai = (Li, li), i=1… m}
 B: all the bins of the same size as B = (L, l)
 L: width of each bin
 l: height of each bin
 Li: width of the item ai
 li: height of the item ai
 For ai in A: Li ൒ li (i=1, 2… m)

Kenza Aida Amara, Bachir Djebbar

Bee Colony Optimization Applied to the Bin Packing
Problem

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

276

 ࣛ i : equivalence class representative identical objects
Definition 1. The dimensions of the objects and bins are
integers. An instance I of BPP-2D oriented is then defined by
the pair (A, B). The optimal value of the number of bins
needed to store all the objects of an instance I is denoted OPT
(I).

Each object was stored in a bin and positioned such that the
edge of Li dimension is parallel to the width of the bin (L) and
that the edge of li dimension is parallel to the height of the bin
(l) (Fig. 1).

Fig. 1 Orientation of an object in a bin

Definition 2. Each item ai = (Li, li) in A has:
 Li ≤ L and li ≤ l, otherwise the feasibility is impossible.
 Li ≥ li (i = 1, 2… m), this constraint allows the storage of

objects depending on the width.
A consists of the following subsets of objects: AG, AI, AP,

such as:

A = AI ∪ AG ∪ AP

AG: all large objects, AI: set of identical objects defined by the
equivalence class. AP: all sufficiently small objects.
Definition 3. ࣛi represents the equivalence class contains the
objects having the height equal to li
 ࣛ i = {ai ∈ AI : with small dimension equal to li}
 ࣛ i = cl (ai) = {aj AI : lj = li}
 AI = ⋃ ࣛ௞

௜ୀଵ i such as  i ≠ j : ࣛ i ∩ ࣛ j = ∅
 l(ࣛ i): height of the objects of the equivalence class ࣛ I

with : ∀ i = 1,…,k : l(ࣛ i) > l(ࣛ i+1)
Each equivalence class contains objects having the same

height. The objects of the same equivalence class are sorted in
order of descending width.

Mathematical Formulation

݉݅݊∑ ࣳ௭௡
௭ୀଵ 		ࣳ௭ ∈ 	 ሼ0,1ሽ				ሺݖ ൌ 1,… , ݊ሻ (1)

∑ ௜ࣲ௭ ൌ 1			 ௜ࣲ௭ 	∈ ሼ0,1ሽ			ሺ∀	ܽ௜ 	 ∈ I	, z ൌ 1,… , nሻ	௡
௭ୀଵ (2)

∑ L୧	 ୧ࣲ୸	 ୧࣠୸୲ 	൑ L	ࣳ୸						ୟ౟∈୍

ሺz ൌ 1,… , nሻ	 (3a)

∑ l୧	 ୧ࣲ୸	 ୧࣠୸୲ 	൑	ୟ౟∈୍ l	ࣳ୸							ሺz ൌ 1,… , nሻ (3b)

∑ ௜࣠௭௧௔೔∈୍ ൌ 1 (4)

Decision Variables

 ࣳz: If the bin z is used then ࣳz = 1, otherwise ࣳz = 0
 ࣲiz: If the item ai is assigned to the bin z then ࣲiz = 1,

otherwise ࣲiz = 0
 ࣠izt: If the item ai is assigned to the floor t in the bin z

then
 ࣠izt = 1, otherwise ࣠izt = 0

In this model, the objective is to minimize the total number
of bins used. Constraints (2) ensure that each item is placed in
one bin. Constraints (3a) ensure that the sum of widths of the
items placed in the bin z, do not exceed the width of the bin.
Constraints (3b) ensure that the sum of heights of the items
placed in the bin z, do not exceed the height of the bin.
Finally, constraint (4) controls whether each object is placed
in one and only one level within a single bin.

Feasibility Constraints

This pretreatment aimed at storing oriented objects in their
large size. Objects, sorted in order of decreasing width are
classified into three categories:
- Large objects, denoted AG, are the objects that occupy

more than the half of the bin in the width and in the
height.

- Identical objects, denoted AI, are defined by the
equivalence classes.

- Sufficiently small objects, denoted AP, are objects whose
dimension is less than a threshold established.

All AI objects are in conflict with those AG hence the
expression:

∀ ai ∈ AI ,∀ aj ∈ AG : ࣲiz + ࣲjz ≤ ࣳz

 (i ,j=1, …, m, z=(1,…,n)) (5)

A conflict between two objects is a restriction prohibiting

storing these objects in the same bin [13]. A conflict also
exists between the objects belonging to different equivalence
classes in the same level, such as:

 ai’  ࣛ i ,  aj’  ࣛ j : fi’zt + fj’zt ≤ 1

(ai’ , aj’ ∈ AI, i≠j and i , j ∈ { 1,…,k} ,∀ z,t) (6)

So the objects ai’ and aj' cannot be stored in the same level

of a given bin.

Category 1

AG is the set of large objects, such as:

AG	=	{	ai		A	:	Li	൐	
ଵ

ଶ
	L	and	li	൐	

ଵ

ଶ
	l	}	

If the large object takes the size of a bin, its optimal storage

becomes trivial and can then be separated from the body to
solve. Otherwise, items belonging AP are stored with the large
object in the bin.
Note: The number of bins needed to store the objects of AG is
equal to | AG |. | AG | determines the number of bins required to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

277

store large objects. Thus, the total number of bins is n such
that n ൐ | AG |.

Category 2

Let AI all identical objects defined as:

AI = { ai ∈ A :	1
4
	L < Li ≤

ଵ

ଶ
 L }

Category 3

Let AP the set of sufficiently small objects, such as:

AP = { ai ∈ A : Li ≤
ଵ

ସ
	L }

These are items that have an enough small size so they can

be stored with the objects of AG and / or AI.

Storage of Objects

The storage of the objects must be preceded by a sorting
which is done according to the following strategy: Large
objects are sorted according to decreasing width, followed by
the intermediate objects (the majority) who themselves are
divided into equivalence classes sorted according to
decreasing height (recall that in each equivalence class the
objects are sorted in order of descending width). And finally,
the objects sufficiently small are, such as large objects, sorted
in order of decreasing width.

Example of an Instance Illustrating This Sort
A= (12,10); (11,7); (10,6); (9,7); (7,6); (6,6); (6,6); (6,5); (6,5); (5,5);

(5,5); (5,5); (6,4); (6,4); (5,4); (5,4); (4,4); (4,4); (6,3); (6,3); (5,3);
(5,3); (4,3); (4,3); (6,2); (6,2); (5,2); (4,2); (4,2); (6,1); (6,1);(5,1);

(4,1); (4,1); (3,3); (3,2); (2,2); (1,1).

B= (12, 10)

For this instance, we have:

- 5 large objects: {(12, 10) ; (11,7) ; (10,6) ; (9,7) ;(7,6)}
- 6 equivalence classes:

ࣛ 1 = {(6, 6); (6, 6)}

ࣛ 2 = {(6, 5); (6, 5); (5, 5); (5, 5); (5, 5)}

ࣛ3= {(6, 4); (6, 4); (5, 4); (5,4); (4,4); (4,4)}

ࣛ4= {(6,3); (6,3); (5,3); (5,3); (4,3); (4,3)}

ࣛ 5 = {(6, 2); (6, 2); (5, 2); (4, 2) ;(4, 2)}

ࣛ 6 = {(6, 1); (6, 1); (5, 1); (4, 1); (4, 1)}

- 4 sufficiently small objects: {(3,3); (3,2); (2,2); (1,1)}

Storage of Large Objects

For each object ai ∈ AG, two new bins Bi
1 and Bi

2 are
considered as: Bi

1 = (L – Li, li) and Bi
2 = (L, l – li). This is to

calculate the dimensions of the two bins Bi
1and Bi

2, and fill
them with a subset AP'⊂ AP (Fig. 2).
Pr1 : ai → ai’

 Li

’= L and li
’= l if ai ∈ AG

 Li
’= 0 and li

’= 0 if ai ∈ AP’
 Li

’= Li and li
’= li otherwise

Fig. 2 Storage of a large object in a bin

The function	 Pr1	is a procedure pretreatment valid if and
only if | AG | bins are sufficient to store all objects of AG ∪ AP'

such that AP’ ⊂ AP.

Storage of Identical Objects

We consider different classes of equivalence in the order of
descending height. A procedure for conflict detection is
applied. It involves separating the equivalence classes in the
same level of a given bin. The aim is to store items belonging
to the same equivalence class to form a first layer in the bin. If
the lost width obtained after placement of a set of objects
belonging to ࣛ i (i…k), is less Li ∀ Li ∈ ࣛ i,	objects Ap \ Ap'
are added.

For each equivalence class ࣛi, we seek to build the subset
Ai	r,q,, such that:

Ai	r,q	=	{	ai	∈	ࣛ	i	:	∑	Li	=	r	and	li	=	q	:	r	൑	L	and	q	൑	l}	

Construction of the Subsets Ai
r,q

Initially, the equivalence classes are organized in
descending order of height. The first object of the first
equivalence class is deposited at the bottom left in a bin empty
and the remaining objects are placed to the right of it until the
current object is not be placed according its width. First level
is formed whose the height is equal to the height of the
equivalence classes considered.

Another subset belonging to the same equivalence class or
to an equivalence class of greater height can be superposed
while l-q ൒ l(ࣛ i) ∀ i∈ {1,…,k}. This procedure is repeated
until the optimal packing is obtained in the bin.
Remark: To ensure optimality, it is necessary to put a
maximum number of objects of the same equivalence classes
in the same level (if the cardinality of the equivalence class
permitting). Otherwise select the next class.

For each subset Ai
r,q creates two new bins Bi3	and	Bi4	are

considered: Bi3	=	(L	–	r,	q)	such	as:	L	–	r	൏	Li	(∀	Li	∈	ࣛ	 i	:	∀	
i=1,…k)	and	Bi	4	=	(L,	l	–	q)	

Either the two decision problems: Is it possible to store
objects AP \ AP' in the bin Bi3? Is it possible to consider the bin
Bi4 with the principle of storing identical objects? Two cases:
- 1° : l – q ≥ l (ࣛ i) (i=1,…,k), build a new level above the

previous
- 2° : l – q < l (ࣛ i) (i=1,…,k), objects small enough to

AP\AP' are stored in the bin Bi
4.

If the answers are yes, then the following function is an IFF
associated to the considered instance I: Pr2 : Ai

r,q → Ai
r,q ’

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

278

 r’= L and q’= q if (ai ∈ AI and L – r < Li and
 (l – q ≥ l (ࣛ i) , i=1,…,k))
 r’= L and q’= l if (ai ∈ AI and L – r < Li and
 (l – q < l (ࣛ i) i=1,…,k))

 Li
’= 0 and li

’= 0 if (ai ∈ AP\AP’)
 Li

’= Li and li
’= li otherwise

III. ADAPTATION OF THE HEURISTIC FIRST-FIT

The objects are sorted by decreasing width and oriented as
follows: Each object stored in a bin is positioned such that the
edge of Li dimension is parallel to the width of the bin (L) and
the edge dimension li is parallel to the height of the bin (l).
The objects are placed successively according to their widths
in the bins for forming different levels. More formally, at first,
one bin is considered and objects are sorted in descending
order of width. The first object (the largest) is placed in the
bottom left in the bin, and other objects are placed (depending
on the sort order) to the right of the first object until the
current object cannot be placed by its width. A first stage is
formed and its height is determined by the highest object.

If the remaining height in the bin (after creating the first
floor) is greater than or equal to the height of the candidate
object, a new floor is created above the previous one.
Otherwise, a new bin is considered without closing the first.

In an intermediate step where we have opened k bins
numbered from 1 to k in the order of their first use, a current
object is stored in the level of the bin of lower number having
enough space to contain it. If no bin can contain the object ai, a
new bin (k + 1) is opened without closing the others. The
general procedure is repeated until all the objects of the
instance considered will be stored.

IV. OPTIMIZATION USING THE BEE COLONY ALGORITHM

The algorithm is based on the natural bee behavior:
a. The bee colony can spread over long distances in multiple

directions (over 10 km). The nectar or pollen should be
visited by more bees.

b. The scout bees look for the food source randomly from
one plot to another.

c. The bees returning to the hive evaluate different food
sources in function of a certain quality threshold
(measured by a combination of some elements, such as
the sugar content).

d. The bees deposit the nectar or pollen and go to the dance
floor to perform a waggle dance.

e. The bees communicate through the waggle dance for
giving the following information: The direction of the
source (angle between the sun and the source), the
distance from the hive (duration of the dance) and the
quality of the food source (frequency of the dance).

f. Thus, the bees can collect food effectively and quickly.
g. This source will be announced in a new waggle dance to

determine the current food level. If this level is suitable
more bees will be recruited for this source.

h. Depending on the physical condition, sources with
copious amounts of nectar or pollen can be visited by
more bees or may be abandoned.

Basic Algorithm of the Bee Method

The pseudo code of the basic bee’s algorithm is presented in
the simplified form:
a. Initialize the population randomly
b. Evaluate the fitness of the population
c. While stopping criterionis not met
d. Select m solutions amongst n to perform local search
e. Recruit bees for selected solutions and evaluate their

fitness
f. Select the best bee in each neighborhood
g. Assign the remaining bees randomly and evaluate their

fitness
End while

The Parameters of the Simulation

Objects parameters:
 Number of objects to be stored
 Maximum dimensions (Li and li) of each objects ai∈ A

Bins parameters:
 Number of bins
 Size of each bin (L, l)

Bee algorithm parameters:
 Number of bees
 Percentage of each type of bees (Scouts, active and

inactive)
 Number of visits
 Number of iterations

To select and set the parameters of the bee algorithm,
various tests were performed. The best combination providing
an optimal solution was maintained. Indeed, we varied the
number of:
 Active bees (between 30% and 60%)
 Scout bees (between 20% and 40%)
 Inactive bees (between 10% and 30%)
 Iterations from 5 to 50

The Coding Parameters

The nectar (or pollen) represents the object to be placed in
the bin. The hive represents the bin to fill with objects. The
Quality, proximity and ease of extraction of the food source
are the fitness of the solution.

TABLE I

CATEGORIES AND PROBABILITIES OF THE OBJECTS
Category 1 Category 2 Category 3

-Probability 10%
- The Width Li is
randomly generated
following a uniform
distribution whose
numerical values are
between 7 and 12
- li height is less than or
equal to Li

-Probability 50%
- The Width Li is
randomly generated
following a uniform
distribution whose
numerical values are
between 4 and 6
- li height is less than or
equal to Li

-Probability 40%
- The Width Li is
randomly generated
following a uniform
distribution whose
numerical values are
between 1 and 3
- li height is less than or
equal to Li

We varied the number of objects in each instance: 40, 80,

160, and 240. The instance is characterized by three categories
of objects with a probability of existence (Table I). We
consider the bins that have a width equal to 12 and a height
equal to 10.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

279

Computational Results

The algorithm is implemented in JAVA programming
language. The choice of integrated development environment
NetBeans 7.4 was guided by the benefits of object oriented
programming. The results for a few samples with 40, 80, 160
and 240 objects are given in Table II.

TABLE II

COMPARISON OF THE NUMBER OF BINS TO PACK THE OBJECTS

Set
Number of

objects
n bin without
pretreatment

n bin with
pretreatment

Optimum

1 40 08 08 08

2 80 14 13 13

3 160 30 28 28

4 240 46 38 38

The minimum number of bins used to store the objects of

each sample is obtained by applying our pretreatment. This
was specially the case when the number of objects increases.

V. CONCLUSION

In this paper, we have presented a mathematical
formulation for BPP-2D the oriented case. We have presented
an adaptation of the heuristic first fit for the resolution of the
problem where we stop only when the empty space in the bin
is less than the dimensions of the remaining objects. We have
compared the numbers of bins used to pack all objects of the
instances with and without the pretreatment. The minimum
number of bins used to store the objects of each instance is
obtained by applying our pretreatment. This good result is
mainly due to the introduction of the concept of equivalence
classes in the pretreatment.

REFERENCES
[1] Lee J, kim B,. Johnson A L. A two-dimensional bin packing problem

with size changeable items for the production of wind turbine flanges in
the open die forging industry. IIE Transactions, 2013; 45, 12, 1332-1344

[2] Lodi A, Martello S, Vigo D. Heuristic and metaheuristic approaches for
a class of two-dimensional bin packing problems. INFORMS Journal on
Computing 1999;11:345–57.

[3] Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin-
packing problems. Discrete Applied Mathematics 2002;123:379–96.

[4] Berkey JO,Wang PY. Two-dimensional finite bin-packing algorithms.
Journal of Operational Research Society 1987;38:423–9.

[5] Faroe O, Pisinger D, Zachariasen M. Guided local search for the three-
dimensional bin-packing problem. INFORMS Journal on Computing
2003;15:267–83.

[6] Carlier J, Clautiaux F, Moukrim A. New reduction procedures and lower
bounds for the two-dimensional bin-packing problem with fixed
orientation. Computers & Operations Research.2006.

[7] Boschetti MA, Mingozzi A. The two-dimensional finite bin-packing
problem. Part I: new lower bounds for the oriented case. 4OR 2003;
1:27–42.

[8] Martello S, Vigo D. Exact solution of the two-dimensional finite bin-
packing problem. Management Science 1998;44:388–99.

[9] Fekete S, Schepers J. A general framework for bounds for higher-
dimensional orthogonal packing problems. Mathematical Methods of
Operations Research 2004;60:311–29

[10] Boschetti MA, Mingozzi A. The two-dimensional finite bin-packing
problem. Part I: new lower and upper bounds. 4OR 2003;1:135–47

[11] Harwig J, Barnes J. An adaptive tabu search approach for 2-dimensional
orthogonal packing problems. Military Operations Research, 2006,in
press.

[12] Chazelle B. The bottom-left bin-packing heuristic: an efficient
implementation. IEEE Transactions on Computers 1983;C-32:697–707.

[13] K. Jansen and S. Öhring. Approximation algorithms for time constrained
scheduling. Information and Computation, 1997; 132(2); 85–108.

