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 
Abstract—We treat the two-dimensional bin packing problem 

which involves packing a given set of rectangles into a minimum 
number of larger identical rectangles called bins. This combinatorial 
problem is NP-hard. We propose a pretreatment for the oriented 
version of the problem that allows the valorization of the lost areas in 
the bins and the reduction of the size problem. A heuristic method 
based on the strategy first-fit adapted to this problem is presented. 
We present an approach of resolution by bee colony optimization. 
Computational results express a comparison of the number of bins 
used with and without pretreatment. 
 

Keywords—Bee colony optimization, bin packing, heuristic 
algorithm, pretreatment. 

I. INTRODUCTION 

HE bin packing problem has many industrial applications, 
including the cutting of standardized stock units in the 

wood, steel and glass industries, packing on shelves or truck 
beds in transportation and warehousing, and the paging of 
articles in newspapers. Many real problems can be modeled as 
bin packing problems. However, each real problem has its own 
specificities. The one-dimensional bin packing problem is 
strongly NP-hard. This also applies in BPP-2D, since it is a 
generalization of the one-dimensional version [1] and defined 
as: Given a set of n rectangular items A = {a1,…,an} and a 
number of larger identical rectangles called bins, the problem is 
finding the minimum number of bins that must be used to pack 
this set of items without overlapping. 

Many papers deal with BPP-2D and most of them are 
concerned with the case where the items have a fixed 
orientation. Lodi et al. [3] have proposed an extensive survey. 
We quote Berkey and Wang [4], who have presented a 
heuristic version for the problem. Meta-heuristic procedures 
have been presented in Lodi et al. [2] and Faroe et al. [5]. 
Lower bounds have been presented in Carlier et al. [6]. They 
dominate the bounds introduced by Boschetti and Mingozzi 
[7], Martello and Vigo [8] and Fekete and Schepers [9]. 

Few papers deal with the version of BPP-2D where items 
may be rotated by 90◦. A heuristic method and new lower 
bounds have been introduced by Boschetti and Mingozzi [10]. 
Lodi et al. [2] have presented a meta-heuristic algorithm based 
on a tabu search method. Another tabu search method has been 
proposed in Harwig and Barnes [11] where items are packed in 
bottom left stable positions using the method presented in 
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Chazelle [12]. 
In this paper, we are interested in the case where the items 

have a fixed orientation. This version is known as 2BP|O|F 
according to the classification proposed by Lodi et al. [2], 
where the field denoted O means that the items are not rotated 
by 90◦ and the field denoted F means that guillotine packing 
are not imposed. We consider that each item ai = (Li, li) in A 
has a width Li and a height li. We denote as L and l the width 
and the height of the bin B, B= (L, l).An instance I of a BPP-
2D|O|F is then defined by the pair (A, B). The minimum 
number of bins required to pack all the items of an instance I is 
denoted as OPT (I). Li is the greatest dimension of item ai, and 
li the other dimension. The largest and smallest dimensions of 
the bin are, respectively, L and l. 

This paper is organized as follows: In Section II, we 
develop mathematically a pretreatment with fixed orientation. 
The strategy used to represent a solution based on a first-fit 
algorithm adapted to this problem is described in Section III. 
In Section IV, we are interested in modeling the problem using 
the bee colony optimization. The implementation is to test the 
effectiveness of pretreatment; indeed it is to compare the 
number of bins used on the same instance, with and without 
pretreatment. The principle of creating the sets of tests is 
given. A conclusion follows in Section V. 

II. PRETREATMENT  

The presented pretreatment is based on the concept of 
identically feasible function (IFF) defined in Carlier et al. [6] 
as: Let I = (A, B) be a BPP-2D instance; a function f is an IFF 
associated with instance I iff instance f (I) = (A’, B) obtained 
by applying f to all items of A is such that OPT (I) = OPT (f 
(I)). 

The pretreatment consists in reclaiming lost areas in the 
bins. Applying pretreatment to the initial instance allows some 
items to be enlarged. If the size of an item is updated to (L, l) 
the size of a bin, its optimal packing is then known and it can 
be treated separately. 

The symbols and abbreviations used to define the 
pretreatment are: 
 m: number of objects  
 n: number of bins  
 A: all objects as A = {ai = (Li, li), i=1… m}  
 B: all the bins of the same size as B = (L, l)  
 L: width of each bin   
 l: height of each bin 
 Li: width of the item ai 
 li: height of the item ai 
 For ai in A: Li ൒ li (i=1, 2… m) 
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 ࣛ i : equivalence class representative identical objects 
Definition 1. The dimensions of the objects and bins are 
integers. An instance I of BPP-2D oriented is then defined by 
the pair (A, B). The optimal value of the number of bins 
needed to store all the objects of an instance I is denoted OPT 
(I).  

Each object was stored in a bin and positioned such that the 
edge of Li dimension is parallel to the width of the bin (L) and 
that the edge of li dimension is parallel to the height of the bin 
(l) (Fig. 1). 

 

 

Fig. 1 Orientation of an object in a bin 
 

Definition 2. Each item ai = (Li, li ) in A has: 
 Li ≤ L and li ≤ l, otherwise the feasibility is impossible.  
 Li ≥ li (i = 1, 2… m), this constraint allows the storage of 

objects depending on the width. 
A consists of the following subsets of objects: AG, AI, AP, 

such as:  
 

A = AI ∪ AG ∪ AP 
 
AG: all large objects, AI: set of identical objects defined by the 
equivalence class. AP: all sufficiently small objects. 
Definition 3. ࣛi represents the equivalence class contains the 
objects having the height equal to li 
 ࣛ i = {ai ∈ AI : with small dimension equal to li} 
 ࣛ i = cl (ai) = {aj AI : lj = li}  
 AI = ⋃ ࣛ௞

௜ୀଵ i such as  i ≠ j : ࣛ i ∩ ࣛ j = ∅ 
 l(ࣛ i): height of the objects of the equivalence class ࣛ I 

with : ∀ i = 1,…,k : l(ࣛ i) > l(ࣛ i+1) 
Each equivalence class contains objects having the same 

height. The objects of the same equivalence class are sorted in 
order of descending width. 

Mathematical Formulation 

݉݅݊∑ ࣳ௭௡
௭ୀଵ 		ࣳ௭ ∈ 	 ሼ0,1ሽ				ሺݖ ൌ 1,… , ݊ሻ    (1) 

 
∑ ௜ࣲ௭ ൌ 1			 ௜ࣲ௭ 	∈ ሼ0,1ሽ			ሺ∀	ܽ௜ 	 ∈ I	, z ൌ 1,… , nሻ	௡
௭ୀଵ  (2) 

 
∑ L୧	 ୧ࣲ୸	 ୧࣠୸୲ 	൑ L	ࣳ୸						ୟ౟∈୍

ሺz ൌ 1,… , nሻ	   (3a) 
 

 
∑ l୧	 ୧ࣲ୸	 ୧࣠୸୲ 	൑	ୟ౟∈୍ l	ࣳ୸							ሺz ൌ 1,… , nሻ     (3b) 

                         
∑ ௜࣠௭௧௔೔∈୍ ൌ 1            (4) 

 

Decision Variables 

 ࣳz: If the bin z is used then ࣳz = 1, otherwise ࣳz = 0 
 ࣲiz: If the item ai is assigned to the bin z then ࣲiz = 1, 

otherwise ࣲiz = 0  
 ࣠izt: If the item ai is assigned to the floor t in the bin z 

then  
 ࣠izt = 1, otherwise ࣠izt = 0 

In this model, the objective is to minimize the total number 
of bins used. Constraints (2) ensure that each item is placed in 
one bin. Constraints (3a) ensure that the sum of widths of the 
items placed in the bin z, do not exceed the width of the bin. 
Constraints (3b) ensure that the sum of heights of the items 
placed in the bin z, do not exceed the height of the bin. 
Finally, constraint (4) controls whether each object is placed 
in one and only one level within a single bin. 

Feasibility Constraints 

This pretreatment aimed at storing oriented objects in their 
large size. Objects, sorted in order of decreasing width are 
classified into three categories:  
- Large objects, denoted AG, are the objects that occupy 

more than the half of the bin in the width and in the 
height. 

- Identical objects, denoted AI, are defined by the 
equivalence classes. 

- Sufficiently small objects, denoted AP, are objects whose 
dimension is less than a threshold established. 

All AI objects are in conflict with those AG hence the 
expression: 
 

∀ ai ∈ AI ,∀ aj ∈ AG : ࣲiz + ࣲjz ≤ ࣳz 

 
 ( i ,j=1, …, m, z=(1,…,n))         (5) 

 
A conflict between two objects is a restriction prohibiting 

storing these objects in the same bin [13]. A conflict also 
exists between the objects belonging to different equivalence 
classes in the same level, such as: 
 

 ai’  ࣛ i ,  aj’  ࣛ j  : fi’zt + fj’zt ≤ 1 
 

(ai’ , aj’ ∈ AI, i≠j and i , j ∈ { 1,…,k} ,∀ z,t)    (6) 
 
So the objects ai’ and aj' cannot be stored in the same level 

of a given bin. 

Category 1 

AG is the set of large objects, such as: 
 

AG	=	{	ai		A	:	Li	൐	
ଵ

ଶ
	L	and	li	൐	

ଵ

ଶ
	l	}	

 
If the large object takes the size of a bin, its optimal storage 

becomes trivial and can then be separated from the body to 
solve. Otherwise, items belonging AP are stored with the large 
object in the bin. 
Note: The number of bins needed to store the objects of AG is 
equal to | AG |. | AG | determines the number of bins required to 
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store large objects. Thus, the total number of bins is n such 
that n ൐ | AG |. 

Category 2  

Let AI all identical objects defined as: 
 

AI = { ai ∈ A :	1
4
	L < Li ≤ 

ଵ

ଶ
 L } 

Category 3 

Let AP the set of sufficiently small objects, such as: 
 

AP = { ai ∈ A : Li ≤ 
ଵ

ସ
	L } 

 
These are items that have an enough small size so they can 

be stored with the objects of AG and / or AI. 

Storage of Objects  

The storage of the objects must be preceded by a sorting 
which is done according to the following strategy: Large 
objects are sorted according to decreasing width, followed by 
the intermediate objects (the majority) who themselves are 
divided into equivalence classes sorted according to 
decreasing height (recall that in each equivalence class the 
objects are sorted in order of descending width). And finally, 
the objects sufficiently small are, such as large objects, sorted 
in order of decreasing width. 

Example of an Instance Illustrating This Sort 
A= (12,10); (11,7); (10,6); (9,7); (7,6); (6,6); (6,6); (6,5); (6,5); (5,5); 

(5,5); (5,5); (6,4); (6,4); (5,4); (5,4); (4,4); (4,4); (6,3); (6,3); (5,3); 
(5,3); (4,3); (4,3); (6,2); (6,2); (5,2); (4,2); (4,2); (6,1); (6,1);(5,1); 

(4,1); (4,1); (3,3); (3,2); (2,2); (1,1). 
 

B= (12, 10) 
 
For this instance, we have: 

- 5 large objects: {(12, 10) ; (11,7) ; (10,6) ; (9,7) ;(7,6)} 
- 6 equivalence classes: 

 
ࣛ 1 = {(6, 6); (6, 6)} 

ࣛ 2 = {(6, 5); (6, 5); (5, 5); (5, 5); (5, 5)} 

ࣛ3= {(6, 4); (6, 4); (5, 4); (5,4); (4,4); (4,4)} 

ࣛ4= {(6,3); (6,3); (5,3); (5,3); (4,3); (4,3)} 

ࣛ 5 = {(6, 2); (6, 2); (5, 2); (4, 2) ;( 4, 2)} 

ࣛ 6 = {(6, 1); (6, 1); (5, 1); (4, 1); (4, 1)} 
 

- 4 sufficiently small objects: {(3,3); (3,2); (2,2); (1,1)} 

Storage of Large Objects  

For each object ai ∈ AG, two new bins Bi
1 and Bi

2 are 
considered as: Bi

1 = (L – Li, li) and Bi
2 = (L, l – li). This is to 

calculate the dimensions of the two bins Bi
1and Bi

2, and fill 
them with a subset AP'⊂ AP (Fig. 2). 
Pr1 : ai → ai’ 
    
             Li

’= L and li
’= l  if  ai ∈ AG   

             Li
’= 0 and li

’= 0  if  ai ∈ AP’   
             Li

’= Li and li
’= li otherwise 

 

Fig. 2 Storage of a large object in a bin 
 

The function	 Pr1	is a procedure pretreatment valid if and 
only if | AG | bins are sufficient to store all objects of AG ∪ AP' 

such that AP’ ⊂ AP. 

Storage of Identical Objects  

We consider different classes of equivalence in the order of 
descending height. A procedure for conflict detection is 
applied. It involves separating the equivalence classes in the 
same level of a given bin. The aim is to store items belonging 
to the same equivalence class to form a first layer in the bin. If 
the lost width obtained after placement of a set of objects 
belonging to ࣛ i (i…k), is less Li ∀ Li ∈ ࣛ i,	objects Ap \ Ap' 
are added. 

For each equivalence class ࣛi, we seek to build the subset 
Ai	r,q,, such that: 

 
Ai	r,q	=	{	ai	∈	ࣛ	i	:	∑	Li	=	r	and	li	=	q	:	r	൑	L	and	q	൑	l}	

Construction of the Subsets Ai 
r,q 

Initially, the equivalence classes are organized in 
descending order of height. The first object of the first 
equivalence class is deposited at the bottom left in a bin empty 
and the remaining objects are placed to the right of it until the 
current object is not be placed according its width. First level 
is formed whose the height is equal to the height of the 
equivalence classes considered. 

Another subset belonging to the same equivalence class or 
to an equivalence class of greater height can be superposed 
while l-q ൒ l(ࣛ i) ∀ i∈ {1,…,k}. This procedure is repeated 
until the optimal packing is obtained in the bin. 
Remark: To ensure optimality, it is necessary to put a 
maximum number of objects of the same equivalence classes 
in the same level (if the cardinality of the equivalence class 
permitting). Otherwise select the next class. 

For each subset Ai 
r,q creates two new bins Bi3	and	Bi4	are 

considered: Bi3	=	(L	–	r,	q)	such	as:	L	–	r	൏	Li	(∀	Li	∈	ࣛ	 i	:	∀	
i=1,…k	)	and	Bi	4	=	(L,	l	–	q)	

Either the two decision problems: Is it possible to store 
objects AP \ AP' in the bin Bi3? Is it possible to consider the bin 
Bi4 with the principle of storing identical objects? Two cases: 
- 1° : l – q ≥ l (ࣛ i) ( i=1,…,k ), build a new level above the 

previous 
- 2° : l – q < l (ࣛ i) ( i=1,…,k ), objects small enough to 

AP\AP' are stored in the bin Bi
4. 

If the answers are yes, then the following function is an IFF 
associated to the considered instance I: Pr2 : Ai 

r,q → Ai 
r,q ’ 
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  r’= L and q’= q  if (ai ∈ AI and L – r < Li and  
  (l – q ≥ l (ࣛ i) , i=1,…,k) ) 
   r’= L and q’= l  if (ai ∈ AI and L – r < Li and  
  (l – q < l (ࣛ i) i=1,…,k) ) 

  Li
’= 0 and li

’= 0  if (ai ∈ AP\AP’) 
  Li

’= Li and li
’= li otherwise 

III. ADAPTATION OF THE HEURISTIC FIRST-FIT  

The objects are sorted by decreasing width and oriented as 
follows: Each object stored in a bin is positioned such that the 
edge of Li dimension is parallel to the width of the bin (L) and 
the edge dimension li is parallel to the height of the bin (l). 
The objects are placed successively according to their widths 
in the bins for forming different levels. More formally, at first, 
one bin is considered and objects are sorted in descending 
order of width. The first object (the largest) is placed in the 
bottom left in the bin, and other objects are placed (depending 
on the sort order) to the right of the first object until the 
current object cannot be placed by its width. A first stage is 
formed and its height is determined by the highest object. 

If the remaining height in the bin (after creating the first 
floor) is greater than or equal to the height of the candidate 
object, a new floor is created above the previous one. 
Otherwise, a new bin is considered without closing the first. 

In an intermediate step where we have opened k bins 
numbered from 1 to k in the order of their first use, a current 
object is stored in the level of the bin of lower number having 
enough space to contain it. If no bin can contain the object ai, a 
new bin (k + 1) is opened without closing the others. The 
general procedure is repeated until all the objects of the 
instance considered will be stored. 

IV. OPTIMIZATION USING THE BEE COLONY ALGORITHM 

The algorithm is based on the natural bee behavior: 
a. The bee colony can spread over long distances in multiple 

directions (over 10 km). The nectar or pollen should be 
visited by more bees. 

b. The scout bees look for the food source randomly from 
one plot to another. 

c. The bees returning to the hive evaluate different food 
sources in function of a certain quality threshold 
(measured by a combination of some elements, such as 
the sugar content). 

d. The bees deposit the nectar or pollen and go to the dance 
floor to perform a waggle dance. 

e. The bees communicate through the waggle dance for 
giving the following information: The direction of the 
source (angle between the sun and the source), the 
distance from the hive (duration of the dance) and the 
quality of the food source (frequency of the dance). 

f. Thus, the bees can collect food effectively and quickly. 
g. This source will be announced in a new waggle dance to 

determine the current food level. If this level is suitable 
more bees will be recruited for this source. 

h. Depending on the physical condition, sources with 
copious amounts of nectar or pollen can be visited by 
more bees or may be abandoned. 

Basic Algorithm of the Bee Method  

The pseudo code of the basic bee’s algorithm is presented in 
the simplified form: 
a. Initialize the population randomly 
b. Evaluate the fitness of the population 
c. While stopping criterionis not met 
d. Select m solutions amongst n to perform local search 
e. Recruit bees for selected solutions and evaluate their 

fitness 
f. Select the best bee in each neighborhood 
g. Assign the remaining bees randomly and evaluate their 

fitness 
End while 

The Parameters of the Simulation 

Objects parameters: 
 Number of objects to be stored 
 Maximum dimensions (Li and li) of each objects ai∈ A 

Bins parameters: 
 Number of bins  
 Size of each bin (L, l) 

Bee algorithm parameters: 
 Number of bees 
 Percentage of each type of bees (Scouts, active and 

inactive) 
 Number of visits 
 Number of iterations 

To select and set the parameters of the bee algorithm, 
various tests were performed. The best combination providing 
an optimal solution was maintained. Indeed, we varied the 
number of: 
 Active bees (between 30% and 60%) 
 Scout bees (between 20% and 40%) 
 Inactive bees (between 10% and 30%) 
 Iterations from 5 to 50 

The Coding Parameters 

The nectar (or pollen) represents the object to be placed in 
the bin. The hive represents the bin to fill with objects. The 
Quality, proximity and ease of extraction of the food source 
are the fitness of the solution. 

 
TABLE I 

CATEGORIES AND PROBABILITIES OF THE OBJECTS 
Category 1 Category 2 Category 3 

-Probability 10%  
- The Width Li is 
randomly generated 
following a uniform 
distribution whose 
numerical values are 
between 7 and 12 
- li height is less than or 
equal to Li

-Probability 50%  
- The Width Li is 
randomly generated 
following a uniform 
distribution whose 
numerical values are 
between 4 and 6 
- li height is less than or 
equal to Li 

-Probability 40%  
- The Width Li is 
randomly generated 
following a uniform 
distribution whose 
numerical values are 
between 1 and 3 
- li height is less than or 
equal to Li

 
We varied the number of objects in each instance: 40, 80, 

160, and 240. The instance is characterized by three categories 
of objects with a probability of existence (Table I). We 
consider the bins that have a width equal to 12 and a height 
equal to 10. 
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Computational Results 

The algorithm is implemented in JAVA programming 
language. The choice of integrated development environment 
NetBeans 7.4 was guided by the benefits of object oriented 
programming. The results for a few samples with 40, 80, 160 
and 240 objects are given in Table II.  

 
TABLE II 

COMPARISON OF THE NUMBER OF BINS TO PACK THE OBJECTS 

Set 
Number of 

objects 
n bin without 
pretreatment 

n bin with 
pretreatment 

Optimum 

1 40 08 08 08 

2 80 14 13 13 

3 160 30 28 28 

4 240 46 38 38 

 
The minimum number of bins used to store the objects of 

each sample is obtained by applying our pretreatment. This 
was specially the case when the number of objects increases.  

V. CONCLUSION 

In this paper, we have presented a mathematical 
formulation for BPP-2D the oriented case. We have presented 
an adaptation of the heuristic first fit for the resolution of the 
problem where we stop only when the empty space in the bin 
is less than the dimensions of the remaining objects. We have 
compared the numbers of bins used to pack all objects of the 
instances with and without the pretreatment. The minimum 
number of bins used to store the objects of each instance is 
obtained by applying our pretreatment. This good result is 
mainly due to the introduction of the concept of equivalence 
classes in the pretreatment.  
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