
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

270

Abstract—Emerging medical devices are highly relying on

embedded software that runs on the specific platform in real time.
The development of embedded software is different from ordinary
software development due to the hardware-software dependency.
MDevSPICE® has been developed to provide guidance to support
such development. To increase the flexibility of this framework agile
practices have been introduced. This paper outlines the challenges for
embedded medical device software development and the structure of
MDevSPICE® and suggests a suitable combination of agile practices
that will help to add flexibility and address corresponding challenges
of embedded medical device software development.

Keywords—Agile practices, challenges, embedded software,
MDevSPICE®, medical device.

I. INTRODUCTION

HE medical device market world-wide is showing
substantial impact with industry experts expecting this

market to demonstrate robust growth over the next years with
figures expected to expand from 133.6bn USD in 2014 to
173.3bn USD in 2019 [1]. A key characteristic of many
medical devices is that of embedded software systems.
Essentially, such systems are computerized systems that are
unique as they are designed to perform specific task on
specific platform. The complexity and growth rate of
embedded software has been increasing over the past decades.
From insulin pumps, pacemakers, cardiac monitors, to
anesthesia machines, software is playing a major role in the
functionalities of these devices. For example, infusion pumps
today contain tens of thousands of lines of code with this
number running into the millions for proton beam therapy
devices [2]. However, the development of embedded software
adds different challenges to the software engineer due to their
complexity.

To attempt to control risk and overcome the challenges
presented for such development, teams typically follow a plan-

This work was supported with the financial support of the Science

Foundation Ireland grant 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern Regional
Operational Programme to Lero - the Irish Software Research Centre
(www.lero.ie)

Surafel Demissie is with Regulated Software Research Centre and Lero,
Department of Computing & Mathematics, Dundalk Institute of Technology,
Co. Louth, Ireland (e-mail: surafel.demissie@dkit.ie).

Frank Keenan is with Regulated Software Research Centre and Lero, a
senior lecturer at Department of Computing & Mathematics, Dundalk Institute
of Technology, Co. Louth, Ireland (e-mail: frank.keenan@dkit.ie).

Fergal McCaffery is a senior lecturer and the director of Regulated
Software Research Centre, Department of Computing & Mathematics,
Dundalk Institute of Technology, Co. Louth, Ireland (e-mail:
fergal.mccaffery@dkit.ie).

driven approach, such as the V-model, and need to provide
evidence to show their software development process to get
pre-market and post-market approval [3]. This is because such
models have specific chick-ins and check-outs of each phase
allowing regulations and audits to be performed at each
checkpoint. As such, they are obliged to conform to
regulations outlined by Medical Device Directive (MDD) in
Europe or Food and Drug Administration (FDA) in the US.
However, there have been calls for a better software
development framework to address the trustworthiness of
critical embedded software development. Indeed, most these
regulations are high-level and do not dictate about low-level
implementation [4]. These regulatory environments are
complicated and changing due to the amendments that these
regulations went through periodically [5].

MDevSPICE®, an integrated framework of medical device
software development best practices, has been developed to
assist software medical device developers reach regulatory
compliance. MDevSPICE® integrates generic software
development best practices with requirements from medical
device standards enabling robust software process assessments
to be performed when preparing for a regulatory audit. This
framework has its origins in the ISO/IEC 15504 (SPICE) [34]
series of standards for process assessment.

One approach that may offer assistance is the agile software
development [6] which has been a hot issue in recent
embedded software development projects. Generally, agile
methods recommend a high degree of expert customer
involvement, ability to incorporate changing requirements and
short development cycles producing working software.
Numerous Agile Methods are available including eXtreme
Programming (XP) [7], Scrum [8] and Feature Driven
Development (FDD) [9]. However, one challenge is to select
and identify agile practices for this particular setting. The
purpose of this paper is to identify these challenges, describe
the structure of MDevSPICE® and appropriate agile practices
to use in conjunction with MDevSPICE®, to address the
challenges. The next section summarizes challenges for the
Embedded Medical device software development process.
This is followed by a description of the structure of
MDevSPICE®. Next, we suggest agile practices that can
satisfy the base practices of MDevSPICE®. Finally, we outline
future work.

II. MEDICAL EMBEDDED SOFTWARE DEVELOPMENT AND

PARTICULAR CHALLENGES

The development of medical embedded software
development brings challenges from embedded software

Supporting Embedded Medical Software
Development with MDevSPICE® and Agile Practices

Surafel Demissie, Frank Keenan, Fergal McCaffery

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

271

development which is related to technological factors
including platform, hardware-software dependency and real-
time nature. Also, progress typically requires input from
multiple diverse stakeholder groups including, for example,
software developers, hardware engineers, and possibly
mechanical engineers in addition to the expected medical
domain experts. Such diversity requires much interaction and
multi domain communication.

Medical Embedded software are class of embedded
software but that are only developed for medical devises.
Software running inside Pacemakers, Magnetic Resonance
Imaging (MRI), Infusion Pumps, Glucose Test cases and the
likes are some examples of embedded medical software.

In addition to complexity, the Medical device software
development process is under regulation of various
international standards. Based on their geographical location,
medical device companies have to follow the required
international standards and guidance documents before
marketing their products. Although beneficial, demonstrating
conformance to such standards brings additional challenges on
the software development process [10].

The development of medical embedded software is also
characterized by the need to develop hardware and software
concurrently. This is known as co-design. According to [11],
co-design can be summarized into four tasks such as:
Partitioning, allocating, scheduling and mapping. As described
by the author, Partitioning divides the functions to be
implemented into lower level interacting units. Such partitions
will be allocated to the microprocessors or other hardware
units to implement the functions in hardware or software. The
next task, scheduling, allocates execution times for the
functions and finally the mapping phase will transform generic
functional description into an implementation on a particular
set of components, either as software or logic. As we can
observe from the summarized co-design activities, the
development of both hardware and software is performed
concurrently and testing of one unit will require stubs of the
other and this can be challenging.

The challenge of co-design has also been discussed by [12]
addressing the past, the present and future prospects of
embedded systems. This report, when addressing the challenge
of complex hardware software co-design, states that imagine
in a single vehicle, more than 100 million lines of code coexist
and coexecute today. Imagine also the complexity of testing
and verifying properties such as safety in such a complex
system.

Recently our research center has conducted a half-day
workshop with a number of medical companies based in
Ireland. The range of companies included mobile medical app
developers, embedded device companies, small startups and
wearable medical device development company. Some of the
challenges stated by the companies were:
- Regulation Adaption – Most companies mentioned

difficulty of regulation adaption as a main challenge.
- Communication Problems – Due to different

stakeholders involved in a project, a medical device
software development team can consist of Software

Engineers, Hardware Engineers, Quality Assurance team,
Regulatory auditors and Management teams. Creating
effective and efficient communication and knowledge
transfer between such diversified stakeholders were also
reported challenges.

- Hardware and Software Platform Changing – This
challenge was particularly addressed by some of the
medical companies with different hardware and software
platform options to choose from. A medical embedded
software that is being built recently has to cope with
platform change and provide upgrade features.

- Market Pressure – The medical device market is dynamic
and changing frequently. The software has to be
developed to the market in a limited time-to-market
frame.

III. MDEVSPICE®

The MDevSPICE® process reference model (PRM) consists
of 23 processes and uses IEC TR 80002-3 [35] (which one of
the authors developed in association with the IEC medical
device standards community) as its foundation as this is the
PRM for IEC 62304, which is the most significant medical
device software standard. Ten of these processes are system
lifecycle processes, eight are software lifecycle processes and
the remaining five provide support for both the system and
lifecycle processes as can be seen in Fig. 1.

Fig. 1 MDevSPICE® PRM

A process assessment model (PAM) has been defined for
MDevSPICE®. This PAM provides a comprehensive model
for assessing the software and systems development processes
against medical device regulations, standards and guidelines
that a medical device software development organization has
to adhere to. Similar to ISO/IEC 15504-5 (SPICE) [26], the
PAM has two dimensions – a process dimension and a
capability dimension. Each process is described in terms of a
Process Name, Process Purpose, Process Outcomes, Base
Practices, Work Products and Work Product Characteristics.

An example of one process, Software Unit Implementation
and Verification, is included in Table I. Like all MDevSPICE®
processes it includes a purpose, outcomes and in this instance
4 base practices (BP1 to BP4).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

272

TABLE I
 MDEVSPICE® PROCESS AREA, SOFTWARE UNIT IMPLEMENTATION AND

VERIFICATION
MDevSPICE® process area Software Unit Implementation and

Verification
Process Purpose- The purpose of the software unit implementation and
verification process is to produce executable software units that properly
reflect the software design.
Process Outcomes
 Software units are implemented
 Software unit verification process is established.
 Software unit acceptance criteria prior to their integration into larger

software items are established and software units meeting the
acceptance criteria is ensured.

 Verification of the software units is performed and the verification
results are documented.

Base Practices

BP1 - Implement each software unit
BP2 - Establish unit verification procedures
BP3 - Establish software unit acceptance criteria and ensure that software
units meet the defined
BP4 - Verify software units

As illustrated on Table I, the MDevSPICE® process lists the

process purpose, process outcomes and base practices at a
‘general level’. Each base practice (BP) in this example
process area is not detailed in terms of describing HOW the
practice should be implemented. For example, one of the BPs
in this process area is “BP1-Implement each software unit”.
This practice at a general level requires developing and
documenting the executable representations of each software
unit, and updating test requirements and user documentation.

IV. AGILE METHODS

Over the past decade, the software development industry
has experienced an explosion in the use of Agile Methods
[13]. Surveys on the state of agile report that although Scrum
and XP are the most popular agile methods; the current trend
in adapting agile methods is also moving towards a hybrid
mode of adaption [14]. The same proposition has been
outlined by [15] showing how the two agile methodologies
have complementary practices. This is because Scrum can be
used for project management and XP, on the other hand, can
be used for improving the quality of the software [16].
Another report by [17] proposes hybrid model containing both
XP which compose engineering and Scrum for its
management practices. According to this report, the reason for
choosing the two methods is that Scrum is the most effective
methodology for managing projects along with XP practices
due to their widespread usage, simplicity, flexibility and
adaptability in changing environments.

Generally, each agile method comprises a number of
practices that achieve the main life cycle phases. Although
initially the intention was that each method would be used to
cover the complete life cycle it has become common that
practices would be selected from each, and other plan-driven
approaches if necessary, and combined to be used in a
particular development situation. XP, for example started off
with 12 practices [7] but an updated version, XP2, replaces
these practices with 24 practices that are categorized as either
primary or corollary. With the original version, XP1, the

intention was that each practice was mandatory for each
project. However, this has evolved and XP2 has been modified
to follow a phased adoption of XP practices.

Previous studies on the adaption of agile for safety critical
and regulated environments are case studies and expert
opinions [18]-[21]. Case studies in safety critical domains
such as aerospace industry, [22] and automotive [23] have
reported that XP practices such as Pair Programming (PP),
Test-Driven Development (TDD) and Acceptance Test-Driven
Development (ATDD) are reported to bring benefits. On the
other hand, Scrum practices such as Daily Scrum, Sprint
Review and Sprint Retrospectives have been observed to be
suitable for this process area.

Previous literature on the implementation of agile practices
in medical domain is a mixture of case studies and expert
opinions. An experience report on Abbott’s adoption of agile
software development practices in its molecular diagnostics
division has reported the implementation of agile practices for
FDA regulated environment [24]. The adapted agile practices
were fixed and short duration iterations, continuous build, unit
test, daily team meeting and retrospective. The authors
compare two medical device projects; one before agile and
one after. After introducing agile practices, the post-agile
project has been reported to gain benefits such as:
- lower cost and shorter duration,
- better, less prescriptive test cases,
- frequent integration
- changing requirements development

Reference [25], which is an experience report of a software
development group working in Cochlear™ introducing Agile
practices, discusses the implementation of Scrum and XP
practices. Practices such as automated nightly builds, Daily
Scrum and Review Meetings and XP practices such as TDD
using the Framework for Integrated Tests (FIT) have been
used on Cochlears’ product development process which was
based on V-Model. The authors report the benefit of using
TDD along with the Iterative development of features to
produce high quality code. From these case studies we can
observe that agile practices can bring benefit to the medical
device software development but they need tailoring in the
organizational context. Due to complex regulation process in
the medical domain we can benefit from tailoring specific
agile practices on traditional Software Development Life
Cycles (SDLC) such as the V-Model

In this research, we are focusing on one of the processes
from the MDevSPICE® framework, Software Unit
Implementation and Verification. Initially, we are
investigating agile practices that are reported to bring benefit
for medical Embedded Software Development specifically for
Implementation and verification part of SDLC. A summary of
these candidate practices is presented in Table II. The first
column shows the practice name while the second column has
the practice description.

V. EXTENDING MDEVSPICE®
 BPS

MDevSPICE® framework, being a collection of
international standards, does not recommend the use of a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

273

specific SDLC. On the other hand, this framework has a
sequential flow of development. This might suggest the
adaption of traditional SDLC models might be compatible for
this framework. For the previously mentioned process from
the MDevSPICE® framework, of Software Unit
Implementation and Verification, we have performed a
mapping as shown in Table III.

TABLE II

PREVIOUSLY PROPOSED AGILE PRACTICES
PP All code is written with two programmers at one machine. For

each pair two interchanging roles are recommended. One is in
control of the keyboard and is thinking about the best way to
solve the problem. The other thinks strategically questioning
the whole approach, looking for test cases and performing
code inspections [7].

TDD In TDD you write one single test that fails, write just enough
code that makes this failing test pass (and all the other passing
tests still pass), and then refactor your code to prepare it for the
next tiny step.

ATDD This process makes use of automated acceptance tests with the
additional constraint that these tests be written in advance of
implementing the corresponding functionality [26].

Daily
stand-up
meeting/
Daily
Scrum

This is a daily 15-minute stand-up meeting to answer three
questions: What did you do yesterday? what do you plan to do
today? and are there any impediments to your work? It’s a
quick status update that identifies iteration progress, immediate
plans and risks.

Sprint
Review

Essentially, each iteration of Scrum is conducted in a short
sprint that delivers a small number of requirements. At the end
of each sprint a Sprint Review meeting is held. During this
meeting the Scrum Team shows which Scrum Product Backlog
items they completed (according to the Definition of Done)
during the sprint. This might take place in the form of a demo
of the new features

Sprint
retrospective

 The team inspects itself and creates a plan for improvements.

TABLE III

MAPPING BETWEEN MDEVSPICE® PROCESS AREA AND AGILE PRACTICES
BPs Suitable Agile Practices

XP SCRUM

BP1 - Implement each software unit PP Daily Scrum

BP2 - Establish unit verification
procedures

PP, TDD Sprint Review, Sprint
retrospective

BP3 - Establish software unit
acceptance criteria and ensure that
software units meet the defined

ATDD Sprint Review, Sprint
retrospective

BP4 - Verify software units PP Sprint Review, Sprint
retrospective

Table III shows the mapping between BPs of the selected

MDevSPICE® process area and candidate agile practices. In
the following subsection, we will discuss some of the
suggested agile practice and demonstrate how we can benefit
in addressing the challenges such as multiple domain
communication and co-design.

A. Pair Programming

This practice is reported to increase the quality of the work
product and increase the knowledge of each engineer such that
the total time to implement a project is lower with PP than
without [27].

On our literature and investigation on the web we have
identified flavors of PP such as:
- Cross-functional pair programming (CFPP), Cross-

functional pairing [28], [29]- pair development composing
software engineer and hardware engineer working
together.

- Distributed Pair Programming (dPP) [30]- two members
of the team synchronously collaborate on the same design
or code from different locations.

One of the challenges that have been reported on our
assessment was dealing with multiple stakeholder input.
Through pairing multiple stakeholders, they can share
knowledge, for example through pairing a hardware engineer
and a software engineer. Extended practices such as Cross-
functional pair programming can also address other challenges
such as co-design. Reference [31] stated that this challenge
has to be understood and taken into consideration when we
apply agile methods. The concurrent activities of hardware
and software development practices can be managed through
Cross-functional pair programming where different
stakeholders work together for the same objective.

B. Test Driven Development (TDD)

TDD is a design approach, and it helps users write better
code, because testable code is written by default [32], [33].

In [34], the authors describe the advantage of TDD for
embedded software development, where there is hardware
development running in parallel. Bugs can be due to hardware,
software, or a combination of the two. This report witnessed
the benefit of TDD to deal with software bugs of both
hardware and software. This practice is also reported to bring
benefit in one the case studies discussed before [25]. With the
implementation of TDD this case study was able to reduce the
load of hardware testing.

By extending the BP, BP2 - Establish unit verification
procedures, we can provide a detailed implementation and
address additional challenges of co-design in testing and bug
tracking. From these two examples and the mapping, we can
observe that:
1) The MDevSPICE® framework can solve one of the main

challenges medical companies are facing, complex
process adherence. But this framework does not provide
or dictate a specific SDLC and the BPs are only provided
at a general level.

2) By extending the MDevSPICE® process, with suitable
and extended agile practices, we can provide detailed
implementation at a low level.

3) We can also address additional challenges that medical
device companies are facing. Challenges such as multiple
domain communication, knowledge sharing and co-design
can be addressed with suitable agile practices.

VI. CONCLUSION

In this paper, we have discussed the challenges of medical
embedded software development. Medical device companies
are reporting the difficulty of dealing with complex process
adherence. On other hand, embedded systems design brings its

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

274

own additional challenges such as Co-design to the
development of medical embedded software. MDevSPICE®
framework has been developed to give medical device
companies a guidance and address the process adherence
challenge. This framework does not provide low level
implementation details and BPs are provided at a general
level. By extending BPs of MDevSPICE® and adding
flexibility through tailored agile practices, we can address
challenges of medical embedded software development. In the
future we are going to continue mapping the rest of process
areas of MDevSPICE® framework with agile practices. We
will also perform a structured interview with medical
embedded companies. From the interview we will analyze the
challenges and apply the extended MDevSPICE framework
with agile practices for embedded medical software
development through action research.

REFERENCES
[1] Espicom, “United States Medical Devices Report,” 2015. (Online).

Available: http://www.espicom.com/usa-medical-device-market.html.
(Accessed: 25-Feb-2016).

[2] Z. Jiang and R. Mangharam, “High-Confidence Medical Device
Software Development,” Found. Trends® Electron. Des. Autom., vol. 9,
no. 4, pp. 309–391, 2015.

[3] R. F. Munzner and D. Ph, “Entering the U. S. Medical Device Market,”
pp. 3548–3550, 2003.

[4] AAMI, “AAMI TIR45: Guidance on the use of AGILE practices in the
development of medical device software,” 2012.

[5] M. McHugh, F. McCaffery, and V. Casey, “Changes to the International
Regulatory Environment,” J. Med. Device., vol. 6, no. 2, p. 21004, 2012.

[6] D. Greer and Y. Hamon, “Agile Software Development,” Aug. 2011.
[7] K. Beck, “Extreme Programming Explained: Embrace Change,” XP

Ser., no. c, p. 224, 1999.
[8] K. Schwaber and M. Beedle, Agile Software Development with Scrum,

vol. 18. 2001.
[9] S. R. Palmer and M. Felsing, “A Practical Guide to Feature-Driven

Development,” Nov. 2001.
[10] N. Hrgarek, “Certification and regulatory challenges in medical device

software development,” 2012 4th Int. Work. Softw. Eng. Heal. Care,
SEHC 2012 - Proc., pp. 40–43, 2012.

[11] W. H. W. H. Wolf, “Hardware-software co-design of embedded
systems,” Proc. IEEE, vol. 82, no. 7, pp. 967–989, 1994.

[12] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proc. IEEE, vol. 100, no. SPL CONTENT, pp.
1411–1430, 2012.

[13] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,” J.
Syst. Softw., vol. 85, no. 6, pp. 1213–1221, 2012.

[14] VersionOne Inc, “VersionOne 10th Annual State of Agile Report,”
2016.

[15] K. Mar and K. Schwaber, “Scrum with XP,” Informit. com, 2002.
[16] H. Kniberg, Scrum and XP from the Trenches. Lulu. com, 2015.
[17] Z. Mushtaq and M. R. J. Qureshi, “Novel Hybrid Model: Integrating

Scrum and XP,” Int. J. Inf. Technol. Comput. Sci., vol. 4, no. 6, pp. 39–
44, 2012.

[18] H. Jonsson, S. Larsson, and S. Punnekkat, “Agile Practices in Regulated
Railway Software Development,” in 2012 IEEE 23rd International
Symposium on Software Reliability Engineering Workshops, 2012, pp.
355–360.

[19] B. Fitzgerald, K. J. Stol, R. O’Sullivan, and D. O’Brien, “Scaling agile
methods to regulated environments: An industry case study,” Proc. - Int.
Conf. Softw. Eng., pp. 863–872, 2013.

[20] F. McCaffery, M. Pikkarainen, and I. Richardson, “Ahaa --agile, hybrid
assessment method for automotive, safety critical smes,” Int. Conf.
Softw. Eng., p. 9, 2008.

[21] T. Myklebust, T. Stalhane, and N. Lyngby, “An agile development
process for petrochemical safety conformant software,” in 2016 Annual
Reliability and Maintainability Symposium (RAMS), 2016, no.
Fitzgerald, pp. 1–6.

[22] S. H. VanderLeest and A. Buter, “Escape the waterfall: Agile for
aerospace,” in 2009 IEEE/AIAA 28th Digital Avionics Systems
Conference, 2009, p. 6.D.3-1-6.D.3-16.

[23] R. Y. Takahira, L. R. Laraia, F. A. Dias, A. S. Yu, P. T. S. Nascimento,
and A. S. Camargo, “Scrum and Embedded Software development for
the automotive industry,” Proc. PICMET ’14 Conf. Portl. Int. Cent.
Manag. Eng. Technol. Infrastruct. Serv. Integr., pp. 2664–2672, 2014.

[24] R. Rasmussen, T. Hughes, J. R. Jenks, and J. Skach, “Adopting agile in
an FDA regulated environment,” Proc. - 2009 Agil. Conf. Agil. 2009, pp.
151–155, 2009.

[25] P. A. Rottier and V. Rodrigues, “Agile Development in a Medical
Device Company,” Agil. 2008 Conf., pp. 218–223, 2008.

[26] B. Haugset and G. K. Hanssen, “The Home Ground of Automated
Acceptance Testing: Mature Use of FitNesse,” in 2011 AGILE
Conference, 2011, pp. 97–106.

[27] L. W. Alistair Cockburn, “The Costs and Benefits of Pair
Programming,” Extrem. Program. examined, pp. 223–247, 2000.

[28] Hoby Van Hoose, “Experience Design and Cross-Functional Pairing -
SolutionsIQ,” 2013. (Online). (Accessed: 11-Oct-2016). Available:
http://www.solutionsiq.com/experience-design-and-cross-functional-
pairing/.

[29] James E. Hewson, “Cross-functional pair programming | Embedded,”
2003. (Online). (Accessed: 11-Oct-2016). Available:
http://www.embedded.com/design/prototyping-and
development/4024901/Cross-functional-pair-programming.

[30] B. F. Hanks, “Distributed Pair Programming: An Empirical Study,”
Springer Berlin Heidelberg, 2004, pp. 81–91.

[31] J. Ronkainen and P. Abrahamsson, “Software development under
stringent hardware constraints: do agile methods have a chance?,”
Extrem. Program. Agil. Process. Softw. Eng., pp. 1012–1012, 2003.

[32] K. Beck, “Test-Driven Development By Example,” Rivers, vol. 2, no. c,
p. 176, 2003.

[33] R. Jeffries and G. Melnik, “TDD--The Art of Fearless Programming,”
Software, IEEE, vol. 24, no. 3, pp. 24–30, 2007.

[34] M. Karlesky, W. Bereza, and C. Erickson, “Effective Test Driven
Development for Embedded Software,” in 2006 IEEE International
Conference on Electro/Information Technology, 2006, no. 616, pp.382–
387.

[35] ISO/IEC 15504-5. Information technology – process assessment - Part 5:
an exemplar process assessment model. 2012. p. 211

[36] IEC TR 80002-3: Medical device software -- Part 3: Process reference
model of medical device software life cycle processes (IEC 62304).
2014. IEC: Geneva, Switzerland. p.23.

