
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

262

Abstract—A practical and simple self-indexing data structure,

Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is
built in linear time for the CSA based on PEF indexes. Moreover, the
PEF-CSA is compared with two classical compressed indexing
methods, Ferragina and Manzini implementation (FMI) and Sad-CSA
on different type and size files in Pizza & Chili. The PEF-CSA
performs better on the existing data in terms of the compression ratio,
count, and locates time except for the evenly distributed data such as
proteins data. The observations of the experiments are that the
distribution of the φ is more important than the alphabet size on the
compression ratio. Unevenly distributed data φ makes better
compression effect, and the larger the size of the hit counts, the longer
the count and locate time.

Keywords—Compressed suffix array, self-indexing, partitioned
Elias-Fano, PEF-CSA.

I. INTRODUCTION

S the number of digitally available information grows at
an exponential rate, text indexing becomes more

important. Suffix arrays [1], [2] and suffix trees [3] are
powerful data structures with numerous applications in such
areas as computational biology. Both of them enable to retrieve
sequences of a text in almost-optimal or optimal time and
occupy O(nlgn)bits. Actually, these text indexing schemes are
greedy with reference to space usage. When the alphabet set Σ
is of constant size, the indexes are larger than the original text
by a multiplicative factor of Ω(log|Σ|).

The data structures CSA [4]-[7] and FMI [8]-[10] reduce the
size of the space, which takes advantage of the index
regularities and the text compressibility, and also, support all
the application of the suffix trees and suffix arrays. Grossi and
Vitter proposed the GV-CSA [4], [5] which overcomes the
space limitation from	nlgn	bits to O nlg|A| bits and answers
string matching queries from constant time to O

occ log n time, where the length of the string pattern P is p,
and occ is defined as the times of P occur in the original text T.
Sadakane made some changes of the original CSA [6], [7]
(Sad-CSA), and self-indexing is proposed. For any h αlg| |n
, the size has reduced to nH o n bits with 0 α 1, it can
search for a string pattern of length p in O p log n
occ	log n time, for 0 ϵ 1. Ferragina and Manzini [8], [9]

The research is supported by the Fundamental Research Funds for the

Central Universities (2015JBM035).
Guo Wenyu is with the Department of Computer science and technology,

School of computer and information technology, Beijing Jiaotong University,
Beijing 100044, China (e-mail:guowenyu418@163.com).

Qu Youli (Dr.) is with the Beijing Jiaotong University, Beijing 100044,
China (e-mail:ylqu @bjtu.edu.cn).

designed FMI based on Burrows-Wheeler transform (BWT)

[10], a kind of CSA of size s at most	5nH T O nlogσ bits for

k log ω 1 , H is the order-k entropy of T, and it

can search for a string pattern of length p in O p lg ∈n 	time
without T. Another type of CSA was proposed by Ferragina and
Manzini [11], which needs O nH lg n bits	 of space and
supports O p occ time query. Grossi and Vitter [5] further
reduced the size of self-index to nH o n bits where
h αlg| |n with 0 α 1 and achieved O mlg|A|

polylog n query time. In the view of Ferragina and Manzini
[8], huge improvements and considerable results can be applied
from the compressed indexes.

In this paper, we develop a linear time construction of
PEF-CSA data structure to self-indexes based on PEF indexes,
and we measure it by compression ratio, count time, and locate
time. Compared with the two algorithms FMI and Sad-CSA on
the Pizza & Chili, the PEF-CSA works better than the other two
on the data except for the protein data, and performs better on
the query time. It turns out that the distribution of the φ is more
important than the alphabet size on the compression ratio,
imbalanced distribution of data φ makes better compression
effect, and the size of the hit counts is a significant factor on
count and locate time.

In Section II, the details of the preliminaries are introduced
to be the basic of the algorithm. We take the recent PEF indexes
approach for our algorithm compressing the array φ mentioned
in Section III A and give the frequency of character to retrieve
the original text in Section III B. In Section IV, the PEF-CSA is
constructed step by step. The query functions such as count
query, locate query, and extract function are described in
Section V. The experimental analysis is shown in Section VI to
evaluate the PEF-CSA performance compared with FMI and
Sad-CSA.

II. PRELIMINARIES

A. Suffix Array

A suffix array [1], defined as SA, is simply a permutation of
all the suffixes of original text T so that the suffixes are
lexicographically sorted.
Definition 1. Let T[1,n]=T[1]T[2]…T[n] be a long string of
length n on an alphabet Σ of size σ and assume that T[n+1]=’$’
is a special symbol whose order is assigned to 0. A suffix of text
T , is a substring of the form T , , where 1 k n . The
suffix array SA[1..n] of T is array of integers k that represent
the suffixes T , containing a permutation of the interval [1,n].

SA[i] = k means that the suffix T , 	is the i-th smallest among
all the suffixes starting at the position k in T.

Compressed Suffix Arrays to Self-Indexes Based on
Partitioned Elias-Fano

Guo Wenyu, Qu Youli

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

263

The pattern P is a string of length m over alphabet Σ, all the
suffixes prefixed by p in SA occupy a contiguous range. Thus,
the count and locate query of P for the interval [l, r] over SA can
be accomplished by the method of two binary searches.
Definition 2. Let the suffixes be grouped by the one symbol
prefix, named p. So, the group where the suffixes start with the
same character p is called p-list.

B. Compressed Suffix Array (CSA)

The CSA of Grossi and Vitter [4], [5] struck a balance
between achieving fast query performance and the large storage
of SA, which reduces the size of a text of length n from n log n
bits to O(n) bits. CSA is a self-indexing structure, and the size
of it is expressed by the order-0 entropy of the original text.
GV_CSA used decomposition scheme based on a partial
function φ.
Definition 3. Given the suffix array SA[1,n], function φ is
defined as: SA φ i SA i 1 . The especial situation is
SA[1]=n, in that case SA 	φ i 1, it is same as (1)

	 	 	 	 	

	 	 	 	
 (1)

The biggest difficulty in GV_CSA data structure is the

representation and storage of φ, so a new practical method
based on PEF indexes comes out because some properties of φ
make it appeal to compression. The observation that we will
propose is φ is monotonically increasing in the suffix array SA
that corresponds to suffixes starting with the same character.
Lemma 1. Given the original text T that points to the suffix
array SA[1,n]. When T T , it gives the
corresponding function	φ i 	φ i 1 , for 1 i n.

We assume that T , xM and T , xN , the
1-symobol prefix of the two suffixes is the character x, thus xM
< xN, which means that the position of the suffix M is in front
of suffix N in SA, and then M<N. So that, T ,

	T , M, in the same way T , 	 T ,

N. Obviously, T , T , ,so	φ i 	φ i 1 has
been proved.

In Table I, the text T=”alabar_a_la_alabarda$ ” is a string of
length n=21 on an alphabetΣ={$,_,a,b,d,l,r}of size σ 7 ,
every SA order is classified by the first character in Σ, which is
an increasing sequence. For example, all the suffixes start with
a character named a-list with ranks 5-13, whose rankings form a
monotonically increasing sequence of positions; namely, 1, 3,
4, 14, 15, 18, 19, 20, 21.

C. Partitioned Elias-Fano (PEF) Indexes

The Elias-Fano representation of monotone sequences is a
simple and elegant data structure which has been recently
applied into the compression of inverted indexes. Elias-Fano
data structure has the excellent characteristics that support fast
search operations and random access. While the space
occupancy of Elias-Fano is competitive with frequently-used
methods such as PForDelta and γ δ Golomb codes, it fails
to perfectly exploit the local clustering that inverted lists
usually exhibit, namely the presence of long subsequences of
close identifiers. Ottaviano and Venturini [12] tackle the
problem describing a new presentation based on partitioning
the monotone sequences into contiguous chunks and encoding
both the chunks with different ways. The two-level data
structure as shown in Fig. 1 is given to improve compression
and support fast queries on the original text. The first level
gives the Elias-Fano description of the whole sequence based
on juxtaposing the endpoint of every chunk of it. The second
level is the specific collection of the chunks represented by
three different methods.

XXX XXXXX XXXXXXXXX X X X X XXXX X XXX

Fig. 1 Two -level of Elias-Fano

Definition 4. Consider the monotonically increasing sequences
S[0,m-1], for any 0 i m 1,S i S i 1 ,and S[i] is a
non-negative integer from an set [u]={0,1,…,u-1}. The
partition P of x chunks is S i , i 1 S i , i 1 … S i , i ,
for i 0 and i m 1 . The space occupancy of it is
defined as C P ∑ C S i , i 1 bits, where C(S[i, j])
represents the cost of S[i,j].

The optimal partitioning aims at decreasing the space
occupancy by partitioning the chunks freely with the variable
size, the optimal one can be complex in time and space which is
not suitable for inputs larger than few thousands of integers. So,
they give a presentation of a linear-time algorithm [13] that is a
guarantee of at most 1 ϵ times larger than the smallest one,
where ϵ	 ∈ 0,1 , and then, Ottaviano and Venturini reduced
the complexity of time to O log 1/ϵ with the two
parameters ϵ and ϵ .

TABLE I

SUFFIX ARRAY SA AND FUNCTION Φ

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T a l a b a r _ a _ l a _ a l a b a r d a $

SA 21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

φ 10 7 11 17 1 3 4 14 15 18 19 20 21 12 13 5 6 8 9 2 16

III. THE PEF-CSA DATA STRUCTURE

Sadakane [6], [7] gave the representation GV-CSA which
can be converted into a data structure of a self-index and

meanwhile optimized it in some ways. In this paper, we apply
the excellent method named PEF to the function φ combining
strong theoretical guarantees and good practical performance.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

264

The resulting index is called PEF-CSA and will be referred to
PEF-CSA in this paper.

A. The Extensional Function

The asymptotic space of research on self-indexes [4], [6] is
built on the extensional function φ,which maps suffix T , to
suffix T , , so that it can make a scanning from left to right
over the original text in forward direction. The same first
symbols, namely identical 1-symbol prefix of the suffix arrays,
are grouped as one sequence which is monotonically increasing
based on the Lemma 1. Grossi and Vitter [4], [5] represent the
decomposition scheme by a simple recursion mechanism where
the function φ is computed recursively. In our way, only the
first level of the data about function φ is reserved, which can
completely tell where in the suffix array lies the pointer
following the current one with the space as small as possible
such that, based on definition 2, given the position i in SA, if
SA i k, we can find the mapping position j, SA j k 1.

The extensional function φ is stored based on the PEF
method, so that the compression of it is completed by the
two-level optimal partitioning. In order to facilitate the
representation of the discussion, the array of φ and the
extensional function φ will be chosen to mention alternatively.

Inspired by the compression of inverted indexes, our idea is
to partition the φ array that points to suffixes starting with the
same character using PEF. For definition 3 and the description
of the property in Section II.C, each chunk cost of the
partitioning C(S[i, j]) is defined as two terms: a constant cost
named F to store the information about the chunk in the first
level, and the space regarding its elements in the second level.
Considering the constant cost F, three integers are stored for
each chunk, the universe integer in the chunk, the number of the
integer in the chunk, and the pointer to the mapping second
level. The upper bound of F is defined as the value 2 log u
logm bits. The cost of the specific element of each chunk S[i, j]
is computed by a type of self-adoption where the minimum
value is chosen from three possible encodings.

 Every original element in the chunk subtracts the last
element in the previous chunk. By this means, increasing
sequence is ensured, while the size of it is minimized in the
chunk. Given the size of the universe u S j S i 1 or
u S j for i=0, the number of elements in this chunk is
m j i 1, Vigna [14] used the method that writes the
characteristic vector of the set of its elements as a bitvector to
represent the sequence with u bits. So, when the chunk occurs
as a dense one, the chunk covers a big fraction of the values in
the universe u . In the other words, m is close to u . If the
universe u m ,which gives the extreme case, the chunk
covers the whole universe, the values given in the first level are
enough to represent all the elements in the chunk without any
further information. In our case, besides Elias-Fano, we use the
other two encoding methods based on the relationship between
u and m .The costs of three possible encodings will be
introduced as:

1. Elias-Fano Encoding

Vigna [14] gave a detailed description of the representation
of the high bits/low bits of a monotone sequence and
represented an index using a different architecture based on
quasi-succinct representation of monotone sequences. If the
chunk is encoded as Elias-Fano,	u is the upper bound of the
chunk because of the increasing property. Two-bit arrays are
stored to represent the chunk, the upper bits in the upper-bits
array are a chunk of unary-coded gaps, the lower l u /m 	
bits of each S[k],i k j are stored in the lower-bits array
explicitly and contiguously. It is easily seen that each unary
code uses one stop bit. It uses at most 2 log u /m bits one
element. Indeed, the space bound is 2m log u /m m bits.
The cost of the chunk that is encoded with Elias-Fano is
m l m u /2 bits, wherel log u /m .

We show an example in Fig. 2. We consider the list 5, 8, 9,
10, 14, 32 with upper bound 32, so l log 32/6 2. The
lower l bits on the right of all elements are concatenated to form
the lower-bits array, the lower bits are 01 00 01 10 10 00. The
upper bits of the values gap are stored sequentially in the
upper-bits array in unary code, and the upper bits are 01 01 1 1
01 000001.

Fig. 2 A simple example of encoding Elias-Fano

2. BitMap Encoding

The chunk is dense when the elements in it cover a large part
of the universe where the chunk can be represented with in u
bits whenever m approaches u . Writing the characteristic
vector of the elements is set as a bitvector. The dense chunks
are expected to occur frequently in representing the monotone
increasing sequence.

The space occupancy of the dense chunk which is encoded as
BitMap is u bits. Within its characteristic vector, the chunk
can be stored perfectly.

In Table II, we show an example. Note that we code the
dense chunk 1, 2, 3, 5, 7, 9, 10 based on BitMap, the last value
in the chunk is u 10, the number of the dense chunk m 7.
The chunk can be stored in 10 bits, and they are 1110101011.

3. Plain Encoding

The most special case is the densest sequence, which means
m u , the chunk covers all the elements in the universe [u].
Because the values m and u stored in the first level are
sufficient for themselves to derive all the values in the chunk
without the requirement of encoding further information, for
example, the sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The only
thing that we need is the value m 10 and u 10 in the first

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

265

level. We can decode each element in the chunk by the last
element in the chunk and the number of the elements in the
chunk.

TABLE II

A SIMPLE EXAMPLE OF ENCODING BITMAP

u 1 2 3 5 7 9 10

bitmap 1 1 1 0 1 0 1 1 1

The cost of the most densest chunk is 0 bits, which means if

m u , thus S[i,j] covers the whole chunk.
It remains to describe how to give the coding in O log 1/

ϵ time comparing to the most optimal one. It can be done by
giving k O log 1/ϵ windows w ,… ,w sliding in the
whole sequence, these windows cover different fractions of the
sequence, which start at the same position but end at different
end position. In the beginning, we initialize the start and end
position value of all the windows, and each window starts and
ends at the 0 position. Every time in the execution, we use the
shortest path method to visit the next value in the original
sequence. We advance the start position of each sliding window
by one position step, and the end position until the most cost of
the vertex that it can visit. Every time that we move the position
of a window, we should compute the cost of the vertex that
represents the portion of the sequence. It can be done in linear
time. At the end of the algorithm, every portion in the sequence
will be computed, so visiting the value of the last vertex, we can
get the smallest cost of the sequence in O log 1/ϵ time.

B. Frequency of Character

Self-index structure is based on the table that represents the
frequency of character. Table III is given as the name of the
form to map the alphabet symbols lexicographically sorted.
Definition 5. Let C[p] be the rank of the smallest suffix in the
p-list in the lexicographic order. In the other words, C[p] is the
sum number of the alphabet symbol p where p p in the
original text.

TABLE III

THE FREQUENCY OF CHARACTER IN T

symbol $ _ a b d l r

frequency 0 1 4 13 15 16 19 21

Table III represents the character frequency of the example.

The extra entry n is added to the end of the form for the
convenience. We can find that the suffixes SA C p
1…C p 1 belong to the p-list.
Lemma 2. T , can be extracted from function φ

recursively: 	i, φ i , φ φ i … as we point to
T , T , T ,…T after n-i+1 steps, the positions
of the T , T , T ,… T in the lexicographic
order corresponding to the symbols in Table III can be revealed.
The first symbol T of the suffix T , , in alphabetic order
of SA must be the symbol p such that C p i C p 1 .

With the extensional function φ and the form C, we can
reveal the suffix T , corresponding to SA i . So, the original
text can be discarded.

IV. PEF-CSA CONSTRUCTION

We build the data structure PEF-CSA in linear time in the
following steps.
Step 1. Constructing SA and form C.
Step 2. Computing value φ using C, SA, T, abandoning T after

the computation.
Step 3. Sampling SA and SA , abandoning SA after the

sampling.
Step 4. Encoding φ using PEF, abandoning original φ after

that.
The first step will not be explained because of the standard

algorithm written by Manzini and Ferragina [8], [11]. We only
need to explain the three last steps work.

A. Computing Extensional Function

Algorithm ComputePhi(C, SA, T, φ)
Input: C, SA, T
Output: φ
1 end C[endchar]
2 for k 1 to n do
3 temp SA[k]
4 if temp=1 then endpos=i
5 else
6 p T[temp-1]
7 φ[C[p]] i
8 C[p] C[p]+1
9 φ[end] endpos

In the pseudocode, the array C is assumed as a local value

and the entries are all reset for the ComputePhi. It is obvious
that the function ComputePhi runs in O(n) time. The first line
above represents the inverse of suffix array that equals the last
symbol in the original text, SA[end]=n, where endchar is the
last symbol. The function φ is based on the following point.
Assume that suffix array SA[i] =j. if p = T[j-1], C[p] gives the
present number of the p-list. So φ C p i.

B. Sampling and

SA is the inverse of permutation of SA and SA , SA
denote the sampled SA and SA . With the sampling of SA and
SA , 	SA and SA are built, respectively. The step of
sampling for SA and SA are st and nst. The pseudocode of
sampling SA and SA method is written as follows.

Algorithm SampleCSA (SA, st, nst,	 ,)
Input: SA, st, nst
Output: ,
1 sacount /
2 for i 1 to sacount do
3 SA[st*i]
4 for j 1 to n do
5 if(SA[j] mod nst =0) then /	 j

SA is built in lines 2-3 for st sampling length by reducing

the suffix array, so it gives the entries SA[st*i] where the result
is a multiple of st. SA is determined by SA if we want to have a
query described in the Section V C.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

266

TABLE IV
SA AND SA WITH ST=NST=4

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T a l a b a r _ a _ l a _ a l a b a r d a $

SA 21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18

 9 3 5 19 6

 14 7 3 15 5

SA is built in lines 4-6 for nst sampling length by reducing
the inverse of suffix array. Based on Section IV.B, we find that
it is easy to retrieve the suffix array when suffix ranking is
given. When we want to pick up the string that start position is
start and the length is len, the function is named
extract(start,len), the problem turning the position start into
ranking i must be resolved. The solution to transform the start
to ranking i is as follows. First, we give the SA a sampling
step nst and it means that we collect all entries SA[j] mod nst =0
in which SA[j] is exactly divisible by nst, and then give SA
the value j. Given the ranking i of position start, we can restore
the string T , according to lemma 2 in Section
III.B. Obviously, we find the algorithm SampleCSA can be
completed in O(n) time. Table IV shows the SA and SA .

C. Encoding Extensional Function with PEF

Function coding Phi describes the method that compresses φ
in O σn log 1 ϵ time shown in Section II.C. Assume that
the ϵ and ϵ have been defined as 0.03 and 0.3, that balance
the construction time and the space occupancy.
	

Algorithm codingPhi (φ, C,bvb)
Input: φ, C
Output: bvb
1 phicount 0
2 for i 1 to C.length() do
3 phinum C[i+1]-C[i]
4 universe 0
5 for j 1 to C[i] do
6 begin.addphi(φ[phicount])
7 phicount++
8 universe = φ[phicount]
9 optimal_partition(opt, begin, universe, phinum, esp1,esp2)
10 it begin
11 cur_base = *begin
12 for p 0 to opt.partition.size do
13 for cur_i 0 to opt.partition[p] ++it do
14 value = *it
15 cur_partition.pushback(value – cur_base)
16 base_partition_write(bvb, cur_partition.begin(),

cur_partition.back()+1, cur_partition.size())
17 cur_base = value + 1

Line 1 keeps the ranking of the array φ in phicount, i.e.

phicount =0. phinum gives the number of the increasing
sequence that is the subsection of φ according to the same
p-list, phinum = C[i+1]-C[i]. Lines 5-7 initialize the value
which keeps the information of φ in the p-list. After that, every
increasing sequence will be partitioned optimally based on the
function optimal_partition, the result of partitioning is stored in
the value opt. Lines 13-15 make values in the chunk minus the
last value in the former chunk and store the last value in the

present chunk for the following computing. We write the final
result bvb in the method base_partition_write in Line 16.

The pseudocode of the algorithm optimal_partition describes
how to generate the partitions in O n log 1/ϵ time
mentioned in Section IV.A. In the other words, we find the
optimal partition for the increasing sequence in the linear time
based on the following pseudocode.

Algorithm optimal_partition(begin, universe, size, esp1, esp2, opt)
Input: begin, universe, size, esp1, esp2
Output: opt
1 singleblock_cost cost_base(universe, size)
2 costmin (size+1, singleblock_cost,mincost[])
3 cost_lb cost_base(1,1)
4 cost_bound cost_lb
5 while esp1=1 or cost_bound < cost_lb /esp1 do
6 windows.emplace_back(begin, cost_bound)
7 if (cost_bound >= single_block_cost) break
8 cost_bound costbound * (1+esp2)
9 for i 0 to size do
10 last_end i + 1
11 for window: windows do
12 while window.end < last_end do
13 window.advance_end();
14 while true do
15 window_cost cost_base(window.universe,window.size)
16 if opt.mincost[i] + window_cost < opt.min_cost[window.end] then
17 opt.min_cost[window.end] opt.min_cost[i] + window_cost
18 opt.path[window.end] i
19 last_end window.end
20 if window.end = size break
21 if window_cost >= window.cost_upper_bound break
22 window.advance_end()
23 window.advance_start()
24 curr_pos size
25 while curr_pos != 0 do
26 opt.partition.pushback(curr_pos)
27 opt.curr_pos opt. path[curr_pos]
28 opt.cost_opt opt. min_cost[size]

Lines 5-8 build k sliding windows as k O n log 1/ϵ

and give the ending position of every window the upper bound.
Armed with these windows, every time that the algorithm visits
the next vertex, we advance the start position as mentioned in
line 23. In lines 15-22, when we move the start or the end
position of the windows, we need to evaluate the cost of the
current portion of the sequence. In line 28, cost_opt is the
optimal cost of the array φ in the same list.

V. INDEXING FUNCTIONALITIES OF PEF-CSA

Given the array C shown in Section III.B, we used the
sampling suffix array 	and inverse suffix array to
support two pattern matching queries for self-index: locate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

267

function, count function, and we also accomplished the extract
function mentioned in Section III.B for the PEF-CSA.

A. Count Function

Count function defined as count based on the backward
search gets rid of the normal framework that is a sequential
scan. It gives the occurrences of pattern P in the original text T.
From the whole count procedure, we use φ to reduce the scope
between L and R that report the positions of P in T. When the
function φ iterates to the first character, all the suffix arrays in
SA[L,R] contain the prefix P. It returns L and R, R-L+1 is the
count of the P in T.

Algorithm count(P, L, R)
Input: P
Output: L, R
1 p P[m]
2 L C[p]+1
3 R C[p+1]
4 for i m-1 to 1 do
5 templ C[c]+1
6 tempr C[c+1]
7 p P[i]
8 cl min{xl,xl ∈ templ, tempr , φ xl ∈ L, R }
9 cr max{xr,xr ∈ templ, tempr ,φ xr ∈ L, R }
10 L cl
11 R cr
12 if L>R then return -1
13 return R-L+1

Notice that m is the length of the pattern P, lines 8-9 mean to

determine the new boundary of the final position. The
algorithm based on the actual characteristic of the function φ
begins with the last character of the pattern, and ends with the
first character of the loop. Obviously, this algorithm in the
implementation process to maintain the following invariants:
when the algorithm is executed from the kth character, the
suffixes in the range of [L, R] have the prefix that is the last k
characters in P.

In lines 1-3, we give the initialization of L, R and character p,
L corresponds to the first symbol of p-list and R maps the last
element of p-list, so the interval [L, R] is the range of p-list.
Lines 8-9 describe the list of backward character for P, cl
represents the start position, and rl gives the end position of the
list. When cl>cr just like line 12, the algorithm returns -1, if the
original text T has the pattern P, it will return R-L+1.

We use pattern P=“ala”as an example to give the count
process.

After we initialize the values in lines 1-3, L C a 1 5,
R C a 1 C b 13. The character ‘a’ is the start of
suffixes in [5, 13], corresponding to a-list. When we first iterate
L and R in the loop, templ=C[l] +1=17, tempr=C[l+1]=19. The
suffixes in [17, 19] start with ‘l’ and map with the φ values are
{6, 8, 9} where φ 17 6 and φ 18 8,φ 9 9 in [5,
13]. Thus [cl, cr] = [17, 19]. In line10-11, the [L, R] = [17, 19]
has been updated. Therefore, the suffixes in this range are
prefixed with “la”. When it starts the second iteration,
templ=C[a]+1=5, tempr=C[a+1]=13, the corresponding values
are {1,3,4,14,15,18,19,20,21} for which φ 10 18 and

φ 11 19 in [17,19]. So, [cl, cr] = [10, 11] and [L, R] = [10,
11], so there are R-L+1=2 “ala” in T.

B. Locate Function

To locate the counting positions, we describe the locate
function to give the specific values of the interval [L, R].
Suppose that we already get the counting interval [L, R], the
algorithm finds the corresponding original position SA[L,..,R].

The pseudocode of the locate algorithm is given below.

Algorithm locate(P, L, R,pos)
Input: P , L, R
Output: pos
1 Initialize L,R to be the result of count query return
2 Initialize pos[1,…,R-L+1]to be 0
3 R C[p+1]
4 for i L to R do
5 tmstep 0
6 while i mod st != 0 do
7 tmstep tmstep ++
8 i φ i
9 i i/st
10 pos[i-L] - tmstep
11 return pos

After we get the count query interval [L, R], suppose that the

certain value in the interval is named i, we can determine the
SA[i] through the function φ. We walk along φ to reach the
index that is stored in SA . Let tmstep be the number of steps in
the walk, we return SA i – tmstep.

We continue to have pattern P=”ala” as an example to know
how the function locate works. As we know, we get the
occurrence interval [L,R] from the count query which contains
the ranking of the position. So that what we have to do is to get
SA[L]..SA[R] as L=10 and R=11. We give the case computing
SA[10] as st=4, and st is the sampling step for SA mentioned in
4.2. If we want to get SA[10], i =10, then 10mod	4! 0, so we
illustrate i φ 10 18 and tmpstep 1 , continuing the
loop’s iteration, then 18mod 4!=0,	i φ 18 8, so the loop
ends at i 18 . Finally, the algorithm returns SA i
1=SA 18 1 2 1 1, so SA[10]=1.

C. Extract Function

In Section IV.B, we get the arrays and which
support the function extract (start, len) that returns the string

, . From lemma 2 in Section III.B, how to
restore the suffix array is described with φ and array C.

So, the Algorithm extract(start, len,str)
Input: start, len
Output: str
1 i /
2 tmpstep start mod nst
3 for j1 to tmpstep do
4 i φ i
5 for j0 to len-1 do
6 str[j] inverseC(i)
7 i φ i
8 return str

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

268

Most important thing to restore the string is to convert the
starting position start to the corresponding rank i. We update
i φ i , and repeat the above process, then the suffix can be
determined.

nst is the sampling step of SA . The algorithm first finds the
most sampling points	 start/nst smaller than start in line 1,
then the point ranking i is derived. After that, in lines 3-4, we
continue to operate i φ i for start	mod	nst time. Now, the
current i is the final one mapping the start position. In lines 5-7,
we get the string according to the array C, and the inverse C
gives the corresponding character of position i.

In the case of Section IV B, extract(5,4) runs as following. To
determine the suffix rank i of position start = 5, we suppose that
nst= 4, the maximum sampling step less than 5 is 4,
corresponding to the 11th of the SA , i=14, that means the rank
of the suffix which starts at position 4 is 14, 5 mod 4 = 1, we
continue the iteration	i φ i , i=φ 1 =12, 12 mod 4 = 0, so we
get the suffix rank 12 of position 5. We know len=4, in lines
5-7, when	i 12, it is in the a-list, so the first character is ‘a’;
i φ 12 20 is in the r-list, the second is ‘r’;	i φ 20 2
is in the r-list, the second is ‘_’;	i φ 2 7 is in the r-list, the
second is ‘a’. So, the string , " _ ".

VI. EXPERIMENTAL ANALYSIS

A. Experimental Setup and Environment

All the algorithms were fully implemented in C++ and
compiled with G++ 4.8.4 with the highest optimization setting.
The experiments ran on the machine with a 3.1 GHz Intel(R)
Core(TM) i5-3450 CPU. The machine runs 64-bit Ubuntu14.04
LTS OS and has 16 GB internal memory.

Except the fact that the algorithm construction of suffix array
is based on the C code of Mäkinen and González (SAu.tgz)
[15], all the parts of the algorithms have been implemented. We
used the dataset from Pizza&Chili that has different type or size
to test the efficiency of our algorithms. We gave the
compression ratio defined to the ratio of the space occupancy of
the PEF-CSA structure to the size of the text, and we test the
locate and count query time of the PEF-CSA algorithm.

B. Experimental Result Analysis

In this section, we measure the performance of PEF-CSA by
the compression ratio, count time, and locate time. We use five
different types of original text to be the dataset from the
Pizza&Chili that are dna data, english data, proteins data,
sources data, and xml data. The files can be classified by the
size of them; 50 MB and 100 MB. The results are compared
with Sad-CSA and FMI.

The PEF-CSA compression ratio compared with FMI and
Sad-CSA is shown in Fig. 3. It reflects that the smallest result of
the ratio is 0.29, which means the index can be approximately
compressed to the 1/4 of the original text. PEF-CSA is better

than SAD-CSA on compression ratio, and performs better than
FMI except for the DNA and proteins data.

Fig. 3 Compression ratio of PEF-CSA with FMI and Sad-CSA

The best compression performing data are xml data and

source data, and the crucial feature of both data is highly
structured, that means the distribution of data φ is uneven.
From Table VI, we can know that the φ distribution of the
original text plays a greater role than the alphabet size of
original text, which means uneven data φ performs better than
uneven one.

We randomly choose 10000 patterns of length 20 from each
original text with the genpatten program in Pizza&Chili, and
then, we can generate 10 pattern string files.

TABLE V

THE OCCURRENCES OF THE PATTERN STRINGS IN THE ORIGINAL TEXTS

pattern file hit counts

dna.pattern.50MB 220410

eng.pattern.50MB 308563

pro.pattern.50MB 321003

sou.pattern.50MB 18057976

dbpl.pattern.50MB 84431027

dna.pattern.100MB 378812

eng.pattern.100MB 1942363

pro.pattern.100MB 482312

sou.pattern.100MB 36764894

dbpl.pattern.100MB 150904999

Table V gives the occurrences of the pattern string stored in

the pattern string files from the original texts and we called hit
counts. The two pattern string files sou.pattern file and
dbpl.pattern file have far more hit counts than other files.

We searched for the patterns for the count and locate
function, and the microsecond is the measure of the search
time. From Figs. 4 and 5, we know the PEF-CSA is faster than
the Sad-CSA and FMI and performs better than the FMI on
locate function. Combined with Table V, although the size of
original file can affect the count and locate time, the hit counts
of the file are the most important factor to impact the time,
especially the locate time.

TABLE VI

THE ALPHABET SIZE OF THE TEXTS

Text dna.50 eng.50 pro.50 sou.50 dlbl.50 dna.100 eng.100 pro.100 sou.100 dblp.100

size 16 176 25 227 96 16 215 25 227 96

0

0,2

0,4

0,6

0,8

1

1,2
compression ratio

FMI PEF‐CSA Sad‐CSA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

269

Fig. 4 Count time

Fig. 5 Locate time

To sum up, the three algorithms are all suitable for

self-compressing the files such as sources data, xml data, and
DNA data, but PEF-CSA can perform better in the compression
ratio and query time. The distribution of the φ is more
important than the alphabet size on the compression ratio, and
the size of the hit counts is a significant factor on count and
locate time.

VII. CONCLUSION

In our paper, we give a simple storage data structure for the
PEF-CSA. The PEF-CSA can be developed in linear time. The
experiments on the Pizza&Chili are accomplished comparing
PEF-CSA with the two established standard methods FMI and
Sad-CSA for the datasets of different types and size on the
compression ratio, count, and locate time. Moreover, we
present how PEF-CSA works in linear time where the sliding
windows choosing scheme has been given. Taken together,
PEF-CSA is a competitive data method on the uneven
distributed data like xml and sources data. The distribution of
the φ is more significant than the alphabet size on the
compression ratio, and the size of the hit counts is an important
factor on count and locate time. The bigger of the hit counts, the
longer of the query time.

REFERENCES
[1] Manber U, Myers G. Suffix arrays: a new method for on-line string

searches (J). Siam Journal on Computing, 1993, 22(5):935-948.

[2] Ukkonen E. On-line construction of suffix trees (J). Algorithmica, 1995,
14(3):249-260.

[3] Mccreight E M. A Space-Economical Suffix Tree Construction
Algorithm (J). Journal of the Acm, 1976, 23(2):262-272

[4] Grossi R, Vitter J S. Compressed Suffix Arrays and Suffix Trees with
Applications to Text Indexing and String Matching (Extended Abstract)
(C)// ACM Symposium on Theory of Computing. ACM, 2000:397-406.

[5] Grossi R, Vitter J S. Compressed Suffix Arrays and Suffix Trees with
Applications to Text Indexing and String Matching (J). Siam Journal on
Computing, 2006, 35(2):397--406.

[6] Sadakane K. Compressed Text Databases with Efficient Query
Algorithms Based on the Compressed Suffix Array (M)// Algorithms and
Computation. Springer Berlin Heidelberg, 2000:410--421.

[7] Sadakane K. New text indexing functionalities of the compressed suffix
arrays (J). Journal of Algorithms, 2003, 48(2):294-313.

[8] Ferragina P, Manzini G. Opportunistic data structures with applications
(M). University of Pisa, 2000.

[9] Ferragina P, Manzini G. An experimental study of an opportunistic index
(C)// Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics,
2001:269-278.

[10] Burrows M. A block-sorting lossless data compression algorithm (J).
Technical Report Digital Src Research Report, 1995, 57(4):425.

[11] Ferragina, Paolo, Manzini, Giovanni. On compressing and indexing data
(J). Università Di Pisa, 2002.

[12] Ottaviano G, Venturini R. Partitioned Elias-Fano indexes (C)//
International ACM SIGIR Conference on Research & Development in
Information Retrieval. ACM, 2014:273-282.

[13] Ferragina P, Nitto I, Venturini R. On Optimally Partitioning a Text to
Improve Its Compression (J). Algorithmica, 2011, 61(1):51-74.

[14] Vigna S. Quasi-succinct indices (J). 2012:83-92.
[15] Navarro G, Mäkinen V. Compressed full-text indexes (J). Acm

Computing Surveys, 2007, 39(1):2.

Guo Wenyu received B . E . from the Lanzhou Jiao Tong University. Currently,
he is working toward the M.S. degree at the Beijing Jiaotong University. His
research interests include information retrieval, data compression.

Qu Youli received B.E,M.E and D.E from the Beijing Institute of Technology.
During the graduate studies, he studied the big data management and analysis,
cloud computing and Information retrieval. He is a Senior Engineer. He is an
associate professor and Master’s tutor of the School of Beijing Jiaotong
University. His research interests include natural language processing,
knowledge engineering, and web service and information management.

0

1

2

3

4

5

6

7

8
count time

FMI PEF‐CSA Sad‐CSA

x10

0

500

1000

1500

2000

locate time

FMI PEF‐CSA Sad‐CSA

x10

