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Abstract—A practical and simple self-indexing data structure, 

Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is 
built in linear time for the CSA based on PEF indexes. Moreover, the 
PEF-CSA is compared with two classical compressed indexing 
methods, Ferragina and Manzini implementation (FMI) and Sad-CSA 
on different type and size files in Pizza & Chili. The PEF-CSA 
performs better on the existing data in terms of the compression ratio, 
count, and locates time except for the evenly distributed data such as 
proteins data. The observations of the experiments are that the 
distribution of the φ is more important than the alphabet size on the 
compression ratio. Unevenly distributed data φ makes better 
compression effect, and the larger the size of the hit counts, the longer 
the count and locate time. 
 

Keywords—Compressed suffix array, self-indexing, partitioned 
Elias-Fano, PEF-CSA. 

I. INTRODUCTION 

S the number of digitally available information grows at 
an exponential rate, text indexing becomes more 

important. Suffix arrays [1], [2] and suffix trees [3] are 
powerful data structures with numerous applications in such 
areas as computational biology. Both of them enable to retrieve 
sequences of a text in almost-optimal or optimal time and 
occupy O(nlgn)bits. Actually, these text indexing schemes are 
greedy with reference to space usage. When the alphabet set Σ 
is of constant size, the indexes are larger than the original text 
by a multiplicative factor of Ω(log|Σ|). 

The data structures CSA [4]-[7] and FMI [8]-[10] reduce the 
size of the space, which takes advantage of the index 
regularities and the text compressibility, and also, support all 
the application of the suffix trees and suffix arrays. Grossi and 
Vitter proposed the GV-CSA [4], [5] which overcomes the 
space limitation from	nlgn	bits to O nlg|A|  bits and answers 
string matching queries from constant time to O

occ log n  time, where the length of the string pattern P is p, 
and occ is defined as the times of P occur in the original text T. 
Sadakane made some changes of the original CSA [6], [7] 
(Sad-CSA), and self-indexing is proposed. For any h αlg| |n 
, the size has reduced to nH o n bits with 0 α 1, it can 
search for a string pattern of length p in O p log n
occ	log n time, for 0 ϵ 1. Ferragina and Manzini [8], [9] 
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designed FMI based on Burrows-Wheeler transform (BWT) 

[10], a kind of CSA of size s at most	5nH T O nlogσ bits for 

k log ω 1 , H  is the order-k entropy of T, and it 

can search for a string pattern of length p in O p lg ∈n 	time 
without T. Another type of CSA was proposed by Ferragina and 
Manzini [11], which needs O nH lg n bits	 of space and 
supports O p occ  time query. Grossi and Vitter [5] further 
reduced the size of self-index to nH o n bits  where 
h αlg| |n  with 0 α 1  and achieved O mlg|A|

polylog n  query time. In the view of Ferragina and Manzini 
[8], huge improvements and considerable results can be applied 
from the compressed indexes. 

In this paper, we develop a linear time construction of 
PEF-CSA data structure to self-indexes based on PEF indexes, 
and we measure it by compression ratio, count time, and locate 
time. Compared with the two algorithms FMI and Sad-CSA on 
the Pizza & Chili, the PEF-CSA works better than the other two 
on the data except for the protein data, and performs better on 
the query time. It turns out that the distribution of the φ is more 
important than the alphabet size on the compression ratio, 
imbalanced distribution of data φ makes better compression 
effect, and the size of the hit counts is a significant factor on 
count and locate time. 

In Section II, the details of the preliminaries are introduced 
to be the basic of the algorithm. We take the recent PEF indexes 
approach for our algorithm compressing the array φ mentioned 
in Section III A and give the frequency of character to retrieve 
the original text in Section III B. In Section IV, the PEF-CSA is 
constructed step by step. The query functions such as count 
query, locate query, and extract function are described in 
Section V. The experimental analysis is shown in Section VI to 
evaluate the PEF-CSA performance compared with FMI and 
Sad-CSA.  

II.  PRELIMINARIES 

A. Suffix Array 

A suffix array [1], defined as SA, is simply a permutation of 
all the suffixes of original text T so that the suffixes are 
lexicographically sorted. 
Definition 1. Let T[1,n]=T[1]T[2]…T[n] be a long string of 
length n on an alphabet Σ of size σ and assume that T[n+1]=’$’ 
is a special symbol whose order is assigned to 0. A suffix of text 
T ,  is a substring of the form T , , where 1 k n . The 
suffix array SA[1..n] of T is array of integers k that represent 
the suffixes T ,  containing a permutation of the interval [1,n]. 

SA[i] = k means that the suffix T , 	is the i-th smallest among 
all the suffixes starting at the position k in T. 
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The pattern P is a string of length m over alphabet Σ, all the 
suffixes prefixed by p in SA occupy a contiguous range. Thus, 
the count and locate query of P for the interval [l, r] over SA can 
be accomplished by the method of two binary searches. 
Definition 2. Let the suffixes be grouped by the one symbol 
prefix, named p. So, the group where the suffixes start with the 
same character p is called p-list. 

B. Compressed Suffix Array (CSA) 

The CSA of Grossi and Vitter [4], [5] struck a balance 
between achieving fast query performance and the large storage 
of SA, which reduces the size of a text of length n from n log n 
bits to O(n) bits. CSA is a self-indexing structure, and the size 
of it is expressed by the order-0 entropy of the original text. 
GV_CSA used decomposition scheme based on a partial 
function φ. 
Definition 3. Given the suffix array SA[1,n], function φ is 
defined as: SA φ i SA i 1 . The especial situation is 
SA[1]=n, in that case SA 	φ i 1, it is same as (1) 

 
	 	 	 	 	

	 	 	 	
         (1) 

 
The biggest difficulty in GV_CSA data structure is the 

representation and storage of φ, so a new practical method 
based on PEF indexes comes out because some properties of φ 
make it appeal to compression. The observation that we will 
propose is φ is monotonically increasing in the suffix array SA 
that corresponds to suffixes starting with the same character. 
Lemma 1. Given the original text T that points to the suffix 
array SA[1,n]. When T T , it gives the 
corresponding function	φ i 	φ i 1 , for 1 i n. 

We assume that T , xM  and T , xN , the 
1-symobol prefix of the two suffixes is the character x, thus xM 
< xN, which means that the position of the suffix M is in front 
of suffix N in SA, and then M<N. So that, T ,

	T , M, in the same way T , 	 T ,

N. Obviously, T , T , ,so	φ i 	φ i 1  has 
been proved. 

In Table I, the text T=”alabar_a_la_alabarda$ ” is a string of 
length n=21 on an alphabetΣ={$,_,a,b,d,l,r}of size σ 7 , 
every SA order is classified by the first character in Σ, which is 
an increasing sequence. For example, all the suffixes start with 
a character named a-list with ranks 5-13, whose rankings form a 
monotonically increasing sequence of positions; namely, 1, 3, 
4, 14, 15, 18, 19, 20, 21. 

C. Partitioned Elias-Fano (PEF) Indexes 

The Elias-Fano representation of monotone sequences is a 
simple and elegant data structure which has been recently 
applied into the compression of inverted indexes. Elias-Fano 
data structure has the excellent characteristics that support fast 
search operations and random access. While the space 
occupancy of Elias-Fano is competitive with frequently-used 
methods such as PForDelta and γ δ Golomb codes, it fails 
to perfectly exploit the local clustering that inverted lists 
usually exhibit, namely the presence of long subsequences of 
close identifiers. Ottaviano and Venturini [12] tackle the 
problem describing a new presentation based on partitioning 
the monotone sequences into contiguous chunks and encoding 
both the chunks with different ways. The two-level data 
structure as shown in Fig. 1 is given to improve compression 
and support fast queries on the original text. The first level 
gives the Elias-Fano description of the whole sequence based 
on juxtaposing the endpoint of every chunk of it. The second 
level is the specific collection of the chunks represented by 
three different methods. 

 

XXX       XXXXX    XXXXXXXXX X X  X  X    XXXX X  XXX

 

Fig. 1 Two -level of Elias-Fano 
 
Definition 4. Consider the monotonically increasing sequences 
S[0,m-1], for any 0 i m 1,S i S i 1 ,and S[i] is a 
non-negative integer from an set [u]={0,1,…,u-1}. The 
partition P of x chunks is S i , i 1 S i , i 1 … S i , i , 
for i 0  and i m 1 . The space occupancy of it is 
defined as C P ∑ C S i , i 1 bits, where C(S[i, j]) 
represents the cost of S[i,j]. 

The optimal partitioning aims at decreasing the space 
occupancy by partitioning the chunks freely with the variable 
size, the optimal one can be complex in time and space which is 
not suitable for inputs larger than few thousands of integers. So, 
they give a presentation of a linear-time algorithm [13] that is a 
guarantee of at most 1 ϵ  times larger than the smallest one, 
where ϵ	 ∈ 0,1 , and then, Ottaviano and Venturini reduced 
the complexity of time to O log 1/ϵ  with the two 
parameters ϵ  and ϵ . 

 
TABLE I 

SUFFIX ARRAY SA AND FUNCTION Φ 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

T a l a b a r _ a _ l a _ a l a b a r d a $ 

SA 21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18 

φ 10 7 11 17 1 3 4 14 15 18 19 20 21 12 13 5 6 8 9 2 16 

 
III. THE PEF-CSA DATA STRUCTURE 

Sadakane [6], [7] gave the representation GV-CSA which 
can be converted into a data structure of a self-index and 

meanwhile optimized it in some ways. In this paper, we apply 
the excellent method named PEF to the function φ combining 
strong theoretical guarantees and good practical performance. 
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The resulting index is called PEF-CSA and will be referred to 
PEF-CSA in this paper. 

A. The Extensional Function  

The asymptotic space of research on self-indexes [4], [6] is 
built on the extensional function φ,which maps suffix T ,  to 
suffix T , , so that it can make a scanning from left to right 
over the original text in forward direction. The same first 
symbols, namely identical 1-symbol prefix of the suffix arrays, 
are grouped as one sequence which is monotonically increasing 
based on the Lemma 1. Grossi and Vitter [4], [5] represent the 
decomposition scheme by a simple recursion mechanism where 
the function φ is computed recursively. In our way, only the 
first level of the data about function φ is reserved, which can 
completely tell where in the suffix array lies the pointer 
following the current one with the space as small as possible 
such that, based on definition 2, given the position i in SA, if 
SA i k, we can find the mapping position j, SA j k 1. 

The extensional function φ  is stored based on the PEF 
method, so that the compression of it is completed by the 
two-level optimal partitioning. In order to facilitate the 
representation of the discussion, the array of φ  and the 
extensional function φ will be chosen to mention alternatively. 

Inspired by the compression of inverted indexes, our idea is 
to partition the φ array that points to suffixes starting with the 
same character using PEF. For definition 3 and the description 
of the property in Section II.C, each chunk cost of the 
partitioning C(S[i, j]) is defined as two terms: a constant cost 
named F to store the information about the chunk in the first 
level, and the space regarding its elements in the second level. 
Considering the constant cost F, three integers are stored for 
each chunk, the universe integer in the chunk, the number of the 
integer in the chunk, and the pointer to the mapping second 
level. The upper bound of F is defined as the value 2 log u
logm bits. The cost of the specific element of each chunk S[i, j] 
is computed by a type of self-adoption where the minimum 
value is chosen from three possible encodings. 

 Every original element in the chunk subtracts the last 
element in the previous chunk. By this means, increasing 
sequence is ensured, while the size of it is minimized in the 
chunk. Given the size of the universe u S j S i 1  or 
u S j  for i=0, the number of elements in this chunk is 
m j i 1, Vigna [14] used the method that writes the 
characteristic vector of the set of its elements as a bitvector to 
represent the sequence with u  bits. So, when the chunk occurs 
as a dense one, the chunk covers a big fraction of the values in 
the universe u . In the other words, m  is close to u . If the 
universe u m ,which gives the extreme case, the chunk 
covers the whole universe, the values given in the first level are 
enough to represent all the elements in the chunk without any 
further information. In our case, besides Elias-Fano, we use the 
other two encoding methods based on the relationship between 
u  and m .The costs of three possible encodings will be 
introduced as: 

1. Elias-Fano Encoding 

Vigna [14] gave a detailed description of the representation 
of the high bits/low bits of a monotone sequence and 
represented an index using a different architecture based on 
quasi-succinct representation of monotone sequences. If the 
chunk is encoded as Elias-Fano,	u  is the upper bound of the 
chunk because of the increasing property. Two-bit arrays are 
stored to represent the chunk, the upper bits in the upper-bits 
array are a chunk of unary-coded gaps, the lower l u /m 	  
bits of each S[k],i k j are stored in the lower-bits array 
explicitly and contiguously. It is easily seen that each unary 
code uses one stop bit. It uses at most 2 log u /m  bits one 
element. Indeed, the space bound is 2m log u /m m  bits. 
The cost of the chunk that is encoded with Elias-Fano is 
m l m u /2  bits, wherel log u /m . 

We show an example in Fig. 2. We consider the list 5, 8, 9, 
10, 14, 32 with upper bound 32, so l log 32/6 2. The 
lower l bits on the right of all elements are concatenated to form 
the lower-bits array, the lower bits are 01 00 01 10 10 00. The 
upper bits of the values gap are stored sequentially in the 
upper-bits array in unary code, and the upper bits are 01 01 1 1 
01 000001. 

 

 

Fig. 2 A simple example of encoding Elias-Fano 

2. BitMap Encoding 

The chunk is dense when the elements in it cover a large part 
of the universe where the chunk can be represented with in u  
bits whenever m  approaches u . Writing the characteristic 
vector of the elements is set as a bitvector. The dense chunks 
are expected to occur frequently in representing the monotone 
increasing sequence. 

The space occupancy of the dense chunk which is encoded as 
BitMap is u  bits. Within its characteristic vector, the chunk 
can be stored perfectly. 

In Table II, we show an example. Note that we code the 
dense chunk 1, 2, 3, 5, 7, 9, 10 based on BitMap, the last value 
in the chunk is u 10, the number of the dense chunk m 7. 
The chunk can be stored in 10 bits, and they are 1110101011. 

3. Plain Encoding 

The most special case is the densest sequence, which means 
m u , the chunk covers all the elements in the universe [u ]. 
Because the values m  and u  stored in the first level are 
sufficient for themselves to derive all the values in the chunk 
without the requirement of encoding further information, for 
example, the sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The only 
thing that we need is the value m 10 and u 10 in the first 
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level. We can decode each element in the chunk by the last 
element in the chunk and the number of the elements in the 
chunk. 

 
TABLE II 

A SIMPLE EXAMPLE OF ENCODING BITMAP 

u  1 2 3  5  7  9 10 

bitmap 1 1 1 0 1 0 1  1 1 

 
The cost of the most densest chunk is 0 bits, which means if 

m u , thus S[i,j] covers the whole chunk.  
It remains to describe how to give the coding in O log 1/

ϵ  time comparing to the most optimal one. It can be done by 
giving k O log 1/ϵ  windows w ,… ,w  sliding in the 
whole sequence, these windows cover different fractions of the 
sequence, which start at the same position but end at different 
end position. In the beginning, we initialize the start and end 
position value of all the windows, and each window starts and 
ends at the 0 position. Every time in the execution, we use the 
shortest path method to visit the next value in the original 
sequence. We advance the start position of each sliding window 
by one position step, and the end position until the most cost of 
the vertex that it can visit. Every time that we move the position 
of a window, we should compute the cost of the vertex that 
represents the portion of the sequence. It can be done in linear 
time. At the end of the algorithm, every portion in the sequence 
will be computed, so visiting the value of the last vertex, we can 
get the smallest cost of the sequence in O log 1/ϵ  time. 

B. Frequency of Character 

Self-index structure is based on the table that represents the 
frequency of character. Table III is given as the name of the 
form to map the alphabet symbols lexicographically sorted. 
Definition 5. Let C[p] be the rank of the smallest suffix in the 
p-list in the lexicographic order. In the other words, C[p] is the 
sum number of the alphabet symbol p where p p  in the 
original text. 

 
TABLE III 

THE FREQUENCY OF CHARACTER IN T 

symbol $ _ a b d l r  

frequency 0 1 4 13 15 16 19 21 

 
Table III represents the character frequency of the example. 

The extra entry n is added to the end of the form for the 
convenience. We can find that the suffixes SA C p
1…C p 1  belong to the p-list.  
Lemma 2. T ,  can be extracted from function φ 

recursively: 	i, φ i , φ φ i … as we point to 
T , T , T ,…T  after n-i+1 steps, the positions 
of the T , T , T ,… T  in the lexicographic 
order corresponding to the symbols in Table III can be revealed. 
The first symbol T  of the suffix T , , in alphabetic order 
of SA must be the symbol p such that C p i C p 1 . 

With the extensional function φ and the form C, we can 
reveal the suffix T ,  corresponding to SA i . So, the original 
text can be discarded. 

IV. PEF-CSA CONSTRUCTION 

We build the data structure PEF-CSA in linear time in the 
following steps. 
Step 1. Constructing SA and form C. 
Step 2. Computing value φ using C, SA, T, abandoning T after 

the computation. 
Step 3. Sampling SA and SA , abandoning SA after the 

sampling. 
Step 4. Encoding φ  using PEF, abandoning original φ  after 

that. 
The first step will not be explained because of the standard 

algorithm written by Manzini and Ferragina [8], [11]. We only 
need to explain the three last steps work. 

A. Computing Extensional Function  

Algorithm ComputePhi(C, SA, T, φ) 
Input: C, SA, T 
Output: φ 
1 end  C[endchar] 
2 for k 1 to n do 
3 temp  SA[k] 
4 if temp=1 then endpos=i 
5 else 
6 p  T[temp-1] 
7 φ[C[p]]  i 
8 C[p]  C[p]+1 
9 φ[end]  endpos 

 
In the pseudocode, the array C is assumed as a local value 

and the entries are all reset for the ComputePhi. It is obvious 
that the function ComputePhi runs in O(n) time. The first line 
above represents the inverse of suffix array that equals the last 
symbol in the original text, SA[end]=n, where endchar is the 
last symbol. The function φ is based on the following point. 
Assume that suffix array SA[i] =j. if p = T[j-1], C[p] gives the 
present number of the p-list. So φ C p i. 

B. Sampling  and  

SA  is the inverse of permutation of SA and SA , SA  
denote the sampled SA and SA . With the sampling of SA and 
SA , 	SA  and SA  are built, respectively. The step of 
sampling for SA  and SA  are st and nst. The pseudocode of 
sampling SA and SA  method is written as follows. 

 
Algorithm SampleCSA (SA, st, nst,	 , ) 
Input: SA, st, nst 
Output: ,  
1 sacount  /  
2 for i 1 to sacount do 
3   SA[st*i] 
4 for j 1 to n do 
5 if(SA[j] mod nst =0) then /	   j 

 
SA  is built in lines 2-3 for st sampling length by reducing 

the suffix array, so it gives the entries SA[st*i] where the result 
is a multiple of st. SA is determined by SA  if we want to have a 
query described in the Section V C. 
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TABLE IV 
SA  AND SA  WITH ST=NST=4 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

T a l a b a r _ a _ l a _ a l a b a r d a $ 

SA 21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18 

 9 3 5 19 6                 

 14 7 3 15 5                 

 

SA  is built in lines 4-6 for nst sampling length by reducing 
the inverse of suffix array. Based on Section IV.B, we find that 
it is easy to retrieve the suffix array when suffix ranking is 
given. When we want to pick up the string that start position is 
start and the length is len, the function is named 
extract(start,len), the problem turning the position start into 
ranking i must be resolved. The solution to transform the start 
to ranking i is as follows. First, we give the SA  a sampling 
step nst and it means that we collect all entries SA[j] mod nst =0 
in which SA[j] is exactly divisible by nst, and then give SA  
the value j. Given the ranking i of position start, we can restore 
the string T ,  according to lemma 2 in Section 
III.B. Obviously, we find the algorithm SampleCSA can be 
completed in O(n) time. Table IV shows the SA  and SA . 

C. Encoding Extensional Function  with PEF 

Function coding Phi describes the method that compresses φ 
in O σn log 1 ϵ  time shown in Section II.C. Assume that 
the ϵ  and ϵ  have been defined as 0.03 and 0.3, that balance 
the construction time and the space occupancy. 
	

Algorithm codingPhi (φ, C,bvb) 
Input: φ, C 
Output: bvb 
1 phicount  0 
2 for i 1 to C.length() do 
3 phinum  C[i+1]-C[i] 
4 universe  0 
5 for j 1 to C[i] do 
6 begin.addphi(φ[phicount]) 
7 phicount++ 
8 universe = φ[phicount] 
9 optimal_partition(opt, begin, universe, phinum, esp1,esp2) 
10 it  begin 
11 cur_base = *begin 
12 for p 0 to opt.partition.size do 
13 for cur_i 0 to opt.partition[p] ++it do 
14 value = *it 
15 cur_partition.pushback(value – cur_base) 
16 base_partition_write(bvb, cur_partition.begin(), 

cur_partition.back()+1, cur_partition.size()) 
17 cur_base = value + 1 

 
Line 1 keeps the ranking of the array φ in phicount, i.e. 

phicount =0. phinum gives the number of the increasing 
sequence that is the subsection of φ according to the same 
p-list, phinum = C[i+1]-C[i]. Lines 5-7 initialize the value 
which keeps the information of φ in the p-list. After that, every 
increasing sequence will be partitioned optimally based on the 
function optimal_partition, the result of partitioning is stored in 
the value opt. Lines 13-15 make values in the chunk minus the 
last value in the former chunk and store the last value in the 

present chunk for the following computing. We write the final 
result bvb in the method base_partition_write in Line 16. 

The pseudocode of the algorithm optimal_partition describes 
how to generate the partitions in O n log 1/ϵ  time 
mentioned in Section IV.A. In the other words, we find the 
optimal partition for the increasing sequence in the linear time 
based on the following pseudocode. 

 
Algorithm optimal_partition(begin, universe, size, esp1, esp2, opt) 
Input: begin, universe, size, esp1, esp2 
Output: opt 
1 singleblock_cost  cost_base(universe, size) 
2 costmin (size+1, singleblock_cost,mincost[]) 
3 cost_lb  cost_base(1,1) 
4 cost_bound  cost_lb 
5 while esp1=1 or cost_bound < cost_lb /esp1 do 
6 windows.emplace_back(begin, cost_bound) 
7 if (cost_bound >= single_block_cost) break 
8 cost_bound  costbound * (1+esp2) 
9 for i 0 to size do 
10 last_end  i + 1 
11 for window: windows do 
12 while window.end < last_end do 
13 window.advance_end(); 
14 while true do 
15 window_cost  cost_base(window.universe,window.size) 
16 if opt.mincost[i] + window_cost < opt.min_cost[window.end] then 
17 opt.min_cost[window.end]  opt.min_cost[i] + window_cost 
18 opt.path[window.end]  i 
19 last_end  window.end 
20 if window.end = size break 
21 if window_cost >= window.cost_upper_bound break 
22 window.advance_end() 
23 window.advance_start() 
24 curr_pos  size 
25 while curr_pos != 0 do 
26 opt.partition.pushback(curr_pos) 
27 opt.curr_pos  opt. path[curr_pos] 
28 opt.cost_opt  opt. min_cost[size] 

 
Lines 5-8 build k sliding windows as k O n log 1/ϵ  

and give the ending position of every window the upper bound. 
Armed with these windows, every time that the algorithm visits 
the next vertex, we advance the start position as mentioned in 
line 23. In lines 15-22, when we move the start or the end 
position of the windows, we need to evaluate the cost of the 
current portion of the sequence. In line 28, cost_opt is the 
optimal cost of the array φ in the same list. 

V.  INDEXING FUNCTIONALITIES OF PEF-CSA 

Given the array C shown in Section III.B, we used the 
sampling suffix array 	and inverse suffix array  to 
support two pattern matching queries for self-index: locate 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

267

 

 

function, count function, and we also accomplished the extract 
function mentioned in Section III.B for the PEF-CSA. 

A. Count Function 

Count function defined as count based on the backward 
search gets rid of the normal framework that is a sequential 
scan. It gives the occurrences of pattern P in the original text T. 
From the whole count procedure, we use φ to reduce the scope 
between L and R that report the positions of P in T. When the 
function φ iterates to the first character, all the suffix arrays in 
SA[L,R] contain the prefix P. It returns L and R, R-L+1 is the 
count of the P in T. 

 
Algorithm count(P, L, R) 
Input: P 
Output: L, R 
1 p  P[m] 
2 L  C[p]+1 
3 R  C[p+1] 
4 for i m-1 to 1 do 
5 templ  C[c]+1 
6 tempr  C[c+1]  
7 p  P[i] 
8 cl  min{xl,xl ∈ templ, tempr , φ xl ∈ L, R } 
9 cr  max{xr,xr ∈ templ, tempr ,φ xr ∈ L, R } 
10 L  cl 
11 R  cr 
12 if L>R then return -1 
13 return R-L+1 

 
Notice that m is the length of the pattern P, lines 8-9 mean to 

determine the new boundary of the final position. The 
algorithm based on the actual characteristic of the function φ 
begins with the last character of the pattern, and ends with the 
first character of the loop. Obviously, this algorithm in the 
implementation process to maintain the following invariants: 
when the algorithm is executed from the kth character, the 
suffixes in the range of [L, R] have the prefix that is the last k 
characters in P. 

In lines 1-3, we give the initialization of L, R and character p, 
L corresponds to the first symbol of p-list and R maps the last 
element of p-list, so the interval [L, R] is the range of p-list. 
Lines 8-9 describe the list of backward character for P, cl 
represents the start position, and rl gives the end position of the 
list. When cl>cr just like line 12, the algorithm returns -1, if the 
original text T has the pattern P, it will return R-L+1. 

We use pattern P=“ala”as an example to give the count 
process. 

After we initialize the values in lines 1-3, L C a 1 5, 
R C a 1 C b 13. The character ‘a’ is the start of 
suffixes in [5, 13], corresponding to a-list. When we first iterate 
L and R in the loop, templ=C[l] +1=17, tempr=C[l+1]=19. The 
suffixes in [17, 19] start with ‘l’ and map with the φ values are 
{6, 8, 9} where φ 17 6  and φ 18 8,φ 9 9  in [5, 
13]. Thus [cl, cr] = [17, 19]. In line10-11, the [L, R] = [17, 19] 
has been updated. Therefore, the suffixes in this range are 
prefixed with “la”. When it starts the second iteration, 
templ=C[a]+1=5, tempr=C[a+1]=13, the corresponding values 
are {1,3,4,14,15,18,19,20,21} for which φ 10 18  and 

φ 11 19 in [17,19]. So, [cl, cr] = [10, 11] and [L, R] = [10, 
11], so there are R-L+1=2 “ala” in T. 

B. Locate Function 

To locate the counting positions, we describe the locate 
function to give the specific values of the interval [L, R]. 
Suppose that we already get the counting interval [L, R], the 
algorithm finds the corresponding original position SA[L,..,R]. 

The pseudocode of the locate algorithm is given below. 
 

Algorithm locate(P, L, R,pos) 
Input: P , L, R 
Output: pos 
1 Initialize L,R to be the result of count query return 
2 Initialize pos[1,…,R-L+1]to be 0 
3 R  C[p+1] 
4 for i L to R do 
5 tmstep  0 
6 while i mod st != 0 do 
7 tmstep  tmstep ++ 
8 i  φ i  
9 i  i/st 
10 pos[i-L]   - tmstep 
11 return pos 

 
After we get the count query interval [L, R], suppose that the 

certain value in the interval is named i, we can determine the 
SA[i] through the function φ. We walk along φ to reach the 
index that is stored in SA . Let tmstep be the number of steps in 
the walk, we return SA i  – tmstep. 

We continue to have pattern P=”ala” as an example to know 
how the function locate works. As we know, we get the 
occurrence interval [L,R] from the count query which contains 
the ranking of the position. So that what we have to do is to get 
SA[L]..SA[R] as L=10 and R=11. We give the case computing 
SA[10] as st=4, and st is the sampling step for SA mentioned in 
4.2. If we want to get SA[10], i =10, then 10mod	4! 0, so we 
illustrate i φ 10 18  and tmpstep 1 , continuing the 
loop’s iteration, then 18mod 4!=0,	i φ 18 8, so the loop 
ends at i 18 . Finally, the algorithm returns SA i
1=SA 18 1 2 1 1, so SA[10]=1. 

C. Extract Function 

In Section IV.B, we get the arrays  and  which 
support the function extract (start, len) that returns the string 

, . From lemma 2 in Section III.B, how to 
restore the suffix array is described with φ and array C. 
 
So, the Algorithm extract(start, len,str) 
Input: start, len 
Output: str 
1 i  /  
2 tmpstep  start mod nst 
3 for j1 to tmpstep do 
4 i  φ i  
5 for j0 to len-1 do 
6 str[j]  inverseC(i) 
7 i  φ i  
8 return str 
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Most important thing to restore the string is to convert the 
starting position start to the corresponding rank i. We update 
i φ i , and repeat the above process, then the suffix can be 
determined. 

nst is the sampling step of SA . The algorithm first finds the 
most sampling points	 start/nst  smaller than start in line 1, 
then the point ranking i is derived. After that, in lines 3-4, we 
continue to operate i φ i  for start	mod	nst time. Now, the 
current i is the final one mapping the start position. In lines 5-7, 
we get the string according to the array C, and the inverse C 
gives the corresponding character of position i. 

In the case of Section IV B, extract(5,4) runs as following. To 
determine the suffix rank i of position start = 5, we suppose that 
nst= 4, the maximum sampling step less than 5 is 4, 
corresponding to the 11th of the SA , i=14, that means the rank 
of the suffix which starts at position 4 is 14, 5 mod 4 = 1, we 
continue the iteration	i φ i , i=φ 1 =12, 12 mod 4 = 0, so we 
get the suffix rank 12 of position 5. We know len=4, in lines 
5-7, when	i 12, it is in the a-list, so the first character is ‘a’; 
i φ 12 20 is in the r-list, the second is ‘r’;	i φ 20 2 
is in the r-list, the second is ‘_’;	i φ 2 7 is in the r-list, the 
second is ‘a’. So, the string , " _ ". 

VI. EXPERIMENTAL ANALYSIS 

A.  Experimental Setup and Environment 

All the algorithms were fully implemented in C++ and 
compiled with G++ 4.8.4 with the highest optimization setting. 
The experiments ran on the machine with a 3.1 GHz Intel(R) 
Core(TM) i5-3450 CPU. The machine runs 64-bit Ubuntu14.04 
LTS OS and has 16 GB internal memory.  

Except the fact that the algorithm construction of suffix array 
is based on the C code of Mäkinen and González (SAu.tgz) 
[15], all the parts of the algorithms have been implemented. We 
used the dataset from Pizza&Chili that has different type or size 
to test the efficiency of our algorithms. We gave the 
compression ratio defined to the ratio of the space occupancy of 
the PEF-CSA structure to the size of the text, and we test the 
locate and count query time of the PEF-CSA algorithm. 

B. Experimental Result Analysis 

In this section, we measure the performance of PEF-CSA by 
the compression ratio, count time, and locate time. We use five 
different types of original text to be the dataset from the 
Pizza&Chili that are dna data, english data, proteins data, 
sources data, and xml data. The files can be classified by the 
size of them; 50 MB and 100 MB. The results are compared 
with Sad-CSA and FMI.  

The PEF-CSA compression ratio compared with FMI and 
Sad-CSA is shown in Fig. 3. It reflects that the smallest result of 
the ratio is 0.29, which means the index can be approximately 
compressed to the 1/4 of the original text. PEF-CSA is better 

than SAD-CSA on compression ratio, and performs better than 
FMI except for the DNA and proteins data. 

 

 

Fig. 3 Compression ratio of PEF-CSA with FMI and Sad-CSA 
 
The best compression performing data are xml data and 

source data, and the crucial feature of both data is highly 
structured, that means the distribution of data φ  is uneven. 
From Table VI, we can know that the φ distribution of the 
original text plays a greater role than the alphabet size of 
original text, which means uneven data φ performs better than 
uneven one. 

We randomly choose 10000 patterns of length 20 from each 
original text with the genpatten program in Pizza&Chili, and 
then, we can generate 10 pattern string files. 

 
TABLE V 

THE OCCURRENCES OF THE PATTERN STRINGS IN THE ORIGINAL TEXTS 

pattern file hit counts 

dna.pattern.50MB 220410 

eng.pattern.50MB 308563 

pro.pattern.50MB 321003 

sou.pattern.50MB 18057976 

dbpl.pattern.50MB 84431027 

dna.pattern.100MB 378812 

eng.pattern.100MB 1942363 

pro.pattern.100MB 482312 

sou.pattern.100MB 36764894 

dbpl.pattern.100MB 150904999 

 
Table V gives the occurrences of the pattern string stored in 

the pattern string files from the original texts and we called hit 
counts. The two pattern string files sou.pattern file and 
dbpl.pattern file have far more hit counts than other files. 

We searched for the patterns for the count and locate 
function, and the microsecond is the measure of the search 
time. From Figs. 4 and 5, we know the PEF-CSA is faster than 
the Sad-CSA and FMI and performs better than the FMI on 
locate function. Combined with Table V, although the size of 
original file can affect the count and locate time, the hit counts 
of the file are the most important factor to impact the time, 
especially the locate time. 

 
TABLE VI 

THE ALPHABET SIZE OF THE TEXTS 

Text dna.50 eng.50 pro.50 sou.50 dlbl.50 dna.100 eng.100 pro.100 sou.100 dblp.100 

size 16 176 25 227 96 16 215 25 227 96 
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Fig. 4 Count time 
 

 

Fig. 5 Locate time 
 
To sum up, the three algorithms are all suitable for 

self-compressing the files such as sources data, xml data, and 
DNA data, but PEF-CSA can perform better in the compression 
ratio and query time. The distribution of the φ  is more 
important than the alphabet size on the compression ratio, and 
the size of the hit counts is a significant factor on count and 
locate time. 

VII. CONCLUSION 

In our paper, we give a simple storage data structure for the 
PEF-CSA. The PEF-CSA can be developed in linear time. The 
experiments on the Pizza&Chili are accomplished comparing 
PEF-CSA with the two established standard methods FMI and 
Sad-CSA for the datasets of different types and size on the 
compression ratio, count, and locate time. Moreover, we 
present how PEF-CSA works in linear time where the sliding 
windows choosing scheme has been given. Taken together, 
PEF-CSA is a competitive data method on the uneven 
distributed data like xml and sources data. The distribution of 
the φ  is more significant than the alphabet size on the 
compression ratio, and the size of the hit counts is an important 
factor on count and locate time. The bigger of the hit counts, the 
longer of the query time. 
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