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An Adaptive Dimensionality Reduction Approach
for Hyperspectral Imagery Semantic Interpretation
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Abstract—With the development of HyperSpectral Imagery
(HSI) technology, the spectral resolution of HSI became denser,
which resulted in large number of spectral bands, high correlation
between neighboring, and high data redundancy. However, the
semantic interpretation is a challenging task for HSI analysis
due to the high dimensionality and the high correlation of the
different spectral bands. In fact, this work presents a dimensionality
reduction approach that allows to overcome the different issues
improving the semantic interpretation of HSI. Therefore, in order
to preserve the spatial information, the Tensor Locality Preserving
Projection (TLPP) has been applied to transform the original HSI.
In the second step, knowledge has been extracted based on the
adjacency graph to describe the different pixels. Based on the
transformation matrix using TLPP, a weighted matrix has been
constructed to rank the different spectral bands based on their
contribution score. Thus, the relevant bands have been adaptively
selected based on the weighted matrix. The performance of the
presented approach has been validated by implementing several
experiments, and the obtained results demonstrate the efficiency
of this approach compared to various existing dimensionality
reduction techniques. Also, according to the experimental results,
we can conclude that this approach can adaptively select the
relevant spectral improving the semantic interpretation of HSI.

Keywords—Band selection, dimensionality reduction, feature
extraction, hyperspectral imagery, semantic interpretation.

I. INTRODUCTION

NOWADAYS, with the development of hyperspectral

remote sensing imaging technology, we can capture

HSI with hundreds of contiguous bands across the

electromagnetic spectrum. The HSI, referred to as ”data

cube”, is a kind of 3-D datum with two spatial dimensions

and one spectral dimension. A large number of spectral

bands can better identify and distinguish different materials

and map the constituents of the Earths surface through

hyperspectral analysis. Every pixel in a hyperspectral image

can be represented as a high-dimensional vector across

spectral dimensions. This detailed spectral information

makes it possible to discriminate materials of interest more

accurately. Although the high dimension brings many merits

for using HSI, the huge storage requirement and computation

burden make it hardly to be used in many practical situations.
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Also, the high number of spectral bands and the low

number of training samples pose the problem of the curse of

dimensionality [1]. Different substances in a hyperspectral

image exhibit distinctive spectral signatures. The use of HSI

is becoming more and more widespread, such as target

detection, changes detection, and object classification [2],

[3]. Therefore, the semantic interpretation is a challenge task

for HSI analysis, when it consists to extract the semantics

information of data. In fact, the general goal is to assign a

means of the different entity and to understand the content

of the HSI, i.e. the description of the HSI content (objects,

pixels,...) with symbols [4], [5] and to detect the different

spatial relationships between the pixels and objects of HSI,

i.e. the detection of distance, direction and topological

relationships. However, the main issue of the HSI semantic

interpretation is what information can be exploited and how

can the relevant information be selected to improve the HSI

semantic interpretation. Thus, the dimensionality reduction

is an essential task to reduce the high dimensionality and

to select the relevant spectral bands in order to improve

the semantic interpretation of HSI. Aiming to resolve these

issues, we present, in this paper, an adaptive dimensionality

reduction approach for HSI semantic interpretation that

allows to reduce the high dimensionality of HSI and to

describe the contents of objects and the pixels neighbors

using both techniques of dimensionality reduction.

This paper is organized as follows: In Section II, we

present the existing works in the literature related to the

dimensionality reduction of HSI. Section III presents the

presented approach showing the different phases. In fact,

we introduce the multi-linear algebra model based on the

Tensor Locality Preserving Projection (TLPP) method as

well as the extracted adjacency graph from TLPP method.

Then, we go into details about adaptive band selection

based on the weighted matrix. In Section IV, we show

experimental results of bands selection using our approach

with a comparative study. We conclude and suggest some

perspectives in the last section.

II. RELATED WORK

Dimensionality reduction is commonly applied as a

preprocessing step for HSI processing in order to reduce the

number of the spectral bands and ensure a well-conditioned

representation of the class-conditional statistics. The
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high number of spectral bands of HSI leads to a

remarkable increase in computational time and storage costs

also may degrade classification accuracy [6]. Therefore,

dimensionality reduction is a fundamental problem in HSI

processing. It seeks to decrease computational complexity

of input data while some desired intrinsic information of

the data is preserved. The dimensionality reduction problem

[7] can be defined as follows: Let us consider a HSI

represented by N × D matrix R consisting of N pixels

i ∈ {1, 2, ..., N} with the number of spectral bands D,

and p its the low dimensionality (where p < D, and often

p << D). Intrinsic dimensionality means that the pixels

in the reduced image Y are lying on or near a manifold

with dimensionality p that is embedded in the D-dimensional

space. Indeed, the dimensionality reduction methods reduce

the HSI R while retaining as much as possible the relevant

information. In fact the dimensionality reduction consists to

extract (projection) or to select (selection) the p components

or bands, with p << D, such that:

Y = f(R) (1)

where Y is the reduced matrix, f is a reduction function

and R is the spectral observation vector of HSI. Therefore,

the dimensionality reduction is an important phase where

the aim is to discard the redundant and the high number of

spectral bands and make it less time consuming for HSI

processing. The two main approaches for dimensionality

reduction are band selection (primitive selection) and

features extraction (band projection). The band selection

method reduces the dimensionality by selecting a subset

with the most of characteristics of original HSI [8]. In HSI,

every spectral band corresponds to a 2-dimensional image,

which can be considered as a feature. Depending on the

availability of labeled samples, band selection techniques can

be categorized as supervised and unsupervised. Supervised

band selection methods use label information of patterns

to perform selection of bands as the Mutual Information

method (MI) [9], [10] selects the most discriminative

bands by measuring the correlation with the class labels.

Unsupervised band selection is used for dimensionality

reduction [11], [12], when no labeled pattern is available.

In practice, the collection of class labels in HSI needs

the field exploration and verification by experts, which

is expensive and difficult due to excessive labor cost.

Thus, unsupervised methods are more practical for HSI

processing. State-of-the-art methods for band selection of

HSI in unsupervised manner are basically of two types:

Ranking-based methods [13], [12] and clustering-based

methods [14], [15]. Determining the most distinctive and

informative bands depending on some statistical criteria

(e.g., KullbackLeibler divergence, skewness, kurtosis) is the

basic idea behind ranking-based band selection methods.

Then, top bands are selected by a given dimensionality or

threshold. Some ranking-based methods for HSI present in

the literature are information divergence (ID)-based method

[13], maximum variance-based principal component analysis

(MVPCA) [12], and similarity-based band selection method

[16]. Chang and Wang [13] proposed a constrained band

selection (CBS) method. In CBS, when the band has

large information divergence with other bands, it is higher

priority. In [12], a weighted principal component (WPC)

is devised as the criterion, and an adaptive thresholding

algorithm based on moving control chart is used to determine

the number of selected bands. Clustering-based methods

[15], [9] perform clustering over bands to group them

according to their redundancy, and select one representative

band from each cluster of bands. There exists a few

clustering-based band selection techniques for HSI in the

literature like Wards linkage strategy using divergence

linkage strategy using divergence (WaLuDi) or using mutual

information (WaLuMI) [17], and band selection using

affinity propagation (AP) [18]. The feature extraction method

is based on data transformation [6], [19]. It reduces the

dimensionality by transforming the original spectral bands

from HSI using linear or non linear combinations into a

new low-dimensional space through projection. In fact, in

the linear projection the dimensionality reduction can be

expressed as:

Y = T ×R (2)

where T is the transformation matrix. Most traditional

methods belong to the feature extraction category, such

as Fisher’s Linear Discriminant Analysis (FLDA) [20],

Principal Component Analysis (PCA) [21], Locality

Preserving Projections (LPP) [6], and Isometric Feature

Mapping (ISOMAP) [22]. The main advantage of projection

methods is their high discrimination power. Also, the

first few features may contain most of the information

whereas the remaining ones contain noisy information.

However, these techniques change the physical means of

HSI due to the transformation phase of the original spectral

bands. For this reason, many works have been proposed

in this literature to overcome these issues; Yan et al.

[23] developed a novel approach based on general graph

embedding framework for dimensionality reduction. This

approach allows to represent each vertex of graph as

a low-dimensional vector that embodies some geometric

characteristics of the HSI. Ji et al. [24] proposed a

method for HSI classification using the spatial and spectral

information, in which the relationship between the different

pixels is represented in a hypergraph model. Yuan et al.
[25] presented a spatial hypergraph embedding model for

dimensionality reduction. This model has been applied for

HSI classification. Nevertheless, the main limitation of linear

projection methods is that they do not preserve the non

linearity of data, whereas for non-linear projection methods,

they suffer from computational time complexity. So, the

major deficiency of projection methods is that they are based
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on matrix algebra and they represent the HSI as vectors,

which may destroy the spatial information of neighboring

pixels. They only rely on spectral properties, neglecting

the spatial rearrangement. In this context, a tensor model

has been proposed to jointly analyze spatial and spectral

structures of original HSI [26]. Also, in order to preserve

the spatial and spectral information, Sellami et al. [27]

proposed a new approach called features extraction based

on Tensor modelling and Locality Preserving Projections

(TLPP) for HSI classification. In order to improve the

semantic interpretation of HSI, we present in this paper

an adaptive dimensionality reduction approach using TLPP

method and band selection based on weight matrix to select

the informative bands describing the contents of objects and

the pixels neighbors.

III. PROPOSED APPROACH

In this section, we present the approach and give more

details for each phase. In fact, Fig. 1 shows the flowchart

of the approach. Indeed, it is divided into three phases;

in order to preserve the spatial information, the first phase

consists to project the original HSI into a subspace using the

Tensor Locality Preserving Projection (TLPP). Based on the

adjacency graph used in projection with TLPP, a knowledge

has been extracted for pixel neighbors description. Indeed,

the spectral library has been used in this step to classify the

different pixels. Then, the geodesic distance matrix has been

applied to construct a weighted matrix between pixels. In

fact, using this weighted matrix, the original spectral bands

have been ranked based on their contribution in subspace.

Therefore, based on the weight value for each band and the

threshold, the relevant bands have been adaptively selected.

We validated the presented approach on different HSIs and

evaluated the obtained results comparing them with different

dimensionality reduction techniques.

A. TLPP Dimensionality Reduction Approach
In order to keep the initial spatial structure and insure the

neighbourhood effects on the one side and use the spectral

features on the other side, we propose to use the TLPP as

linear projection method [27]. In fact, an HSI is represented

with three dimensions, two spatial dimensions (the size of

the image) and a spectral one (the number of bands). A

third-order tensor can represent the whole HSI denoted by

R ∈ �I1×I2×I2 with elements arranged as ri1i2i3 , where

i1 = 1, 2, ..., I1; i2 = 1, 2, ..., I2; i3 = 1, 2, ..., I3 are

indexes along each dimension (I1 and I2 represent the

size of HSI and I3 represents the number of bands). This

tensor representation incorporates the whole HSI with its

spatial and spectral features. This tensor representation uses

multi-linear algebra and particularly, tensor decomposition

and approximation methods. The tensor decomposition is

expressed as:

R = C × U1 × U2 × U3 (3)

Fig. 1 Flowchart of presented approach

Fig. 2 Illustration of tensor of three modes

where C is the core tensor, and Un is the matrix of

eigenvectors associated with the n-mode covariance matrix

RnR
T
n . The tensor model can be used in LPP in order to

preserve the spatial and spectral information to improve the

classification of HSI. The LPP method consists to find the
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low-dimensional representation by minimizing the weighted

sum of the squared distances between neighbouring data

points using a Laplacian graph as:

1) Construct an undirected graph G = (X, ε) where

vertices represent pixels and edges are defined based

on proximity between vertices.

2) Define weights for the edges in ε using one of the

following formulas:

• Wi,j = exp(− | xi − xj |2 /t) if an edge exists

between xi and xj with t ∈ R as a heat kernel.

• Wi,j = 1 if the vertices xi and xj are connected,

i.e. using a heat kernel t = 1, and Wi,j = 0
otherwise.

3) Compute the smallest eigenvalues and eigenvectors of

the generalized eigenvector problem:

XLXTa = λXDXTa (4)

where D is the diagonal weighted degree matrix defined by

Di,i =
∑

j Wij and L = D − W is the Laplacian matrix

which is a positive symmetric matrix. Let the column vector

a0, a1, ..., am−1 be the solution of (4), ordered according

to their eigenvalues, λ0 < λ1 < ... < λm−1. Thus, the

embedding is as:

xi → yi = ATxi A = (a0, a1, ..., am−1) (5)

where yi is a m-dimensional vector and A is a n×m matrix.

Therefore, when the HSI is reshaped, the formula based on

tensor modelling can be defined as:

YTLPP = R×A(3)T (6)

where YTLPP is a third-order tensor (YTLPP ∈ �I1×I2×d),
holding the d components and A(3)T as the eigenvectors.

B. Weighted Matrix Construction

This phase aims to construct a weighted matrix from the

different extracted features based on spectral library obtained

from USGS [28]. It consists firstly to compare the different

pixels obtained by the adjacency graph in TLPP projection

phase with the signatures library using the geodesic distance.

We aim to get an affinity matrix from extracted features

with YTLPP . Hence, we use the above spectral library in

order to classify the different pixels and to construct the

labeled weighted matrix W . Thus, it consists to compute

the geodesic distance min(dM (i, j)) between all pairs of

pixels. The nearest pixels from the matrix W are weighted

and labeled using a threshold and the spectral library.

C. Adaptive Bands Selection

Through the above steps, the HSI can be expressed as

YTLPP = TR where T is a projection matrix. In fact,

from this equation, it can be observed that YTLPPi
is the

weighted sum of R1, R2, ..., Rd with d is the number of low

dimension and the corresponding weights are t1i, t2i, ..., tdi
which represent the contribution of the corresponding bands

to the YTLPP components. In other words, tji shows

how much information the jth band image contains about

the component YTLPPi
. Therefore, the importance of each

spectral image can be estimated intuitively by calculating

the average absolute weight coefficient Ci, which is shown

as:

Ci =
1

D

D∑

j=1

|tij | i = 1, 2, ..., d (7)

where j is the band index and d the number of components.

By sorting the average absolute weight coefficients for all

spectral bands, a band weight sequence can be obtained as:

[C1 ≥ ...Ci ≥ ...Cd] (8)

In this sequence, the bands with higher average

absolute weight coefficients contribute more to the YTLPP

transformation than other bands do. That means these

bands contain more spectral information than other bands.

Therefore, the spectral bands with the highest average

absolute weight coefficients can be selected and a spectral

image with lower dimension is generated with the obtained

classified pixels by the spectral library.

IV. EXPERIMENTS AND DISCUSSION

Here, we validate our presented method with several HSI

datasets and present experimental results demonstrating the

benefits of TLPP and weighted matrix for HSI semantic

interpretation.

A. HSI Datasets

Two hyperspectral datasets collected by different

hyperspectral sensors are used in our experiments.

1) The first HSI used in experiments representing the

Indiana Pines region in Northwest Indiana was

collected by the Airborne Visible/ Infrared Imaging

Spectrometer (AVIRIS) sensor in 1992. This HSI

contains 145 × 145 pixels with 220 spectral bands

covering the range of 375 − 2500 nm. The spatial

resolution of this HSI is 20 m/pixel. We have used this

HSI due to the availability of a reference ground truth

image where it consists of 16 ground-truth classes. Fig.

3 shows a color composite image of the Indian Pines

data set along with the ground-truth image.

2) The second HSI representing the urban area of the

Pavia University, Italy was collected by the Reflective

Optics System Imaging Spectrometer (ROSIS). Also,

this HSI consists of small materials, buildings, and

trees. For the spectral resolution, this image contains

115 spectral bands where each band consists of 610×
340 pixels. The spectral range is from 430 to 860 nm
and the spatial resolution is 1.3 m/pixel. This HSI is
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collected from an urban area and consequently. Fig.

4 (a) shows a color composite image of University of

Pavia, whereas Fig. 4 (b) shows the nine ground-truth

classes.

Fig. 3 (a) Color composite image, (b) Ground truth image of Indian Pines

Fig. 4 (a) Color composite image, (b) Ground truth image of University
of Pavia

B. TLPP Dimensionality Reduction

In our experiment, we used both AVIRIS and ROSIS

HSI. Fig. 5 shows the spectral signatures for eight classes

extracted from Indian Pines HSI and nine spectral signatures

from University of Pavia.

The number of reduced dimensionality has been fixed n =
3, 6, 9, 12, 18, and 21 features. In Indian Pines HSI, better

results are given by the presented method with the number

of dimensions n = 6. Also, we have obtained better results

of University of Pavia HSI with number of dimensions n =
3. It appears from the results that the pixels are correctly

classified of both HSIs using the spectral library, which is

qualified as almost perfect. Fig. 6 compares the scatter plots

of the extracted features obtained using TLPP for both HSIs.

We can notice out that the presented method TLPP clearly

separates the different features.

C. Adaptive Bands Selection

After classifying the different pixels from extracted

features obtained with TLPP, the presented adaptive bands

selection method has been developed to select the relevant

bands from the original HSIs according to their contributions

coefficients. Tables I and II show the band subset obtained

for both HSIs using as well as three other band selection

methods, namely CBS, AP and MI with different predefined

number of bands (n = 3, 6 and 15).

After selecting the relevant bands with our presented

approach, we have tried to test this performance

on classification task. In fact, in Indian Pines HSI,

approximately 8600 labeled pixels are employed to train

Fig. 5 (a) Spectral signatures of eight classes from Indian Pines (b)
Spectral signatures of nine classes from University of Pavia

TABLE I
SELECTED BANDS USING CBS, AP, MI AND PROPOSED APPROACH

FOR INDIANA PINES

number
of
bands

CBS AP MI Proposed BS

3 29, 167, 174 4, 45, 181 18, 32, 147 9, 16, 189
6 153, 167,

174, 177,
178, 179

4, 9, 16, 177,
178, 181

142, 165,
167, 177,
178, 179

89, 15, 16, 92,
131, 152

15 28, 29, 30,
32, 148, 153,
164, 167,
170, 175,
176, 179,
180, 181, 203

2, 9, 12, 96,
98, 167, 177,
178, 179,
181, 189,
195, 199,
200, 201

17, 29, 30,
36, 143, 154,
156, 162,
169, 170,
181, 189,
195, 197, 201

9, 15, 27, 28,
33, 39, 78,
82, 89, 120,
132, 175,
167, 179, 198

and test the efficacy of the presented system. This dataset

is partitioned into approximately 1496 training pixels and

7102 test pixels. Also, the number of training and testing

samples used for the University of Pavia dataset are 1476



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:2, 2017

218

Fig. 6 (A) Obtained extracted features of Indian Pines using TLPP with n=3 (B) Obtained extracted features of University of Pavia using TLPP with n=3

TABLE II
SELECTED BANDS USING CBS, AP, MI AND PROPOSED APPROACH

FOR UNIVERSITY OF PAVIA

number
of bands

CBS AP MI Proposed BS

3 31, 28, 2 4, 42, 89 72, 101, 14 29, 6, 18
6 101, 28, 24,

17, 78, 79
34, 8, 16, 17,
78, 18

42, 65, 67, 77,
78, 17

29, 6, 18, 22,
13, 154

15 28, 17, 23, 13,
14, 53, 64, 16,
17, 15, 16, 79,
80, 18, 20

42, 29, 81, 29,
19, 67, 77, 78,
19, 18, 89, 95,
59, 20, 21

67, 49, 31, 36,
43, 54, 56, 62,
16, 70, 81, 89,
19, 97, 20

6, 29, 1, 18,
53, 19, 68, 12,
39, 12, 32, 75,
67, 5, 18

and 7380, respectively. We run SVM classifier on the our

presented approach and the state of the art methods, i.e.,

MI, and CBS. Fig. 7 shows the classification accuracy of

each band selection method with various numbers of bands.

It is obvious that the presented approach gives better

classification rates compared to the other band selection

methods. In Indian Pines HSI, the better classification

is given by the presented method with the number of

dimensions n = 6 and classification accuracy is equal to 95%.

Also, we have obtained a better classification of University

of Pavia HSI with our presented approach. In fact, the

number of dimensions n = 3 , the classification accuracy

using our method is approaching to 97%. It appears from

the results that the pixels are correctly classified of both

HSIs, which is qualified as almost perfect.

D. Experimental Time

In this section, the running times (in seconds) spent

by each dimensionality reduction technique have been

computed. Therefore, the different experiment results are

tested and evaluated on a PC with 8-GB memory,

I5 CPU and 64-bits Windows 8 OS using MATLAB

2014(b) software. Table III shows the running times

for dimensionality reduction. Among these dimensionality

reduction methods, PCA is the fastest one. ISOMAP spends

the longest time since it needs to compute the nearest

neighbors.

TABLE III
RUNNING TIMES (IN SECONDS) OF DIMENSIONALITY REDUCTION FOR

THE INDIAN PINES AND THE UNIVERSITY OF PAVIA HSIS USING

DIFFERENT METHODS

Method PCA TLPP ISOMAP LPP CBS MI Proposed
BS

Indian
Pines

0.129 5.022 74.15 22.80 0.325 5.124 4.235

University
of Pavia

0.14 12.022 91.95 20.35 0.214 4.951 7.854

V. CONCLUSION

In this paper, we have presented an approach for band

selection. This approach consists to select the relevant

bands from HSI in order to improve the semantic

interpretation of HSI. Firstly, the Tensor Locality Preserving

Projection (TLPP) and the weight matrix have been

used to project the original HSI in subspace and to

compute the contribution of each spectral band. Secondly,

the different spectral bands have been ranked based on

their contribution score and the relevant bands have been

adaptively selected for classification task. Finally, the

obtained results (bands selection, classification accuracy and

the running times) shows the efficiency and the performance

of the presented approach compared to many existing

dimensionality reduction methods such as PCA, ISOMAP,

LPP, etc. As future work, this approach will be extended

by adding other knowledge for the semantic interpretation
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Fig. 7 (a) Classification accuracy of Indiana Pines using different band
selection methods (b) Classification accuracy of University of Pavia using

different band selection methods

relating to the spatial relations extraction between objects

and pixels.
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