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Abstract—This article deals with the analysis of active 

constrained layer damping (ACLD) of smart multiferroic or magneto-
electro-elastic doubly curved shells. The kinematics of deformations 
of the multiferroic doubly curved shell is described by a layer-wise 
shear deformation theory. A three-dimensional finite element model 
of multiferroic shells has been developed taking into account the 
electro-elastic and magneto-elastic couplings. A simple velocity 
feedback control law is employed to incorporate the active damping. 
Influence of layer stacking sequence and boundary conditions on the 
response of the multiferroic doubly curved shell has been studied. In 
addition, for the different orientation of the fibers of the constraining 
layer, the performance of the ACLD treatment has been studied.  

 
Keywords—Active constrained layer damping, doubly curved 

shells, magneto-electro-elastic, multiferroic composite, smart 
structures. 

I.INTRODUCTION 

TRUCTURES integrated with piezoelectric sensors and 
actuators possess self-sensing, self-monitoring, and 

diagnosing capabilities are commonly known as smart 
structures. It is evident from the open literature that the 
piezoelectric materials are the best smart materials for the 
active control of high-performance light weight flexible 
structures [1]-[4]. In order to achieve better performance from 
the piezoelectric materials of low control authority, they are 
being used as the constraining layer of the ACLD treatment 
rather than directly bonded to the substrates. Furthermore, the 
ACLD treatment can also be used as passive constrained layer 
damping (PCLD) by deactivating the applied control voltages 
[5]. Thus, the ACLD treatment has been established as an 
efficient smartness element providing both passive and active 
damping simultaneously when under operation [6]-[10].  

A unique and interesting class of multiphase composites 
such as multiferroic or magnetoelectroelastic (MEE) 
composite consisting of ferroelectric/piezoelectric (BaTiO3) 
and ferromagnetic/ piezomagnetic (CoFe2O4) phases has 
attracted the interest of researchers over the last few years on 
account of promising properties of multiferroic composite 
materials. Multiphase composite structures made of 
ferroelectric and ferromagnetic layers are subjected to the 
actions of electro-elastic, magneto-elastic, and electro-
magnetic coupled fields, which are absent in the individual 
constituents. The unique property of MEE materials is that 
they have the ability to covert energy among magnetic, 
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electric and mechanical energies [11]-[16]. These interesting 
properties attracted the researchers to use the multiferroic 
materials in the fields of sensors, actuators, transducers, space 
structures, sonar applications. Most recently, Xin and Hu [17] 
studied the free vibration of simply supported multilayered 
MEE plates using the discrete singular convolution algorithm 
and state space approach. Gou et al. [18] investigated the static 
deformation of anisotropic four layered MEE plates under 
surface loading based on the modified couple-stress theory. 
Liu et al. [19] determined the high order solutions for MEE 
plates with non-uniform materials. Zhou and Zhu [20] used 
the third order shear deformation theory to study the vibration 
and bending analysis of multiferroic plates. Further, nonlinear 
analysis of MEE plates has attracted the interest of researchers 
considerably. Chen and Yu [21] developed the geometrically 
nonlinear multiphysics plate model and analyzed the MEE 
laminated composites by applying the variational asymptotic 
method. Shooshtari and Razavi [22] used thin plate theory to 
investigate a nonlinear free and forced vibration of 
transversely isotropic rectangular MEE thin plate. Farajpour et 
al. [23] investigated the nonlinear free vibration of size 
dependent MEE nanoplates subjected to external electric and 
magnetic potentials by considering the geometrical 
nonlinearity. 

Since the MEE shell can be a promising smart composite 
structure and is composed of smart materials, the necessity of 
using the additional means of smart damping such as the 
ACLD treatment for the active control of the 
multiferroic/MEE shell must be investigated. However, to the 
authors’ best knowledge, the research concerning the control 
of multiferroic shell is not yet reported. In this paper, three-
dimensional analysis of the ACLD of the multiferroic doubly 
curved shells integrated with the patches of the ACLD 
treatment has been carried out by the finite element method to 
investigate the active control vibrations. The effects of various 
parameters such as the effect of coupling coefficients, 
boundary conditions, aspect ratio and the variation of the 
piezoelectric fiber orientation angle in the 1-3 PZC 
constraining layer on the response of the multiferroic doubly 
curved shells have been thoroughly investigated.  

II.PROBLEM DESCRIPTION 
A schematic diagram of a multiferroic doubly curved shell 

with the ACLD patch at the center of the top surface of the 
shell is illustrated in Fig. 1 [5]. It may be noted that the results 
are also obtained by placing two patches of same volume at 
the edges of the top surface of the shell. The middle layer of 
the multiferroic shell is made of ferromagnetic 
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(magnetostrictive) whereas the bottom and top layers of the 
shell are made of ferroelectric (piezoelectric). The viscoelastic 
layer is sandwiched between the piezoelectric layer of the 
ACLD treatment and the multiferroic substrate shell. Fig. 1 (b) 
illustrates the vertically reinforced 1-3 PZC layer in which the 
piezoelectric fibers are aligned and coplanar with the xz plane, 
while their orientation angle with the z-axis is λ. The 
curvilinear length, the curvilinear width, and the total 
thickness of the MEE shell are a, b and H, respectively. Radii 
of curvature of the middle surface are assumed to be R1 and R2. 
The thickness of the constraining PZC layer and the 
constrained viscoelastic layer of the ACLD treatment are hp 
and hv, respectively. The material properties used in the 
present analysis are given in Table I [16]. 
 

 

 

(b) 

Fig. 1 (a) Schematic diagram of a P/M/P multiferroic shell integrated 
with a patch of ACLD treatment at the center of the shell. (b) 

Vertically reinforced 1-3 PZC composites 
 

It should be noted that the density of both the material 
ferroelectric and ferromagnetic are used identical as given in 
literature [16]. 

A. Kinematics of Doubly Curved Shell 

The rotations of transverse normal lying in the substrate are 
represented by x  and y  in the xz-plane and in the yz-plane, 

respectively. Thus, the axial displacements u and v of any 
point in the overall shell/plate along the x- and the y-
directions, respectively, can be written as: 

 

0( , , , ) ( , , ) ( , , )xu x y z t u x y t x y t   
 

0( , , , ) ( , , ) ( , , )yv x y z t v x y t x y t                    (1) 

 
The transverse displacement assumed for the MEE 

shells/plates can be represented by: 
 

2
0(x, y, z, t) (x, y, t) z (x, y, t) z (x, y, t)z zw w         (2) 

 

In (1) and (2), 0u , 0v  and 0w  are the translational 

displacements at any point on the mid-plane of the substrate 
along x-, y- and z-directions, respectively, whereas, z  and z  

are the generalized rotational displacements. To facilitate the 
computation and evaluation, the rotational variables { rd } are 

separated from the translational displacement variables { td } 

and are given by: 
 

   0 0 0

T

td u v w   

 
and 

  T

r x y z zd                              (3) 

 
The states of strain and stress at any point in the overall 

doubly curved shell are expressed by the strain/stress vector 
containing in-plane strain/stress and transverse normal 
strain/stress and the vector of transverse shear strains/stresses 
can be expressed as in (4a) and (4b): 

 

   b x y z xy      and   s xz yz      (4a) 

 

  T

b x y z xy        and    T

s xz yz         (4b) 

 
Making use of linear strain-displacement relations and the 

displacement fields, the strain vectors defining the state of in-
plane and transverse normal strains and the transverse shear 
strains at any point in the substrate, the viscoelastic layer and 
the piezoelectric actuator layer, respectively, can be expressed 
as: 

 

      1
s
b bt rbz    ,       2

p
b bt rbz    , 

      3
s
s ts rsz    ,       4

v
s ts rsz      (5) 

 

      5
p
s ts rsz                              (6) 

 
The superscripts s, v and p represent the substrate, the 

viscoelastic layer and the piezoelectric layer, respectively. The 
transformation matrices [Z1]-[Z5] and the strain vectors 
appearing in (5) and (6) have been explicitly presented in the 
Appendix A. 

B. Constitutive Equations 

The coupled constitutive relations for the MEE solid 
substrate are given by: 
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       - -s s s s s
b b b b z b zs C e e E q H     

and   s s s
s s sC     (7) 

 

    33 33

Ts s s
z b b z zD e E d H                   (8) 

 

    33 33

Ts s
z b b z zB q d E H                        (9) 

 
where, Dz and Bz are the electric displacement and the 
magnetic induction (i.e., magnetic flux), respectively, along 
the z-direction; Ez and Hz are the electrical field and the 

magnetic field, respectively, along the z-direction; [ s
bC ] and [

s
sC ] are transformed elastic constitutive matrix; 33

s  and 33  

are the dielectric constant and the magnetic permeability 

constant, respectively; { s
be }, { s

bq } and d33 are the 

piezoelectric coefficient matrix, the magnetostrictive 
coefficient matrix and the electromagnetic coefficient, 
respectively. The viscoelastic material used in the present 
study is assumed to be linearly viscoelastic homogeneous and 
isotropic. In the complex modulus approach, the shear 
modulus G and the Young’s modulus E of the viscoelastic 
material are given by: 
 

 ' 1G G i 
 
and  2 1E G                      (10) 

 

in which G '  is the storage modulus,   is the Poisson’s ratio, 
and   is the loss factor at any particular operating 

temperature and frequency.  

C. Electric Field- Potential Relations  

According to the Maxwell’s electromagnetic equations, the 

transverse electric fields t
zE  and b

zE , and the magnetic field 

Hz are related to the electric potentials t  and b , and the 

magnetic potential   in (11). 
 









  


, 

b
b
zE

z


 


and zH

z


 


  (11) 

 

in which t  and b are the electric potential functions in the 

top and the bottom piezoelectric layer, respectively. It is 
assumed that the interfaces between the piezoelectric layer and 
the magnetostrictive layer are suitably grounded. Also, since 
the thicknesses of the layers of the substrate are very small, 
linear variations of the electric potential and the magnetic 
potential functions can be assumed across the thickness of the 

layers. Thus, the electric potential functions t , b  and the 

magnetic potential distribution field ψ in the magnetostrictive 
layer can be expressed as: 
 

1
t bz z

h
 


 , 

2
2

b z h

h
 


   and 2z h

h
 


       (12) 

D. Finite Element Formulation of Shell 

The overall magneto-electro-elastic shell integrated with the 
ACLD patches is discretized by eight noded iso-parametric 
quadrilateral elements. In accordance with (3), the generalized 
displacement vectors { tid } and { rid } associated with the ith (

1 2 3 8i  , , , ..., ) node of the element can be written as: 
 

   0 0 0

T

ti i i id u v w and 

 
T

ri xi yi zi xi yi zi xi yi
d                (13) 

 
The generalized displacement vectors, the electric potential 

vector { }, and the magnetic potential { } at any point 

within the element can be expressed in terms of the nodal 

generalized displacement vectors ({ e
td } and { e

rd }), the nodal 

electric potential vector { e }, and the nodal magnetic 

potential vector { e }, respectively, in (14a): 
 

    e
t t td N d ,     e

r r rd N d , 

 

  1 2

T
      =  eN     and  eN     (14a) 

 
in which,  

       1 2 8. . .
TT T Te e e e

t t t td d d d     ,  

 

       1 2 8. . .
TT T Te e e e

r r r rd d d d     , 

 

  11 21 12 22 18 28 . . .
Te          , 

 

   1 2 8 . . .
Te    , 

 

   1 2 8. . .t t t tN N N N ,  

 

   1 2 8. . .r r r rN N N N , 

 

1 2 8

1 2 8

0 0 . . . 0

0 0 . . . 0

n n n
N

n n n
 

     
 

, 

 

1 2 8. . .N N N N          , ti i tN n I , 

 

ri i rN n I .                               (14b) 
 

where [ tN ], [ rN ], [ N ], and [ N ] are the (3 × 24), (8 × 

64), (2 × 16), and (1 × 8) shape function matrices, 
respectively.  
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The control voltage Vj of the constraining layer of each 
ACLD patch is supplied according to a simple derivative 
control law. Thus, the control voltage for each patch can be 
expressed in terms of derivatives of the global nodal degrees 
of freedom as given in (15): 

 

 j j j j
d o d tV K w K U X                        (15) 

 

where j
dK  is the control gains of the jth ACLD patch, [ j

tU ] is 

the unit vectors. Using the first variation of the total potential 
energy of the typical element integrated with the ACLD 
treatment, the final coupled equations of motion governing the 
closed loop dynamics of the MEE doubly curved shell 
integrated with the ACLD patches is expressed in (16): 
 

            

     
1

tt tr r t t

q
j j j

tp d t
j

M X K X K X K K

F K U X F





  



         

   
 

 

          

   
1

0

T

tr rr r r r

q
j j j

rp d t
j

K X K X K K

F K U X

  



        

     

      0
T T

t r rK X K X K                 

 

      0
T T

t r rK X K X K                 (16) 

 
The final closed loop global equations of motion of the 

MEE shell integrated with the ACLD system can be obtained 
as:  

 

           
1

q
j j j

p d
j

M X F K U X K X F 


 
     

 
  (17) 

 
in which, the global augmented matrices are given by: 
 

        1

1 2 3 2

T
K K K K K

  ,  

 

        1

2 3
j j j

p rp tpF K K F F
  ,  

 

  1 11

2 3a t rK K K K K K K    

                     , 

 

    1 1

1

T T

tt t t t tK K K K K K K K     

 
                          

 

    1 1

2

T T

tr t r t rK K K K K K K K      

 
                          

 

    1 1

3

T T

rr r r r rK K K K K K K K     

 
                          

 
III.RESULTS AND DISCUSSION 

This section deals with the analysis of the frequency 
responses of the multiferroic/MEE doubly curved shell 
integrated with the ACLD treatment computed by the finite 
element model derived in the preceding section. In order to 
validate the results of the simply supported MEE, doubly 
curved shell with infinite radii of curvature (R1 =  , R2 = R1) 
is considered for the comparison with the results reported by 
Moita et al. [16] with the identical dimensions (sides a = b = 1 
m and the thickness H = 0.3 m). Table II demonstrates the 
some of the lower natural frequencies of MEE shell (R1 =  , 
R2 = R1) for the P/M/P and the M/P/M stacking sequences. It 
may be observed from this table that the present results are in 
good agreement with those reported in [16] for both the 
stacking sequences of the MEE plates. However, as expected, 
it is noticed that some acceptable discrepancies exist in the 
result. This is attributed to the consideration of transverse 
normal strain εz in the present model which is neglected in 

[16]. Figs. 2 and 3 illustrate the comparison of frequency 
response functions for the transverse displacement of the 
active damping of a simply supported P/M/P and M/P/M 
multiferroic doubly curved shell, respectively, with (Kd ≠ 0, 
active damping) and without (Kd = 0, passive damping) 
activating the ACLD patches when located at the center of the 
top surface and two patches placed at the edges. Figs. 4 and 5 
illustrate the corresponding control voltages. It may be 
observed from these figures that the active ACLD treatment 
appreciably improves the damping characteristics and has 
considerable effect on the control of the transverse 
displacement of the shell over the passive damping with 
nominal control voltage. It may also be noticed that the 
performance of a single patch located at the center of the shell 
is better than the two patches located at the edges of the 
multiferroic doubly curved shell. Figs. 6 and 7 depict the 
frequency response functions for the transverse displacement 
of the active damping of the clamped-clamped P/M/P and 
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M/P/M doubly curved shells whereas Fig. 8 depicts the 
corresponding control voltages. It may be observed from these 
figures that the trend is analogous to the simply supported 
multiferroic shell.  

 

 

Fig. 2 Frequency response functions for the transverse displacement 
w(a/2, b/4, H/2) of a simply supported P/M/P multiferroic doubly 

curved shell (a = 200H, R1=10a; R2=10R1) 
 

 

Fig. 3 Frequency response functions for the transverse displacement 
w(a/2, b/4, H/2) of a simply supported M/P/M multiferroic doubly 

curved shell (a = 200H, R1=10a; R2=10R1) 
 

 

Fig. 4 Comparison of the control voltage for active damping of the 
simply supported multiferroic doubly curved shell when two patches 

placed at edges of the shell 

 

Fig. 5 Comparison of the control voltage for active damping of the 
simply supported multiferroic doubly curved shell when a single 

ACLD patch is located at center of the shell 
 
Fig. 9 depicts the influence of piezoelectric fiber orientation 

angle () on the responses of multiferroic shell for the P/M/P 
stacking sequence in the xz-plane. It is evident from this figure 
that the best control of amplitude of multiferroic shells is 
achieved by the of vertically reinforced 1-3 PZC layer ( = 
0o). It may also be noted that performance of obliquely 
reinforced 1-3. 

 

 

Fig. 6 Frequency response functions for the transverse displacement 
w(a/2, b/4, H/2) of a clamped-clamped P/M/P multiferroic doubly 

curved shell with patches at the edges (a = 200H, R1=10a; R2=10R1) 
 

 

Fig. 7 Frequency response functions for the transverse displacement 
w(a/2, b/4, H/2) of a clamped-clamped M/P/M Multiferroic doubly 

curved shell with patches at the edges (a = 200H, R1=10a; R2=10R1) 
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Fig. 8 Comparison of the control voltage for active damping of the 
clamped-clamped multiferroic doubly curved shell with patches at the 

edges (a = 200H, R1=10a; R2=10R1) 
 

 

Fig. 9 Effect of variation of piezoelectric fiber orientation angle () in 
xz-plane on the controlled response of a simply supported P/M/P 

multiferroic doubly curved shell (Kd = 300) 
 
PZC constraining layer in which the piezoelectric fibers are 

coplanar with the yz-plane is better than that of the obliquely 
reinforced 1-3 PZC constraining layer wherein the 
piezoelectric fibers are coplanar with the xz-plane. However, 
for the sake of brevity, the results are not presented here. It is 
interesting to know that if the matrices [ tK  ], [ K ], [ tK  ] 

and [ K ] are set to null matrices, the responses of the 

multiferroic shell will be free of the effects of the electro-
elastic and magneto-elastic couplings. Table III demonstrates 
the same in numerical values for the first three natural 
frequencies. It may be observed from Table III that the 
electro-elastic and the magneto-elastic couplings cause 
marginal increase in the stiffening of the P/M/P multiferroic 
shell. In case of the multiferroic shell controlled by the ACLD 
patches, the attenuation of the fundamental mode of vibration 
in the presence of such couplings is more than that without the 
presence of these couplings. 

 
 
 

IV.CONCLUSIONS 

In this paper, a three-dimensional finite element analysis 
has been carried out to investigate the active damping of the 
multiferroic doubly curved shells integrated with the patches 
of the ACLD treatment. The numerical results reveal that the 
ACLD patches significantly improve the damping 
characteristics of the multiferroic composite shell. The 
performance of the ACLD patches is influenced by the edge 
boundary conditions and the variation of fiber orientation 
angle (λ). The best performance of the patches is achieved 
when the orientation angle (λ) of the fibers is 0o for both 
simply supported and clamped-clamped multiferroic 
composite shell. Further, performance of single ACLD 
patch/treatment is better when placed at the center of the 
multiferroic shell than the two patches of same volume placed 
at the edges. The electro-elastic and magneto-elastic couplings 
cause marginal increase in stiffening of the multiferroic shell. 
These couplings improve the performance of the ACLD 
patches for attenuating the fundamental mode of vibration of 
the multiferroic shell. 

APPENDIX 

A. Transformation Matrices 

The transformation matrices  1z ,  2z ,  3z ,  4z  and 

 5z  appearing in (5) and (6) are given by: 

 

 1 1Z Z O O    ,  2 2 2 2
ˆ ˆ( )

2v v

h
Z Z h I z h I
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 3 3Z I O O Z      ,  4 4Z O I O Z     , 

 5 5Z O O I Z      
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0 0 0 0
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T

y y y y y yx x x x x x
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TABLE I 

MATERIAL PROPERTY OF BATIO3 AND COFE2O4 [6], [16] 

 
C11 = C22 

(109 N/m2) 
C12 

 

(109 N/m2) 
C13 = C23  

(109 N/m2) 
C33  

(109 N/m2) 
C44 = C55  

(109 N/m2) 
C66  

(109 N/m2) 
ρ (kg/m3) 

BaTiO3 166 77 78 162 43 44.5 5800 

CoFe2O4 286 173 170.5 269.5 45.3 56.5 5300 

BaTiO3 
e31 = e32 
(C/m2) 

-4.4 

e33 

(C/m2) 
18.6 

e24 = e15 
(C/m2) 
11.6 

11=22 
(10-9 C2/Nm2) 

11.2 

33 

(10-9 C2/Nm2)
12.6 

µ11 = µ22 
(10-6 Ns2 /C2) 

5 

µ33 

(10-6 N s2 /C2) 
10 

CoFe2O4 
q31 = q32

 
(N/Am) 
180.3 

q33 
(N/Am) 
699.7 

q24 = q15 
(N/Am) 

550 

11 = 22 
(10-9 C2/Nm2) 

0.08 

33 

(10-9 C2/Nm2) 
0.093 

µ11 = µ22 

(10-6 Ns2 /C2) 
-590 

µ33 

(10-6 N s2 /C2) 
157 

 
TABLE II 

COMPARISON OF NATURAL FREQUENCIES (RAD/S) OF MEE PLATE (R1 =  , 
R2 = R1) OBTAINED IN THE PRESENT ANALYSIS WITH THE RESULT OF MOITA 

ET AL. [16] 

 P/M/P M/P/M 

Mode Present [16] Present [16] 

1 12968.55 13024.78 14298.28 15043.32 

2 24465.17 25401.26 25467.34 27880.80 

3 26276.83 26256.34 28048.07 28795.37 

4 34711.24 35206.62 38056.24 37753.16 

5 38861.78 38671.99 40460.54 41649.71 

 
TABLE III 

EFFECT OF COUPLED FIELDS ON THE NATURAL FREQUENCIES OF THE P/M/P 

MULTIFERROIC SHELL (A= 200H, R1= 10A, R2= 10R1) 

Mode Uncoupled fields Coupled fields 

P/M/P Frequency (ω) Frequency (ω) 

1 149.0 152.3 

2 214.8 221.9 

3 282.2 289.1 

REFERENCES 
[1] Ray, M. C., Bhattacharya, R. and Samanta, B. (1993), “Exact Solutions 

for Static Analysis of Intelligent Structures”, AIAA Journal, Vol. 31, 
pp.1684-1691. 

[2] Reddy, J. N. (1999), “On laminate composite plates with integrated 
sensors and actuators”, Engineering Structures, Vol.21, No.7, pp.568–
593. 

[3] Baz, A. and Ro, J. (1996), “Vibration control of plates with active 
constrained layer damping”, Smart Materials and Structures, Vol. 5, 
pp.272–280.  

[4] Ray, M. C., Oh, J. and Baz, A. (2001), “Active constrained layer 
damping of thin cylindrical shells”, Journal of Sound and Vibration, 
Vol.240, No.5, pp. 921–935. 

[5] Kattimani, S.C. and Ray, M. C., (2014a), “Active control of large 
amplitude vibrations of smart Magneto-electro-elastic doubly curved 
shells”, International Journal of Mechanics and Materials in Design, 
DOI 10.1007/s10999-014-9252-3. 

[6] Kattimani, S.C. and Ray, M. C., (2014b), “Smart damping of 
geometrically nonlinear vibrations of magneto-electro-elastic plates”, 
Composite Structures, Vol. 114, pp. 51-63. 

[7] Kattimani S.C. and Ray M.C. (2015), “Control of geometrically 
nonlinear vibrations of functionally graded Magneto-electro-elastic 
plates”, International Journal of Mechanical Sciences, Vol. 99, pp.154-
167. 

[8] Baz, A. (1998), “Robust control of active constrained layer damping”, 
Journal of Sound and Vibration, Vol. 211, No.3, pp.467-480. 

[9] Ray, M. C. and Mallik, N. (2004), “Active control of laminated 
composite beams using a piezoelectric fiber reinforced composite layer”, 
Smart Materials and Structures, Vol.13, No.1, pp.146–152. 

[10] Ray, M. C. and Pradhan, A. K. (2006), Performance of vertically 
reinforced 1–3 piezoelectric composites for active damping of smart 
structures”, Smart Materials and Structures, Vol.15, No.1, pp. 631–641. 

[11] Pan, E. and Heyliger, P. R. (2002), “Free vibrations of simply supported 
and multilayered magneto-electro-elastic plates”, Journal of Sound and 
Vibration. Vol.252, No.3, pp.429-442.  

[12] Ramirez, F., Heyliger, P. R. and Pan, E. (2006), “Discrete layer solution 
to free vibrations of functionally graded magneto-electro-elastic plates”, 
Mechanics of Advanced Materials and Structures, Vol. 13, pp. 249–266.  

[13]  Buchanan, G. R. (2004), “Layered versus multiphase magneto-electro-
elastic composites”, Composites: Part B. Vol. 35, pp. 413-420. 

[14]  Garcia Lage, R., Mota Soares, C.M., Mota Soares, C. A. and Reddy, J. 
N. (2004), “Layerwise partial mixed finite element analysis of magneto-
electro-elastic plates”, Computers & Structures, Vol.82, pp.1293-1301. 

[15] Wang, J., Lei, Q. and Feng, Q. (2010), “State vector approach of free-
vibration analysis of magneto-electro-elastic hybrid laminated plates”, 
Composite structures, Vol.92, pp.1318-1324. 

[16] Moita, J. M. S., Mota Soares, C. M. and Mota Soares, C. A. (2009), 
“Analysis of magneto-electro-elastic plates using higher order finite 
element model”, Composite structures, Vol.91, pp. 421-426. 

[17] Xin L., Hu Z., (2015), "Free vibration of simply supported and 
multilayered magneto-electro-elastic plates", Composite structures, Vol. 
121, pp. 344-350. 

[18] Guo J., Chen J. and Pan E (2016), "Static deformation of anisotropic 
layered magnetoelectroelastic plates based on modified couple-stress 
theory", Composites Part B: Engineering, Vol. 107, pp.84-96. 

[19] Liu J., Zhong P., Gao L., Wang W. and Lu S., (2016), "High order 
solutions for the magneto-electro-elastic plate with non-uniform 
materials", International Journal of Mechanical Sciences, Vol. 115-116, 
pp.532-551. 

[20] Zhou Y. and Zhu J., (2016), "Vibration and bending analysis of 
multiferroic rectangular plates using third order shear deformation 
theory", Composite Structures, Vol. 153, pp.712-723.  

[21] Chen, H. and Yu, W., (2014), “A multiphysics model for magneto-
electro-elastic laminates” European Journal of Mechanics A/Solids, 
Vol.47, pp.23-44. 

[22] Shooshtari A., Razavi S. (2015a), “Nonlinear vibration analysis of 
rectangular magneto-electro-elastic thin plates”, IJE Transactions A: 
Basics, Vol. 28, No. 1, pp. 136-144. 

[23] Farajpour A., Hari Yzdi M.R., Ratgoo A., Loghmani M., Mohammadi 
M., (2016), "Nonlocal nonlinear plate model for large amplitude 
vibration of magneto-electro-elastic nanoplates", Composite Structures, 
Vol. 140, pp.323-336. 


