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Detecting Geographically Dispersed Overlay
Communities Using Community Networks

Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract—Community detection is an extremely useful technique
in understanding the structure and function of a social network.
Louvain algorithm, which is based on Newman-Girman modularity
optimization technique, is extensively used as a computationally
efficient method extract the communities in social networks. It
has been suggested that the nodes that are in close geographical
proximity have a higher tendency of forming communities. Variants
of the Newman-Girman modularity measure such as dist-modularity
try to normalize the effect of geographical proximity to extract
geographically dispersed communities, at the expense of losing
the information about the geographically proximate communities.
In this work, we propose a method to extract geographically
dispersed communities while preserving the information about the
geographically proximate communities, by analyzing the ‘community
network’, where the centroids of communities would be considered as
network nodes. We suggest that the inter-community link strengths,
which are normalized over the community sizes, may be used
to identify and extract the ‘overlay communities’. The overlay
communities would have relatively higher link strengths, despite
being relatively apart in their spatial distribution. We apply this
method to the Gowalla online social network, which contains
the geographical signatures of its users, and identify the overlay
communities within it.

Keywords—Social networks, community detection, modularity
optimization, geographically dispersed communities.

I. INTRODUCTION

TOPOLOGICAL analysis of social networks have gained

prominence in recent years. With the advent of network

science as a separate field, modeling and characterizing

self-organizing networks have been applied in a plethora of

areas, ranging from biological networks, financial networks

to social networks [1]-[2]. One of the most vital pieces

of information that is embedded in a social network is

its community structure [3]. These communities may have

homogeneous features in diverse attributes. However, the

communities that are extracted through topological features

is becoming increasingly relevant in social network analysis

and mining, as it is the most fundamental and objective

form of communities that can be extracted from a social

network. Identifying and extracting communities from a social

network may be vital in myriad applications which involve

social network analysis, such as modeling social influence,

information spread and epidemic modeling and defense related
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applications, among others. Moreover, extracting communities

using a formal methodology may help to understand the

structure and the operation of the social network in concern.

Different community detection algorithms have been

proposed and have been applied in multitude of applications.

Among them are the minimum-cut method, hierarchical

clustering and modularity maximization [4], [5]-[6]. The

most widely accepted method of community detection is the

modularity maximization, where the modular behavior of a

network is quantified to identity and extract communities in a

network.

One of the key limitations of the modularity maximization

in community detection is that it does not take into account

the contribution of geographical proximity that is vital in

forming communities. That is, the nodes that are in close

spatial proximity may tend to form communities more than

the nodes that are geographically apart. Thus, the interactions

and links among the nodes that are geographically apart

should carry more significance compared to the nodes that

are in close proximity in extracting communities. In order to

address this limitation, the dist-modularity measure has been

recently proposed [7]. This particular measure attempts to

normalize the strength of links formed among nodes over their

geographical distance. Thus, the dist-modularity measure may

be used to identify the communities that are geographically

distributed. However, the dist-modularity measure has two

key limitations. It requires relatively high computational time

due to its computational complexity. Also, by normalizing

the effect of geographical proximity of the constituent

nodes in extracting communities, it actually disregards the

communities consisting of geographically proximate nodes,

which are equally as important as the geographically dispersed

communities. Thus, it may not be used to capture the

geographically proximate communities that are strongly

connected with each other, while being geographically

apart. Such communities can be observed in real-world

networks such as migrant worker community networks and

terrorist networks [8], [9], where the communities formed

by geographically proximate nodes may have strong links

with similar communities that may be geographically apart.

Identifying and extracting such communities may provide vital

information that may not be apparent in modularity based

community detection algorithms.

In this work, we suggest that observing the interconnections

of communities extracted through modularity maximization,

in other words, analyzing the ‘community networks’ may

pave way to identify and extract the geographically distributed

communities. In order to do this, we suggest that the
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centroids of communities may be used to form a network

of communities, where the links among such communities

may be used to identify geographically dispersed communities

or overlay communities. Detecting such overlay communities

may have interesting applications in areas such as indirect

marketing, information propagation modeling and defense

and counter terrorism domains. Identifying such overlay

communities may be used as a computationally efficient

method to extract geographically distributed communities.

The rest of this paper is organized as follows. The

Background section provides an overview of the different

community detection methods that are derived from

modularity optimization, including the dist-modularity

measure. Then, the methodology section describes the

proposed method of detecting overlay communities and

how it is applied to a real-world social network dataset

to extract geographically distributed overlay communities.

Afterwards, the results obtained from the experimental

analysis is presented. Finally, the concluding remarks are

presented along with a brief description on potential future

work.

II. BACKGROUND

Network science emerged as a prominent field of science

with the proposition of the scale-free network model [1],

[4]. The study of network science has facilitated observing

networks in diverse domains such as social networks,

biological networks and financial networks. In the recent years,

much interest have been given to extracting communities of

social networks. The community information may be vital

in understanding the information flows and the structure of

an existing social network. While multitude of community

extraction techniques such as the Hierarchical Clustering

method and minimum cut method have been proposed

to extract community information from social networks;

modularity maximization remains the most widely used

technique of extracting communities of social networks.

Louvain algorithm is a heuristic method developed by

Blondel et al. [10], that partitions a social network

into communities while optimizing Newman-Girvan (N-G)

modularity of the partition. Louvain algorithm improves on the

computational time of the modularity optimization technique,

which is originally an NP-hard problem. Newman-Girvan

modularity is used to measure how densely the detected

communities of the partition are connected relative to

connections between these communities [10], [7]. In other

words, the Newman-Girvan modularity measure is the fraction

of edges within communities in the observed network

minus the expected value of that fraction in a null model,

which serves as a reference and should characterize some

features of the observed network. Equation (1) defines the

Newman-Girwan modularity measure, which is used in the

Louvain algorithm.

Given a network that is modeled as an undirected graph

G = (V;E) where V is a set of nodes and E is a set of

relationships among nodes. The variables n and m represent

the cardinalities of V and E respectively. Each edge (vi; vj)

is assumed to have an associated weight wij . For a given

node viεV , ηi = {vj |(vi, vj)εE ∨ (vj , vi)εE} and ki = |ηi|.
Accordingly, the modularity M(C) of a given partition C is

given as;

M(C) =
1

2m

∑
cεC

∑
i,jεc

wij − Pij (1)

Pij =
ki.kj
2m

(2)

Here, Pik refers to the null model that is used as a reference

model, where the edges of the network are rewired randomly

while preserving the degree distribution.

Multitude of social networks, including online social

networks incorporate location information of the nodes in the

network, in addition to the nodes and relationships among

them, which may be utilized to extract the geographically

specific information of the individual nodes. One important

aspect in geographically distributed social networks is that the

nodes in close proximity have an inherent nature of connecting

with each other [7]. Thus, the community detection algorithms

should ideally take into account this feature and normalize the

effect of proximity to identify the actual communities in a

social network.

As a result, a subsequent modularity measure called

dist-modularity [7] has been proposed to normalize the effect

of geographical proximity. This measure tries to identify

the geographically distributed communities with a distance

decaying function, under the assumption that the nodes that

are in close geographical proximity have a higher tendency

of forming community structures. This is an important

assumption that we too employ indirectly, in formulating

the idea of overlay communities that are geographically

distributed.

Equation (3) gives the formal definition of the

dist-modularity function.

Mdist(C) =
1

2m

∑
cεC

∑
i,jεc

wij − Pij (3)

Pij =
P̂ij + P̂ji

2
(4)

P̂ij =
kikjf(d(vi, vj))∑
vqεV

kqf(d(vq, vi))
; f : R+ → (0, 1] (5)

Here, f is the distance-decay function. The basic assumption

in dist-modularity optimization is that each node exerts a field

on the surrounding nodes, which is inversely proportional

to the distance from it. Thus, the null model used in the

dist-modularity calculation assumes that nodes which are

closer based on the distance function are more likely to

be connected. This is the same assumption that we’d be

utilizing to propose the idea of overlay communities where

the Newman-Girvan modularity is considered to be likely to

extract communities of members within the same geographical

proximity.

The distance decaying function used in dist-modularity

measure may further be extended to a gravity model where
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the inherent node properties are taken into account to capture

the heterogeneity of the nodes [11].

Pij = NiNjf(dij |dij = d) (6)

where Ni captures the importance of the node. Thus, the

distance-decaying function may be modified to capture the

node heterogeneity as:

f(d) =

∑
i,j|di,j=d Aij∑

i,j|di,j=d NiNj
(7)

which is the weighted average of the probability for a link

to exist at distance d.

While the dist-modularity measure and its variants attempt

to normalize of effect of geographical proximity in extracting

communities, another branch of modularity maximization

techniques attempt to harness the spatial information to

extract the communities based on their geographical closeness.

Spatially-near Modularity [12], which correlates with the

spatial proximity of nodes, is an example of this particular

approach of modularity maximization. Another interesting

application of the modularity optimization is where it is

been applied to extract multilevel communities based on a

‘similarity attribute’. This particular application works under

the assumption that nodes with similar features have a higher

probability of being connected to each other. While this

particular measure is useful in extracting communities that

share the same geographical space, it is not much useful

in extracting communities that are geographically distributed

[13].

Based on the existing literature, two main approaches can

be observed in extracting communities with geographical

constraints. One is to extract geographically dispersed

communities by normalizing the effect of geographical

proximity. Dist-modularity and its variations are used for

this purpose. The other approach is to harness or exploit

the geographical proximity of communities and purposely

consider the spatial nearness in extracting the communities.

While these two approaches seem to contradict each other,

the communities in social networks may encompass both

geographically proximate as well as geographically dispersed

communities. Thus, we attempt to propose a method to extract

both the geographically proximate as well as geographically

dispersed communities in a complimentary fashion. In other

words, we propose a method to extract the geographically

distributed communities, based on the interconnections of

geographically proximate communities.

III. METHODOLOGY

In order to resolve this apparent dilemma where

the geographically distributed communities have to be

extracted without losing the information on geographically

proximate communities, we propose the concept of

‘overlay-communities’, quite similar to the idea of

‘overlay-networks’ in peer-to-peer computing [14]. The

idea is to extract the communities using the Louvain

algorithm and then connect the extracted communities with

inter-community links assuming that the nodes that are in

close proximity have a higher probability of being in the

same community [7].

When connecting the communities, we consider the

centroids of each community as the ‘node’ of the community

network, in order to assign a geographical location to each

community. Afterwards, the connections among the members

in communities are aggregated into ‘links’. This way, we can

easily quantify the geographical alignment of each community

along with their inter-community link strengths. The link

strength of each link are then divided by the multiplication

of the sizes of the communities that it connects, in order to

normalize the effect of the heterogeneity of community sizes.

Normalizing over community sizes would help to identify

the communities that are geographically distributed and yet

strongly connected with each other, irrespective of the sizes

of the underlying geographically proximate communities.

The communities that are strongly connected over the

community network are termed the ‘overlay communities’,

within the context of this work. Based on the assumption that

the nodes that are in close geographical proximity tend to

form communities, we may argue that the communities that

are in close geographical proximity may tend to form strong

connections with each other. Thus, the most interesting overlay

communities would be those which are strongly connected

yet whose centroids are further apart. Extracting such overlay

communities may reveal information about the geographically

distributed communities social networks that are not apparent

and that cannot be identified using the existing community

detection algorithms. The algorithm 1 explains the proposed

technique in detail.

Algorithm 1: Extracting overlay communities using

community networks

1 Extract the community set C using the Louvain method of N-G
modularity optimization;

2 for each community c in the set of communities C do
3 Identify the centroid of each community based on

geographical location of each node in the community ;
4 Assign the centroid as the node representing that particular

community in the community network ;

5 for each community pair p in the set of communities C do
6 Compute the strength of the link connecting the community

pair p by aggregating the connections among the nodes in
community pair p ;

7 Normalize the link strengths by the community sizes by
dividing the link strengths by the multiplication of
community sizes of the community pair p ;

8 Identify the communities that are relatively further apart
geographically yet have relatively higher link strengths as the
‘overlay communities’ ;

In order to test the effectiveness of the proposed

algorithm, it was applied to a real-world social networks

with geographical information. We used a dataset from the

Gowlla online social network [15] which has the geographical

signatures of the users included in it for this purpose. By

applying the above algorithm to the Gowlla network, we
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could extract the geographically distributed communities by

identifying the communities that are strongly connected while

being geographically distributed.

The Gowalla network data set has 196,591 connected users

as nodes. Check-in details of only 107,092 users were available

for analysis, from which the home locations could be derived.

There were 1,900,654 edges connecting the 196,591 users

indicating the friendship between them. There were 6,442,892

total check-in records. It was observed that a relatively large

portion of users did not have check-in records, resulting in

unknown home locations for them. Hence, only the users with

known location information were considered for the location

analysis. We made the assumption that the other members were

in similar vicinity. We ignored communities where locations

of all members were unknown.

To derive approximate home location of each user, most

frequent location for check-in was calculated. Based on that,

all the check-in locations greater than 95% of the distance

from the most frequent location were filtered out, assuming

they represent anomaly trips of the user. Then, for each user,

the weighted center of gravity of his check-in locations was

calculated. That was considered the home location for them.

To detect basic communities we considered the results

of Louvain modularity optimization algorithm as it is

computationally efficient and yield better results in comparison

to many existing techniques. When the Gowalla social network

was processed into communities by Louvain multi-level

community detection algorithm, 5 non-overlapping community

levels were detected. At level 1 network was broken into

19,396 communities, 2875 at level 2, 1025 at level 3, 839

and 820 at level 4 and 5 respectively. Level 5 produced the

maximum modularity value for the network.

To study how the resulting communities are dispersed

geographically, we used home locations of community

members to calculate the standard distance deviation which

calculates the centroid of the community (with respect to

the dispersion of community members) as well as the radius

and the area of dispersion. The results indicated that higher

the modularity results, the radius and area of the community

become small. This further supports the assumption that the

nodes that are in close geographical proximity have a higher

tendency of forming communities.

The link strengths of the 820 communities extracted

were measured. There were 4138 links connecting the 820

communities. The link density was observed to be relatively

low. We then normalized the link strengths over the community

sizes of the community pairs connected by each link in order

to remove the effect of the heterogeneity of the community

sizes, which could otherwise invariably affect the strengths

of the inter-community links. The next section presents some

of the results obtained using the analysis performed on the

extracted community network.

IV. RESULTS

Fig. 1 depicts the distribution of the communities over the

community size, in the community network formed using the

above methodology. Based on the figure, it is evident that

the community network contains relatively few communities

with large number of members while relatively high number

of communities with relatively smaller number of members.

This is characteristic of the scale-free model.
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Fig. 1 Distribution of communities over community size in logarithmic scale
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Fig. 2 The degree distribution of the community network in logarithmic
scale

We further observe the degree distribution of communities

in Fig. 2. According to the figure, the degree distribution

fits well into a power-law degree distribution. The scale-free

correlation and the scale-free exponent of the network were

measured to be 0.74 and 0.67, respectively, further indicating

that the community network fits into the scale-free model.

Fig. 3 depicts a graphical representation of the community

network obtained, where the link strengths were normalized

over community sizes of the communities connected by

each link. As the figure depicts, the community sizes

and link strengths are heterogeneous and non-correlated in

nature, suggesting that certain communities may be strongly

connected, despite being geographically apart.

Fig. 4 (a) depicts that strength of each link against the

Euclidean distance between the centroids of the communities

that it connects. The link strengths are not normalized over

community sizes. According to the figure, it is evident that

there are certain links that show relatively higher strengths,

while they connect communities that are geographically

dispersed.

Fig. 4 (b) shows the strength of each link, where the link

strength of each link is normalized over the community sizes
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Fig. 3 Community network with heterogeneous node sizes and normalized link strengths
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Fig. 4 The link strength among communities against distance between the community centroids. The link strength is determined based on the number of
interconnections among communities. The distance between communities is measured in geographical coordinate based distance

connecting them. Even after normalizing the link strengths,

there are certain communities that are tightly connected despite

being geographically apart. In the given figure, there is a

link that particular stands out in its link strength, although

it connects two communities that are spatially apart. If we

consider the link with the highest strength in the given

distribution, it is the link connecting the community id 253

(population of size 26702) with the community with the id

585 (population of size 33560). The relative distance between

these two communities is 368 units. When we normalize the tie

strength by population, the link strength of these communities

is higher than 82% of community pairs observed. Hence

we cannot ignore this strong connection between the two

communities consider it to be a result of the community size

of one or both communities. It is important to note that these

two communities are not overlapping and geographically apart

significantly, when extracted using the Louvain algorithm,

even though they have a strong connection between them.

Thus, we may identify this particular community pair as a

geographically dispersed single overlay community.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a computationally efficient method

to extract geographically dispersed communities, while

preserving the information about the geographically proximate

communities. We suggest that the Louvain algorithm may be

used to identify the geographically proximate communities,

which may then be connected by aggregating the connections

among the nodes between each community. This is based on

the assumption that the nodes that are in close geographical

proximity have a higher tendency to form communities with

each other. The centroids of each community would represent

the nodes in the community network. These inter-community

links could be used to form a ‘community network’. The link
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strengths are then normalized over the sizes of the community

pairs. In the resulting network, the community pairs that have

relatively higher link strengths, while connecting relatively

further communities are identified as geographically dispersed

‘overlay communities’. These overlay communities may

be used to identify geographically dispersed communities

in applications such as migrant community detection and

terrorist network detection, since the community networks in

such scenarios have geographically proximate communities

interacting with similar communities that are geographically

apart.

Though we measure the Euclidean distance between two

community centroids as the distance between communities it

may not be fair for the cases where communities are very large,

making their centers far apart. Yet they can be overlapping

at the periphery. Thus, non-overlapping relatively smaller

communities would be more appropriate to be considered for

overlay community detection in our approach.

To our knowledge, there has not been an attempt to analyze

a network of communities based on its topological properties.

It may be possible to analyze the community networks to

extract more information about numerous network properties

and behavior such as network resilience [16], assortativity

[17], growth [1] and evolution.

Though we only consider community pairs in this work,the

overlay communities could be in the form of sub-networks.

Further, the overlay networks may be extracted at multiple

levels of hierarchy. Thus, extracting these sub-networks and

the hierarchical overlay networks could be the potential

extensions of this work. Further, while we consider the number

of interactions within each community to denote a link and

to measure link strengths, different network attributes may

be used to form links and assign link strengths, resulting in

networks of varying dimensions. Such community networks

may be analyzed to extract information about the network that

may not be visible with existing network analysis techniques.
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