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Abstract—Hydraulic structures such as gravity dams are
classified as essential structures, and have the vital role in providing
strong and safe water resource management. Three major aspects
must be considered to achieve an effective design of such a structure:
1) The building cost, 2) safety, and 3) accurate analysis of seepage
characteristics. Due to the complexity and non-linearity relationships
of the seepage process, many approximation theories have been
developed; however, the application of these theories results in
noticeable errors. The analytical solution, which includes the difficult
conformal mapping procedure, could be applied for a simple and
symmetrical problem only. Therefore, the objectives of this paper are
to: 1) develop a surrogate model based on numerical simulated data
using SEEPW software to approximately simulate seepage process
related to a hydraulic structure, 2) develop and solve a linked
simulation-optimization model based on the developed surrogate
model to describe the seepage occurring under a concrete gravity
dam, in order to obtain optimum and safe design at minimum cost.
The result shows that the linked simulation-optimization model
provides an efficient and optimum design of concrete gravity dams.

Keywords—Artificial neural network, concrete gravity dam,
genetic algorithm, seepage analysis.

1. INTRODUCTION

UILDING of a water retaining structure, such as a

concrete gravity dam is an effective solution for the
dealing with water crisis and to provide safe and strong water
resource management. Three main factors must be considered
in the design of the concrete gravity dam: 1) construction cost,
because the building of such a structure is expensive, 2)
safety, because any failure will lead to catastrophic events and
3) accurate seepage analysis, because seepage analysis is
challenging, especially for complex problems.

The mathematical relationship of seepage characteristics is
complex, nonlinear, and discontinuous [1]. The complexity
arises from several factors, such as: 1) the governing equation,
which is a second order partial differential equation, 2) the
geometry of the flow domain under a hydraulic structure, and
3) the soil properties and boundary conditions.
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Although an analytical solution, which is generally based
on many approximation assumptions, is suitable for simple
and symmetrical cases, it is impossible to apply to more
complex cases. Therefore, different approximation theories
have been developed for the seepage analysis. However, the
application of these theories is accompanied by non-trivial
errors. This was demonstrated by Shahrbanozadeh et al. [2]
when they compared the performance of the seepage
parameter calculated by an experimental model and different
methods such as Blight’s (1915), Lane’s (1935), Khosla’s
(1936) Iso-Geometric Analysis (IGA) method and Finite
Element Method (FEM). The results showed that the IGA and
FEM provide an excellent estimation of seepage parameters
compared to the experimental observation. Consequently,
numerical methods such as FEM have been used by: [2]-[8]
and [2] to provide a precise seepage analysis for more
complex problems. Accordingly, the FEM is used in this study
to simulate numerous scenarios with different design
parameters. Recently, several codes have been developed
based on FEM, such as Geo-Studio/SEEP/W® [9], which
provide accurate simulation for complex problems with
variable design parameters and boundary conditions.

Although numerical methods provide a precise estimation
for the seepage analysis, these methods cannot explicitly
address the important factors of safety and cost of the
hydraulic structure design in its simulation and design.
Therefore, there is a need for developing a methodology to
precisely analyze seepage related to a concrete gravity dam
and explicitly incorporate safety and cost concepts in the
design of the structure. This could be achieved by using linked
simulation optimization models based on a surrogate model.
One of the widely used method to build a surrogate model is
the Artificial Neural Network (ANN) [10]-[13]. After a
surrogate model is successfully trained by utilizing simulated
data, it can be used as an approximate simulator and to
analyze the seepage problems. Furthermore, the surrogate
model could be linked to the optimization model [14]-[20] by
using Genetic Algorithms (GA) [21], [22], [13] and based on
accurate estimations of seepage solutions to find the optimum
design regarding safety and cost. By using this methodology,
the previously mentioned three most important design aspects
could be incorporated in the optimum design of the concrete
gravity dam. Therefore, the objective of this study is to
develop a suitable surrogate model for seepage analysis and
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link this model to the optimization model to improve the
hydraulic design related to seepage of a concrete gravity dam
in regarding the safety and cost.

II. MATERIAL AND METHODOLOGY

A. Geo- Studio Model /Finite Element Method (FEM)

Geo-Studio software is a FEM approach to solve the
governing (Laplace) seepage equation, which is a complex
partial differential equation describing seepage performance.
However, all equations of FEM are formulated at element
nodes. The equation factors change at each node based on
location, properties and boundary condition of the nodes,
which in turn represents the surrounding elements [9]. The
general finite element transient seepage equation is given by

(1):
[K]+ [M]{H}.t={Q} ()

where [K]= the element characteristic matrix, [M]= the
element mass matrix, {Q}= the element applied flux vector,
{H}= the vector of nodal heads, t =time.

For steady state seepage, the terms {H}, t vanish, then the
finite element equation is expressed as: [K]{H} = {Q}

The Gaussian numerical integration is used in SEEP/W to
evaluate an element characteristic matrix [K]. For example,
the integral form of [K] matrix is given by (2):

[K]= TjA([B]T[C] (B])dA @

where [B] = the gradient matrix, [C] =the element hydraulic
conductivity matrix, 7 = the thickness of an element, A= the
area of the element [23].

B. Characteristics of the Numerical Model

The numerical model shown in Fig. 1 is built to correspond
to many aspects and to provide a generalized applicable
model. For instance, input design variable d1 (depth of sheet
pile on upstream) and d2 (depth of sheet pile on downstream)
are assumed as 1-40 m, and the width of hydraulic structure b
is assumed as 2-120 m. To satisfy an unconfined seepage flow
condition, the underneath soil layer thickness is assumed as
140 m, which is more than the maximum value of b=120 m
and the width of flow domain is 180 m.

Since most permeable soils are weak soils when faced with
tremendous hydraulic pressure, [24] recommended that the
maximum water height for a gravity dam on permeable soil
should not exceed 40 m. Therefore, the range of head is
assumed between (1-40 m). Moreover, [25] recommended to
place the major portion of a dam floor within the upstream
side. The increase of the floor portion (b*) in the upstream
side corroborates the stability of dam, where the upstream
hydrostatic pressure and the weight of the floor
counterbalances the substantial uplift pressure on the
foundation of the dam, as shown in Fig. 6. Homogenous and
isotropic hydraulic conductivity (k) is considered in this study
(k= 5x10" m/s).

Fig. 1 Assumed numerical SEEP/W model

C. Data Generation

Training of the surrogate model is based on simulated data
generated by solving the numerical seepage modeling software
SEEP/W. For each scenario, the independent variables (d;, d,,
b) are randomly generated by using the Latin Hypercube
Sampling method (LHS). LHS is a statistical method to
randomly generate points, with each set of points giving the
local periodic information that facilitates building an efficient
experience of the machine learning about the change of input
data and its effects on the output data [26]. The output data are
the results from numerical seepage modeling for each
scenario, which represent: the 6C (uplift pressure near the
upstream sheet pile), OE (uplift pressure near downstream)
sheet pile and (i) exit gradient at dam toe.

D. ANN Description

A typical simple neural network consists of input layer,
hidden layer(s) and output layer. As shown in Fig. 2 the circles
represent the neurons, lines between layers represent the
weights or connection strength and X and Y vectors represent
input and output data, respectively [27].

ANN tests all input and output data and learn using ANN
learning rules about how the change in the input datasets
impact on the output data set. The objective function of the
ANN training algorithm (Liebenberg-Marquardt) is to
minimize the error between ANN output and the target data
and to present the best fitting weighted factors corresponding
to the variable vector [28]. The mean square error (MSE) is
computed by using (3):

— va=1(yg‘ya)2

MES 3)
where: Y= the target data, Y,= the output data of ANN and N
is number of scenarios [28]. In this study, a supervised
training algorithm is applied using Liebenberg-Marquardt
with backpropagation error. The three input data (d1, dp, b
Jand the three output data (6C, OE, i.), with 508 different
scenarios are processed through the ANN model to train a
surrogate model. Input data pass through the input layer, and
the training operations are processed in the forward direction,
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then the outcomes of the output layer are compared with target
values. The errors between ANN output and target values are
distributed back on the weight factors to modify its values.
Errors in back propagation are repeated numerous times until
the convergence is achieved between output data and target
data [27].

[nput Layer

Hidden Layer Output Layer

X3
Vi

Fig. 2 Typical ANN model

The example of the mathematical expression of ANN which
has: one hidden layer (h), (s) hidden neurons, (i) input
variables, (m) output variables and (p) input-output datasets, is
given as (4):

Ypm = fl [Z;'nzlwr?lj f2 {Zlewshi xpi + bs } + bm](4)

where Y, ,= is the output of ANN, x,,;= the input variables,

%= connection weight factors between j node of hidden

layer and k node of output layer, WL-S-‘ =the connection
weighted factors of for (i) input variable and (j) node of
hidden layer.

In this research, the developed ANN model has nine hidden
neurons in one layer, as shown in Fig. 5. Additionally, the
Tansig transfer function (Hyperbolic tangent sigmoid a =
2/(1+exp(-2*n))-1) is used between the input layer and hidden
layer, while purelin (a= purelin(n)) is used between the hidden
layer and output layer, as shown in Figs. 3 and 4.

a = tansig{n)

Fig. 3 Tan -sigmoid transfer function

7

a = purclin(n)

Fig. 4 Purelin transfer function

The simulated data are divided into three categories: 1) 55%
for training data from which the ANN learning process is
executed, 2) 20% for validation to measure how much the
ANN results are convergent with target data and by which the
ANN performance could be improved and, 3) 25% for testing
data independently after the training is finished. Moreover, the
testing phase prevents overfitting learning and ensures ANN
generalization with the detached data. However, the testing
process is generally test the ANN performance.

Hidden

ftl

Fig. 5 Architecture of ANN

Output

E. Optimization Model

The optimization model was formulated to find a safe and
minimum cost seepage design related to a concrete gravity
dam that impounds a significant amount of water. The main
optimization components are summarized as follows:

1. Decision (Or Design) Vector

Design vector X={x,X; ,X3, X4 } where:
e  x;=(d) =upstream sheet pile depth (m)
e X,=(d;) =downstream sheet pile length (m)
e x3= (b) the width of hydraulic structure(m)
e x4=(b¥) the portion of the floor at upstream (m)

2. Objective Function
The objective function is defined by (5):

Minimize: f(X) :C1V|+C2V2 +C3V3 (5)

where: f(x) = the objective function, which represents the
construction cost seepage control elements of the concrete
gravity dam. The objective function incorporates the decision
variables and design parameters, where V,, V, are the volume
(m?) of the upstream and downstream sheet pile, respectively.
V3 = Volume of dam floor (m?)

C,, C,; are the construction cost of upstream and
downstream sheet piles per unit volume, respectively, which
can be expressed by (6), (7) as a function to depth (x;, x»).

C1=0.9x,*+60 x;+120 ©)
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C,=0.9x,"+60 x,+120 (7)

C;= construction cost of floor per unit volume (assumed as
$400 for this illustrative study)

3. Constraints

Constraints are physical conditions or design requirements,
and the optimal design must satisfy these conditions. The
design of a concrete gravity dam has many requirements and
conditions that are formulated as constraints in an
optimization model, as shown by:

a) Flotation Constraint

The standard stabilization requirements of hydraulic
structures against uplift pressure was provided by the U.S.
Army Corps of Engineers [29]. They recommended a
minimum safety factor for uplift pressure (flotation forces) of
a hydraulic structure under normal operating conditions as 1.5,
while, for construction and maintenance conditions with zero
water level, the minimum safety factor for uplift pressure is
1.3. Therefore, the upstream and downstream uplift pressure
must be less than the unite weight of the concrete floor (t;)
plus hydrostatic pressure, as shown in Fig. 6.

b) Exit Gradient Constraint

The exit gradient value is one of the most crucial seepage
characteristics to ensure design safety. Physically, the exit
gradient can be represented by the head decrease at the last
square of the stream-equipotential grid near ground surface
divided by the length of this square (i.=Ah/L). The safety
factor is computed by (8):

FS= (8)
le
where i, = —V;‘:Vh ori, = —((GlSJ::))

According to [1], [30], the minimum safety factor for the
exit gradient is 5, as the soil properties considered are for
dense sand (Mixed grained sand, yg, =21.2 kN/m*)[31].

¢) Sliding Constraint

Dam resistance must be sufficient against sliding and the
shear forces elaborated along the contacted surface between
the dam and the soil foundation or any horizontal joint within
the dam body. To examine the safety of a structure against
sliding, two factors must be estimated: the cohesion (C) factor
and internal friction resistance factor (f= tand), where ¢ is an
internal soil friction angle. However, [24] recommended for
normal load conditions, the sliding safety factor (Ks) is 1.5,
which can be determined by (9):

__ YVtan@+cB
==

ks )
where, Ks = sliding factor of safety, »W =resultant of
horizontal forces acting on dam, ) V= resultant of all vertical
forces, C =cohesion resistance soil properties, B =width of
structures, ¢ =internal friction angle, the values of f=0.7 and
C=20 kPa are assumed according to [24].

d) Over Turning Constraint

The overturning stability is another important concept in
dam design. According to the US Army Corps Engineers [32]
recommendation, the resultant force location for normal
conditions must be within the middle third of the foundation
width. This condition corroborates a full compression zone
under the dam foundation and prevents the probability of a
tension zone. Resultant location (e) = ;M /Y.V where: Y M = is
the resultant of all Moment around toe, ).V = is the resultant
of Vertical forces acting on the dam, On the other hand, Lj
[24] recommended the safety factor design against overturning
(Fovr) be not less than 1.5. This value is given as:

Fovtszas/ Mact

where; M= passive moments which stabilize the dam (about
toe), M,.~ active moments which weaken the stability of the
dam (about toe).

e) Other Hydraulic Constraints

Lj [24] mentioned that the minimum distance between two
sheet piles is not less than the summation of sheet pile lengths.
Moreover, the range of sheet pile length is less than 1.5 times
of the total head.

upstfeam water
weight

¥

SANAAY

weight of

upstream w. r concretp da;

pressure = 7

! s e
R

uplift pressure
Fig. 6 Load and forces diagram on dam

F. Genetic Algorithm (GA)

GA is an effective global optimization algorithm. GA is
used when the objective function or constraints expression is
highly nonlinear, stochastic and has undefined derivatives,
such as the ANN code-function [33]. Therefore, ANN
function cannot be used with traditional optimization
algorithms. GA invokes the ANN function an enormous
number of times to be able to compare the selected solution
with fitness value and the constraints. These processes
continue until best fitness function is achieved. GA-ANN
linking is processed with the objective function or/and
constraints.
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TABLEI
ANN REGRESSION CORRELATION COEFFICIENT (R) AND MEAN SQUARE
ERROR (MSE)
Samples MSE (mean .
R regression
No. square error)
Training 279 2.02061e-3 0.995348
Validation 102 1.89261¢-3 0.995285
Testing 127 2.19903¢-3 0.994673

[II. RESULT AND DISCUSSION

A. ANN Results

The trained ANN provided an excellent regression
correlation coefficient, and mean square error (MSE) is also
small, as shown in Fig. 7 and Table I. The ANN responses
were saved as a function code in MATLAB, and used as a
simulation model (surrogate model) to determine seepage
parameter. The surrogate model was linked to an optimization
model to incorporate cost, safety concepts, and accurate
seepage analysis related to the design of a concrete dam.

Training: R=0.99535 Validation: R=0.99529
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Fig. 7 ANN learning correlation regression coefficient learning
validation test

B. Simulation—Optimization Results

The simulation—optimization model was implemented with
40 different heads (h) ranging from (1-40 m) to find design

® e e e |Jssheet pile (d1)

variables and design parameters with the minimum cost
objective function. Design requirement of the concrete gravity
dam and all constraints were satisfied for each specified
scenario.

The results showed that the dominant factor of optimization
was the exit gradient safety factor, which reached the
maximum value (0.23) to satisfy at least five times more
safety than critical exit gradient (1.15), as shown in Fig. 10.
This explains that the exit gradient safety factor has an
extreme impact on the optimization process and in turn the
cost of the structure. Moreover, the width of the concrete dam
in most cases yields to the minimum constraint limits, because
the minimum length of b should be no less than the sum of the
two sheet piles’ length. That is logical, as the upstream and
downstream thicknesses (t;, t;) of the floor are extremely
expensive, where the upstream and downstream thickness
reaches to 30 and 20 m, respectively, as shown in Figs. 8 and
9.

When the upstream head reaches 35 m or more, the increase
of first sheet pile depth does not play as significant a role in
reducing the exit gradient and uplift pressure at the
downstream sheet pile as does the downstream sheet pile.
Additionally, the construction cost of the cut-off is a function
of depth and increases dramatically with the increase in depth.
Accordingly, the optimization process decreases the length of
upstream sheet pile, and increases the width of the dam (b)
and the downstream sheet pile to reduce the uplift pressure at
OE. In turn, it reduces the exit gradient; consequently, the cost
is less, as shown in Figs. 8 and 9.

Additionally, when the optimization results were evaluated
by utilizing the SEEP/W and Khosla’s theory based solutions,
a convergence with respect to uplift pressure values and exit
gradient values were demonstrated, as shown in Figs. 10 and
11. Nonetheless, there were a few exit gradient values that had
a slight deviation and did not satisfy the safety factor up to
five times the critical exit gradient, as shown in Fig. 10. This
could be attributed to the weak ANN learning for the variable
located beyond the assumed ranges which is used for training.
In addition, it was due to some assumptions utilized in
Khosla’s theory regarding the sheet piles’ correction interface,
and for the exit gradient formula.

o s sheet pile (d2)

50

40

E 3o
-
£
B

£ 20
-

10

0

0 5 10 15 20 25 30 35 40 45
Head (m)

Fig. 8 Optimum solution for upstream (Us) and downstream (Ds) sheet pile lengths
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Fig. 10 Comparison of exit gradient result using different methods
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IV. CONCLUSION

In this study, two objectives were achieved. An illustrative
design study was conducted, and the ANN model was trained
with 508 simulated data by using the SEEP/W numerical
modeling. The ANN model included three input variables,
three output variable and one hidden layer, which

21 25 29 33 37
Head (m) i

pressure using different methods

encompassed nine hidden neurons. The transformation
function used with the hidden layer was a Transig function
and the purelin with output layer. The ANN model was
successfully trained on the simulated data with excellent
regression and mean square errors. The ANN was used as a
surrogate model to determine the most crucial seepage
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characteristics (6C, 0E, i.) as an approximate simulator in the
optimization based design model.

The developed surrogate model was incorporated in the
optimization model to incorporate cost, safety and accurate
seepage analysis in the design of a concrete gravity dam. The
simulation-optimization model was solved for different values
of head to find optimum design variables for each case, such
as (d;, d, b, b*, t;, tp, .... etc.). These variables satisfy safe
design  against  piping, overturning, and sliding,
simultaneously, and at minimum cost. The results show that
the safety factor of exit gradient plays a significant role in
stopping criteria of optimization algorithm (GA). However,
the simulation-optimization results were evaluated by
comparing the solutions with those obtained by using the
Khosla’s theory and SEEP/W model. These comparisons show
convergence between SEEP/W and optimization-simulation
results and good agreement with the Khosla theory. Therefore,
the proposed methodology of utilizing the linked simulation
optimization model incorporating trained ANN based
surrogate models is potentially applicable for minimum cost
and safe-optimal design of substructure related seepage design
of concrete gravity dams.
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