
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

43

 

 

 
Abstract—Change requirement traceability in object oriented 

software systems is one of the challenging areas in research. We 
know that the traces between links of different artifacts are to be 
automated or semi-automated in the software development life cycle 
(SDLC). The aim of this paper is discussing and implementing 
aspects of dynamically linking the artifacts such as requirements, 
high level design, code and test cases through the Extensible Markup 
Language (XML) or by dynamically generating Object Oriented 
(OO) metrics. Also, non-functional requirements (NFR) aspects such 
as stability, completeness, clarity, validity, feasibility and precision 
are discussed. We discuss this as a Fifth Taxonomy, which is a 
system vulnerability concern. 

 
Keywords—Artifacts, NFRs, OO metrics, SDLC, XML. 

I. INTRODUCTION 

HANGE requirement engineering is a challenging task to 
maintain SDLC. The standard definition of traceability, as 

it is a relationship between two artifacts. In spite of two types 
of traceability, such as upstream and downstream traceability, 
starting from vision documents such as features to the 
software requirement and to test cases and test cases to 
software requirements were realized as shown in Fig.1. 
 

 

Fig.1 A model of upstream and downstream traceability 
 

According to Leffingwell and Widrig [1], there are 

 
Sunil Tumkur Dakshinamurthy is a Ph.D candidate at Sri Siddhartha 

Institue of Technology, Karnatka, 572105, Tumkur, India (phone: +91 816 
2200999, fax:+91 816 2200270, e-mail: suniltd@ ssit.edu.in,). 

Mamootil Zachariah Kurian is with the Department of Electronics, Sri 
Siddhartha Institute of Technology, Tumkur, Karnataka, India (e-mail: 
kurianmz@ssit.edu.in). 

traceability matrices to trace the needs of the client from the 
requirements documents to the test cases, known as static 
traceability matrices. For high level of abstraction, the 
traceability matrix does not give dynamic links from the client 
needs to test cases. This paper discusses the implementation of 
the dynamic traceability matrix using XML to dynamically 
vary the high-level design changes with respect to change in 
user needs or client needs. Agile methodology is implemented 
for the dynamic traceability matrix which traces between the 
different forms of requirements that are the requirement 
specifications, design, implementation, and test cases. Also, 
this paper discusses the impact analysis of non-functional 
requirements such as stability, completeness, clarity, validity, 
feasibility and precision. 

II. DEFINITIONS 

In object oriented systems we can consider features like 
object, classes, encapsulation, polymorphism and inheritance. 
These are explained in brief along with the concepts of 
requirement, a non-functional requirement, XML, Altova 
XMLSpy, and XML Schemas. 

A. Object 

Objects can be concrete such as a file system or conceptual 
such as scheduling policy in a multiprocessor operating 
system. Objects serve the purpose of understanding the real 
world and decomposing a problem into objects that depend on 
the nature of problem. An object can be an instance of a class.  

B. Classes 

The object with the same data structure (attributes) and 
behavior (operations) are grouped into a class. The following 
points on classes can be noted: 
1) A Class is a blueprint that unites data and properties, 
2) A Class is an abstraction of the real-world entities with 

similar operations, 
3) A Class is an implementation of ADTs and 
4) A Class identifies a set of similar objects. 

C. Encapsulation 

Encapsulation is nothing but data hiding. Here, it keeps data 
and the code safe from external interference and misuse. 

D. Polymorphism 

In the real world, the meaning of an operation varies with 
context and the same operation may behave differently in 
different situations. Polymorphism is achieved in many ways 
through function overloading, operator overloading and 
dynamic binding. 

Impact Analysis Based on Change Requirement 
Traceability in Object Oriented Software Systems 

Sunil Tumkur Dakshinamurthy, Mamootil Zachariah Kurian 

C 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

44

 

 

E. Inheritance 

Inheritance allows new classes to be built from older and 
less specialized classes instead of being rewritten from 
scratch. In the real world, an object is described using 
inheritance. It derives general properties of an object by 
tracing an inheritance tree from one specific instance, upwards 
towards the primitive concepts at the root. The technique of 
building new classes from the existing classes is called 
inheritance. 

F. Requirement 

Requirement is derived directly from user depending on 
user needs. It may be a formally imposed document such as 
contract, standard or specification. 

G. Non-Functional Requirement 

A non-functional document can be viewed, it emphasizes on 
“How” an actual system “will do” rather than “what” the 
system “will do”. From these definitions, we conclude that 
NFRs have features that define which, what kind of, or how 
many. 

H. Extensible Markup Language (XML) 

XML simplifies sharing, transport, changes of platform and 
availability of data. XML is not dependent on software and 
hardware for sharing, storing and transporting of data. XML 
gives importance to what data does. Most XML works as 
expected even if data is added or removed. 

İ. Altova XMLSpy Interface 

The XMLSpy interface is categorized into three vertical 
areas. These three areas contain, from left to right; 1. Project 
and information window; 2. Main and output window; and 3. 
Entry helper window. 

J. XML Schema 

An XML Schema describes the structure of an XML 
document. XML schema is to check whether it conforms to 
the requirements specified in the schema. 

III. LITERATURE SURVEY 

First, different traceability techniques study were made by 
Bashir et al. [2] on origin-requirement traceability, 
requirement-requirement traceability, requirements-other 
artifacts traceability, other artifacts-other artifacts traceability. 
Chaumun et al. [3] discusses about the (OO) system to 
compute the impact of changes made to classes of the system, 
as this approach discusses different (OO) metrics for the high 
level design. Glinz [4] proposes the conceptual discrepancies 
especially characteristics or properties, attribute, quality, 
constraint and performance of requirement management. Non-
functional traceability analysis is not discussed in detail with 
reference to high level design. Kang et al. [5] develop a 
representation formally that represents traceability between 
features and requirements at platform level. Rempel et al. [6] 
analyzed the quality and sustainability of a projects 
traceability strategy, however non-functional requirement 
impact on change requirements are loosely coupled in the 

project which has been analyzed. Ali et al. [7] approach is to 
have informational retrieval between text documentation and 
source code. Here, vector space model export adding 
knowledge to the traceability links extracted from CVS 
change logs. There is no statistical significance in the 
precision of the traceability links for high level design. Chung 
et al. [8] reminds about the non-functional framework in 
action, acquiring domain knowledge, identifying NFRs, 
dealing with priorities, recovering design rational, and 
evaluating the impact of decision and correlations. Also, 
discusses the types of NFRs, accuracy requirement, security 
requirement, performance requirements. Lastly, 
operationalization methods were pointed out. Khan et al. [9] 
realized the model of object oriented design for analyzability 
for NFRs. Somerville [10] classifies NFRs schema. Here, non-
functional requirements have been addressed in international 
standards as part of the software and systems quality initiative. 
Both the earlier standard and its replacement include non-
functional requirements, definitions and how to measure them 
as part of a system endeavor. Sunil et al. [11] provides a non-
functional traceability analysis for change requirements in the 
software specification. 

A. Identification and Organization of Non-Functional 
Requirements 

De Weck et al. [12] discuss the relationship between non-
functional requirements and what they term ilities. According 
to him, the complexity of modern systems and the scale of 
their deployments and the important side effects of their 
ubiquitous presence in the modern era provide an excellent 
discussion of the history associated with the expansion of the 
four classic systems ilities – Safety, quality, usability, and 
reliability. 

B. Models for Non-Functional Requirements 

i. Bohem’s Software Quality Initiative 
ii. Rome Air Development Center Quality Model 
iii. Cavano and McCall’s Model 
iv. McCall’s and Masumoto’s Factor Model Tree 

C. Introduction to Stability, Completeness, Clarity, Validity, 
Feasibility, Precision 

Notational Taxonomy of NFRs for systems considers 27 
NFRs as standards. The framework for the NFR Taxonomy 
has four concerns 1) System Design Concern, 2) System 
Adaptation Concern, 3) System Viability Concerns, and 4) 
System Sustainment Concern. However, here we are 
concerned about 5) System Vulnerability Concern, the fifth in 
the taxonomy of NFRs since stability, completeness, clarity, 
validity, and precision also has an impact on the requirement 
changes. 

D. Measurement Scale for Traceability 

We can construct traceability based on construct according 
to Adams [13], measurement attributes and an appropriate 
scale type. Here to evaluate traceability, it is necessary to 
answer the questions (yes or no) and the quality of the effort 
(how well) to provide traceability in the nine areas such as 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

45

 

 

IEEE std 1220 section 5.1.13, IEEE std 1220 section 5.2.1.1, 
5.2.1.2, IEEE std 1220 section 5.3.1.1 (Detailed design), IEEE 
std 1220 section 6.3.1 (Functional analysis), IEEE std 1220 
section 6.5.1, 6.5.18 (Design Synthesis) and IEEE std 1220 
section 6.6.2.1, 6.6.8 (Design verification). The generalized 
equation for system traceability is given as: 

 

1

n

sys i
i

T T


                              (1) 

 
The expanded equation for system traceability: 
 

Tsys=T1 + T2 + T3 + T4 + T5 + T6 + T7+T8+T9 
 
Measurable characteristics – 1) Tcd – Conceptual design, 2) 

(Tpd1, Tpd2) – preliminary construct, 3) Tdd – detailed 
design, 4) Tfa – functional analysis, 5) (Ts1, Ts2) – Design 
synthesis, 6) (Tv1, Tv2 ) – Verification. The summation of the 
constructs (nine) will be the measure of the degree of 
traceability in a system design endeavor in Table I. 
 

TABLE I 
TRACEABILITY MEASUREMENT QUESTION LIKERT SCALE 

Sl. No. Measure Descriptor Measurement Criterion 

1 0.0 None No objective quality evidence is present 

2 0.5 Limited 
Limited objective quality evidence is 

present 

3 1.0 Nominal 
Nominal objective quality evidence is 

present 

4 1.5 Wide 
Wide objective quality evidence is 

present 

5 2.0 Extensive 
Extensive objective quality evidence is 

present 

 
We should be able to measure non-functional attribute and 

also essential in system design endeavors. The four level 
construct for traceability is presented in Table II. 

 
TABLE II 

FOUR-LEVEL STRUCTURAL MAP FOR MEASURING TRACEABILITY 

Sl.No Level Role 

1 Concern System design 

2 Attribute Traceability 

3 Metric System traceability 

4 
Measurable 

characteristic 

Traceability of (1) conceptual design(Tcd), 
(2)preliminary design(Tpd1,Tpd2), (3) detailed 
design (Tdd), (4) functional analysis(Tfa), (5) 

design synthesis (Ts1,Ts2), and (6) verification 
(Tv1,Tv2) 

IV. XML PARSER FOR HIGH LEVEL TRANSLATION 

A Behavior tree from Wen et al. [14] is a formal, tree-like 
graphical form that represents behavior of individual. Here a 
traceable relation between the natural representation and its 
formal specification is concerned, for example, translation is 
carried out on a sentence-by-sentence or word-by-word basis.  

A. Translation of Requirements 

The first step is to translate the requirements in the software 
engineering design process so that step cannot be fully 
automated as the requirements are loosely coupled to the 

design, especially high-level design. Hence, markup language 
provides the links between the requirements which are in 
sequence and high-level design which are in synchronization.  

B. Requirement Integration 

 Functional requirement is translated into one or more 
corresponding requirements behavior tree(s) RBT. 

 We can systematically and incrementally construct a 
design behavior tree (DBT) that will satisfy all its 
requirements by integrating the requirements. 

C. Traceability in Software Engineering 

 The first step is to translate functional requirements in 
RBT the other step is linking the RBT to design flow 
which may be fully automated or partially automated 
using XML Parsers. 

 Before we create links through XML parsers, first we 
have to generate the edit behavior tree (EBT) which has 
the following steps: 

 Start comparison with root node. Because root nodes exist 
in both the trees (old tree and new tree). 

 Mapping is done to the child node set in both the trees i.e., 
old tree and in the new tree. 

 In the old tree, the sub tree under the old node will be 
generated in the EBT as old. 

 If a node exists in the new tree’s child node set but not in 
the old tree’s child node set, this node will be created in 
the EBT as a new node.  

 In the new tree, the sub tree under the new node will be 
generated in the EBT as new. 

 If a node exists in the child node sets of both trees, it will 
be generated in the EBT as an unchanged node. 

 An unchanged node will be a new comparison node and 
the steps will go back recursively. 

D. Transformation Rules for Change Requirements 

There are different transformation rules “NEW to “NEW”, 
“OLD” to “OLD”, “UNCHANGED” to “UNCHANGED”, 
“NEW MERGED” to “NEW EQUALS”. 

V. RESULTS 

The attributes of supplementary requirements or NFRs fifth 
taxonomy (System Vulnerability Concern) are stability, 
completeness, clarity, validity and precision, which also has an 
impact on the requirement changes. 

A. Stability 

Stability is the probability that the feature will not change 
during the project. Another attribute that is applicable to 
supplementary requirements is stability shape. This attribute 
describes how customers’ stability changes with the 
fulfillment of required metrics. Stability shape may have the 
following values: 

Sharp. The metrics used in the requirement shall be fulfilled 
exactly as described. Imagine a real-time system for sorting 
packages. Packages are moving on the conveyor belt. The 
system scans an address label on the package and, based on 
the destination, instructs the diverter to divert to an 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

46

 

 

appropriate belt. The requirement is that the system shall 
calculate the diverter’s proper action within one second. If it 
fails, the package moves past the diverter. In this case the 
response time shall be less than one second; otherwise, the 
whole system will not work. However, it does not matter if 
this is done in 0.99 seconds or 0.5 seconds. There is no 
additional value in having a shorter response time. Fig. 2 
shows the stability shape for this requirement. For all values 
less than one second the stability is one, and for all values 
greater than one second the stability is zero. 

 

 

Fig. 2 Stability shape 

B. Completeness 

Completeness is the quality or state of being without 
restriction, exception, or qualification or it is nothing but 
perfectness. Fullness of the requirement changes satisfies the 
completeness of the quality of the project. Fig. 3 shows the 
characteristics of completeness of requirements. 
 CMP=(NARS or NORS) – NIR 
 CMP=Completeness of Requirements 

 NARS or NORS = Number Of Actual Requirements or 
Number of Original Requirements 

 NIR= Number of Incomplete Requirements 
There are two cases or possibilities of Completeness of 

requirements: 
1) Nearing to completeness of the requirements 
2) Away from the completeness of the requirements 

First Case. For example, if there are 10 Numbers of actual 
requirements or 10 Numbers of original requirements and 0 
Number of incomplete requirements, we say that the 
requirement document is complete. If we take another 
example, 10 Numbers of original requirements and 10 
Numbers of incomplete requirements then we say that the 
requirements are further away from completeness. If we take 
another example, 10 Numbers of the original requirements and 
5 Numbers of incomplete requirement, then we can say that 
the requirements are nearing to the original requirements. 

Second Case. For example, there are 0 Number of original 
requirements and 10 Numbers of incomplete requirements; we 
say that the requirement document is incomplete. If we take 
another example, 0 Number of the original requirements and 5 
Numbers of incomplete requirements, then we say that the 
requirements are away from the completeness or total non-
incomplete requirements. If we take another example, 0 
Number of original requirements and 10 Numbers of 
incomplete requirements, then we say that the requirements is 
further away from the completeness or to the total non- 
incomplete requirements. 

 

 

Fig. 3 Characteristics of completeness of requirements 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:1, 2017

47

 

 

C. Clarity 

Clarity is the quality of being easily understood meaning 
there is no unclear requirements and the requirements are 
clearly understood. 
 CL=NARS-NIR-UCLR 
 CL=Clarity of the system 
 NARS=Number or Actual Requirements or Number of 

Original Requirements 
 NIR= Number of Incomplete Requirements in the system 
 UCLR= Number of Unclear Requirements 

D. Validity 

Validity is the executed with the proper legal authority and 
formalities of the requirements. 

E. Feasibility 

Feasibility means capable of being used or dealt with 
successfully the requirements. If the development team does 
not implement then there is no value for requirements. There 
are many constraints for feasibility, Budget constraints, 
Hardware or software constraints, Staff head count, 
Professional experience, Schedule constraints. 
 FR=IFR-UCLR 
 FR=Feasibility requirements of the system 
 UCLR=Number of Unclear Requirements 

F. Precision 

Precision means the quality of being precise: Exactness or 
accuracy of the requirements. Fig. 4 shows the precision of 
change requirements. 
 PR=CMP+CL+FR 
 PR=Precision requirements of the system 
 CMP=Completeness of the system 
 CL=Clarity of the system 
 FR=Feasibility of the system 
 

 

Fig. 4 Characteristics of Precision of Software Systems 

VI. CONCLUSION 

Here, in this work we conclude that high level design 
changes in software systems can be automated or semi-
automated by dynamically linking the artifacts by using XML 
parsers that can create links between the requirement and 
high-level design; also, analyzed with the example of the 
impact of the non-function requirements such as stability, 
completeness, clarity, validity, and precision. It can be 
concluded that this fifth taxonomy for NFRs can be included 

as it is System Vulnerability Concern. 

ACKNOWLEDGMENT 

We would like to thank Peter Zielczynski of IBM Requisite 
Pro given us the permission to reference “Flight Booking 
System” Requirements and also Kevin MacG. Adams “Topics 
in Safety, Risk, Reliability and Quality” in “Non-Functional 
Requirements in Systems Analysis and Design” Springer and 
Altova XML Spy software (2016) for dynamically linking the 
artifacts of requirements to High Level design for taking as 
reference in this paper. 

REFERENCES 
[1] Dean Leffingwell and D. Widrig “The Role Requirements Traceability 

in System Development”, Rational Software 2002. 
[2] Mohamamd Farahan Bashir, Muhammad Abdul Qadir, “Traceability 

Techniques: A Case Study”, IEEE 2006, pp.265-268. 
[3] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller and Francois 

Lustman, “A Change Impact Model for Changeability Assessment in 
object-Oriented Software System”, NSERC and NSC, Canada 2000. 

[4] Martin Glinz, “On Non-Functional Requirements”, Proceedings of the 
15th IEEE International Requirements Engineering Conference, Delhi, 
India,2007. 

[5] S. Kang, “A Formal Requirementation of Platform Feature-to-
Requirement Traceability for Software Product Line Development,” 
Computer Software and Applications Conference (COMPSAC),2014, 
IEEE 38th Annual Conference. 

[6] P. Rempel, “An empirical study on project specific traceability 
strategies” IEEE International Conference, Requirements Engineering 
Conference (RE), 2013. 

[7] N. Ali, “Trust-Based Requirements Traceability” IEEE 19 th 
International Conference on Program Comphrension (ICPC). 

[8] Lawrence Chung, Brian A. Nixon, Eric Yu John Mylopoulos – Non-
Functional Requirements in Software Engineering, Springer Scinece + 
Business Medica, LLC. 

[9] Suhel Ahmad Khan, Raees Ahmad Khan, “Analyzability Quantification 
Model of Object Oriented Design,” ScienceDirect, Procedia Technology 
4(2012)536-542, doi:10.1016/j.protcy.2012.05.085. 

[10] I. Somerville. (2007) Software engineering (8th ed.). Boston: Pearson 
education. 

[11] T D Sunil, M Z Kurian, “A Methodology to Evaluate Object-Oriented 
Software Systems Using Change Requirement Traceability Based on 
Impact Analysis”, International Journal of Software Engineering & 
Application (IJSEA), Vol.5, No.3, May 2014. 

[12] De. Weck, O.L Roos, D., & Magee, C.L. (2011) Engineering systems: 
Meeting human need in a complex technological work, Cambridge: MIT 
Press. 

[13] Kevin MacG. Adams “Topics in Safety, Risk, Reliability and Quality”, 
Non-functional Requirements in Systems Analysis and Design, Springer 
International Publishing Switzerland 2015. 

[14] Lian. Wen, R Geoff. Dromey “From Requirements Change to Design 
Change: A Formal Path”, World Appl.Sci.J.28(10):1366-1374,2013. 


