
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

665

Implicit Eulerian Fluid-Structure Interaction Method
for the Modeling of Highly Deformable Elastic

Membranes
Aymen Laadhari, Gábor Székely

Abstract—This paper is concerned with the development of a
fully implicit and purely Eulerian fluid-structure interaction method
tailored for the modeling of the large deformations of elastic
membranes in a surrounding Newtonian fluid. We consider a
simplified model for the mechanical properties of the membrane, in
which the surface strain energy depends on the membrane stretching.
The fully Eulerian description is based on the advection of a modified
surface tension tensor, and the deformations of the membrane are
tracked using a level set strategy. The resulting nonlinear problem
is solved by a Newton-Raphson method, featuring a quadratic
convergence behavior. A monolithic solver is implemented, and we
report several numerical experiments aimed at model validation and
illustrating the accuracy of the presented method. We show that
stability is maintained for significantly larger time steps.

Keywords—Fluid-membrane interaction, stretching, Eulerian,
finite element method, Newton, implicit.

I. INTRODUCTION

THIS computational framework is concerned with the

development and numerical implementation of a fully

Eulerian methodology suitable for the modeling of the

large deformations of elastic membranes in a surrounding

Newtonian fluid. Such thin elastic structures, for which the

membrane thickness is vanishingly small compared to the

dimensions of the structure, are abundant in many biomedical

and industrial applications, e.g. heart valves, capsules or red

blood cells.

Heart valves are composed of thin, stiff but compliant

flaps of tissue (called leaflets) attached to the heart wall.

The leaflets open and close in a synchronised fashion to

regulate blood flow and induce the periodic circulation of

blood between the heart and the entire body. For the aortic

valve, the leaflets thickness is about 0.5 mm, while the aorta

diameter at the sinotubular junction is about 26 mm [5], [10],

[17], [18]. Similarly, phospholipid membranes and capsules

are thin elastic structures highly deformable that are found

in nature (red blood cells, bacteria, etc.) and also they

are widely used in biomedical, pharmaceutical and cosmetic

applications. In particular, the membrane thickness of red

blood cells is approximately about 5 nm, while the typical

cell dimension is about 10 μm [32]. Red blood cells can
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Fig. 1 A sketch for the elastic membrane in material (reference) and spatial
(actual) configurations, and forward characteristics in Eulerian elasticity

withstand hydrodynamic stresses in the microcirculation and

large arteries, due to their mechanical properties [3].

To model the dynamics of such thin membranes under

the influence of viscous forces induced by the surrounding

fluid, several models and approaches have been developed

in the literature, see e.g. [2], [5], [10], [11], [15], [22],

[31]. Methodologies modeling the membrane mechanics can

be roughly sorted according to the framework used to

describe the structural problem: Lagrangian or Eulerian. Very

briefly, Lagrangian methods rely on an explicit description

of the motion and deformations of the elastic structure [11],

[13], [22], [27], [29]. A mesh fits then the shape during

the dynamics. Although the Lagrangian description of the

motion and strain measures appears to be rather obvious,

many numerical complexities can arise when studying large

structural deformations. Eulerian approaches represent a

promising alternative to readily handle contact issues and

model large deformations, see [7], [8], [10], [15], [16], [19],

[21], [33].

Regarding the numerical approximations, fully implicit,

with respect to time, and monolithic approaches are barely

used in the literature. The elasticity problem and the fluid

problem are usually solved in a segregated manner, while the

elastic force appears as a right hand side in the momentum

equation. In general, the fully explicit decoupling strategies

can lead to severe stability conditions when the problem

is highly nonlinear, while the implicit time discretization

methods help to overcome stability issues related to the time

step restriction [14].

This mathematical framework consists in studying the

mechanical interaction between the highly deformable elastic

membrane and the surrounding fluid. We opt for describing
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the phenomenon by a purely Eulerian description of motion,

where the membrane is tracked using a level set approach. This

setting allows a unified representation and a unique solver for

the mechanics of the membrane and the fluid. In addition,

a fully implicit time integration scheme is described and the

derived system is solved using the Newton-Raphson method.

The paper is organized as follows: In Section II,

we introduce some required notations and provide

the mathematical formulation of the coupled nonlinear

problem. Section III presents the semidiscrete finite element

approximation and describes the tangent problem. A set

of numerical examples showing the main features and the

accuracy of the methodology are described in Section IV.

The conclusions and forthcoming extensions are summarized

in Section V. Details about the linearization procedure are

provided in Appendix A.

II. MATHEMATICAL SETTING

A. Notations

Let the symbols ⊗ and : denote the tensorial product and

the two times contracted product between tensors, respectively.

Let n denote the outward unit normal vector to a given surface

Γ. We define the projector tensor πΓ ≡ I−n⊗n, where I is

the identity tensor. Let ψ and v be a scalar and a vector field,

respectively. The surface gradient and the surface divergence

operators are given by:

∇sψ = πΓ ∇ψ and divs v = tr(∇sv) = πΓ : ∇v,

We denote the symmetric part of a given tensor τ by

sym(τ ) = τ + τT . The membrane and its surrounding space

are embedded in a larger computational domain denoted by Λ.

We denote by ν the outward unit normal vector to the external

boundary ∂Λ. In what follows, we present the mathematical

setting for the three-dimensional problem.

B. Eulerian Description of the Membrane Mechanics

Let T > 0 represent the period of the computations. For

any time t ∈ (0, T ), let Ω(t) design the interior domain

enclosed by an elastic membrane Γ, and having a Lipschitz

continuous boundary Γ(t) = ∂Ω(t), see Fig. 1. We assume

that the membrane thickness is vanishingly small, so that the

mechanical properties are solely given by the planar stretches.

For all t ∈ (0, T ), we assume that Γ(t)∩ ∂Λ = ∅. From now,

the explicit dependence of Ω and Γ from t will be understood.

At the initial time t = 0, the interior medium and the

membrane coincide with the reference configuration, denoted

by Ω0 and Γ0, respectively. For t > 0, a material point

that was positioned at ξ in the reference configuration, is

located at x = χ(ξ, t) in the current configuration, where

χ : Ω0 × (0, T ) → Ω × (0, T ) is the smooth one-to-one

deformation map.

The inverse map is ξ : Ω × (0, T ) → Ω0 × (0, T ). By

d = x − ξ we denote the displacements and its material

derivative gives the velocity field u ≡ Dd

Dt
. The tensor rate

of deformation is D(u) = sym(∇u)/2, where the gradient

is taken with respect to spatial coordinates and the superscript

T denotes the usual transpose operation. Let ∇ξ and ∇ be

the material gradient and the gradient with respect to spatial

coordinates, respectively. The identity expressing the forward

map in terms of the inverse map reads χ−1 (χ(ξ, t)) = ξ.

That enables to express the deformation gradient tensor F =
∇ξχ = ∇ξ−1 in both Lagrangian and Eulerian frameworks,

respectively.

For an hyperelastic body, the hyperelastic strain energy

potential expresses in terms of F, typically treated in a

Lagrangian formulation. However, an Eulerian description

requires to formulate the solid mechanics in the same

actual frame of reference as the fluid problem. When the

thickness is vanishingly small, the membrane theory should be

reformulated, yielding the Gurtin-Murdoch surface elasticity

theory [12], [22]. To keep track of the position of material

points on the membrane, we introduce the outward pointing

normals on the membrane Nξ and n in the reference and actual

configurations, respectively. From now, the surface projector

on both configurations are denoted by

πΓ = I − n⊗ n and πξ = I −Nξ ⊗Nξ.

They project any material points on Γ0 and Γ(t), respectively

(see sketch in Fig. 1).

The surface deformation gradient Fs only considers the

in-plane deformations of ∇ξx in the tangential plane, yielding

Fs = πΓFπξ [22]. Both Fs and F have the same dimension. It

follows that Fs.Nξ = 0, and Fs is consequently rank deficient

with zero eigenvalue corresponding to the eigenvector Nξ. The

left Cauchy-Green surface strain tensor Bs is expressed with

respect to the stretch tensor Λ such that

Bs = Λ2 = FsFT
s = πΓTsπΓ with Ts = FπξFT . (1)

The eigenvalues λ1, λ2 of the stretch tensor Λ represent the

principle planar stretches in the tangent plane of the membrane

Γ. From the eigenvalues, the surface strain invariants can be

introduced as:

Js ≡ λ1λ2 =

√
1

2

(
(trBs)

2 − tr (B2
s)

)
and

Is ≡ λ21 + λ22
2

− 1 =
1

2
trBs − 1.

In particular, Js represents the local membrane area change

and enables to express the ratio of the deformed to the

undeformed surface area between the two configurations [22].

For a hyperelastic membrane, the surface strain energy

function is expressed with respect to the surface tensor Fs

and then in terms of its invariants. In the present work, we

consider a simplified constitutive law, in which the surface

strain energy only depends on the membrane stretching [33].

We assume that:

W(Fs) = W (Js) .

Nevertheless, we emphasize that we aim to present a

methodology that can be easily extended to model the entire

mechanical response, i.e. depending on both invariants Js and

Is. Therefore, the surface Cauchy-Green stress tensor σs can

be expressed in terms of the first surface Piola Kirchhoff
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stress tensor. Let us introduce the inverse surface deformation

gradient F̂s ≡ ∇ξ. It follows from

∂Js
∂Fs

= JsF̂s

and the identity satisfied by the surface deformation gradient

tensor: FsF̂s = πΓ that

σs =
1

Js

∂W
∂Fs

.FT
s =

1

Js

∂W
∂Js

∂Js
∂Fs

.FT
s = W ′ (Js)πΓ.

Hence, the elastic force exerted by the membrane reads:

FΓ = divs σs = ∇sW ′( exp Is1)−W ′( exp Is1) divs nn.

That corresponds to the same expression obtained in [33].

To achieve a purely Eulerian description of the membrane

mechanics, we need to recover the deformation history on

the membrane. To that end, it follows from the following

expressions of the material derivatives:

DF
Dt

= ∇uF and
Dπξ

Dt
= 0

together with the expression of Ts (1) that

∂Ts

∂t
+ u ·∇Ts = sym

(∇uTs

)
. (2)

The previous equation is fully Eulerian and enables to

describe the mechanical response of the membrane. Remark

that, in this simplified elasticity model, it would be easier to

consider the advection of the invariant Js instead of Ts (2).

However, as we aim to describe a general framework that can

be easily extended to the full elastic response (i.e. the surface

strain energy function relies on both strain invariants), we opt

to advect Ts. In such a case, the strain invariants can always

be deduced from the tensor Ts.

From now, Ω(t), t � 0 stands for the interior fluid domain

enclosed by Γ.

C. Level Set Method

The membrane Γ is described implicitly as the zero level

set of a function ϕ [25]:

Γ(t) =
{
(t,x) ∈ (0, T )× Λ : ϕ(t,x) = 0

}
.

For any t ∈ (0, T ), a time-dependent initial value partial

differential equation describes the motion of Γ:

∂ϕ

∂t
+ u ·∇ϕ = 0, in (0, T )× Λ. (3)

This problem is initialized with a suitable distance function

ϕ0 to Γ(0):

ϕ0(x) =

⎧⎨
⎩

inf
y∈Γ(0)

|y − x| if x /∈ Ω(0),

− inf
y∈Γ(0)

|y − x| otherwise.

This equation is equipped with suitable boundary and initial

data:

ϕ = ϕb on (0, T )× Σ− and ϕ(0) = ϕ0 in Λ,

where Σ− =
{
x ∈ ∂Λ : v·ν(x) < 0

}
represents the upstream

boundary. Geometrical quantities such as the normal n and

mean cuvature H are extended to the entire Λ and are easily

recovered implicitly in terms of the level set ϕ:

n =
∇ϕ

|∇ϕ| and H = divs n = divn.

A regularization approach is commonly introduced to avoid

using meshes that follow the membrane deformations. Let us

introduce a regularization parameter ε proportional to the mesh

size h. The regularized Heaviside function H , Dirac measure

δΓ and sign function sgn in a banded strip of width 2ε are

given by:

Hε(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

0, when ϕ < −ε
1

2

(
1 +

ϕ

ε
+

1

π
sin

(πϕ
ε

))
, when |ϕ| � ε,

1, otherwise

δε(ϕ) =
dHε

dϕ
(ϕ) and sgn ε(ϕ) = 2Hε(ϕ)− 1.

For any given function η(·) defined on Γ, an extension η̃(·)
to Λ is required, and the surface integrals are approximated

by:∫
Γ

η(x) ds =

∫
Λ

|∇ϕ| δΓ η̃(x) dx ≈
∫
Λ

|∇ϕ| δε (ϕ) η̃(x) dx.

The advection of the level set function degenerates the initial

signed distance property. The gradient norm may vanish or

blow up and singularities can arise. This issue is circumvented

by solving an auxiliary redistancing problem [25] that helps

to reestablish the initial signed distance behavior. A modified

version of the classical redistancing problem has been used

here, where an explicit Lagrange multiplier acts as a constraint

enforcing the unphysical shifting of the membrane during the

redistancing process [20]. For t ∈ (0, T ), we introduce a

pseudo-time variable τ and we search for a quasi-stationary

solution φ of the penalized redistancing problem:

∂τφ(τ, ·; t) + v̂ · ∇φ(τ, ·; t) = sgn ε(ϕ(t, ·))
+ λ(τ, ·; t)gε(φ(τ, ·; t)),

φ(0, ·; t) = ϕ(t, ·),
where ϕ(t, ·) is the solution of (3) and the advection field is

v̂ = sgn ε(ϕ)∇φ/ |∇φ|. The forcing term λ(τ,x; t) imposes

the constraint of local mass preservation at x ∈ Λ, and the

function gε(φ) acts in the vicinity of the membrane, see a

detailed description in [20]. The level set is subsequently

updated with the quasi-stationary solution of the auxiliary

redistancing problem, and approximates a signed distance

function. At the numerical level, we use a first order combined

characteristic and finite difference discretization method to

approximate the advection term in the redistancing problem.

We also consider the Gauss-Lobatto quadrature formula which

guarantees further stability for the characteristics method [6],

[30].

D. Statement of the Nonlinear Coupled Problem

Let us consider a Newtonian fluid in both sides of the

membrane Γ. We assume constant density ρ and dynamic

viscosity μ of the fluid inside and outside the membrane.
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Let σ(u, p) = 2μD(u) − pI be the fluid Cauchy stress

tensor. We consider two complementary subsets ΣD and ΣN

of the boundary ∂Λ on which essential or natural boundary

conditions are assigned, respectively. Let ub represent a fixed

velocity field on ΣD.

Let us denote by [u]+− = u+ − u− and [σn]+− = σ+n −
σ−n the jumps in the velocity and normal stress across

the membrane, respectively. It follows from the differential

balance of the hydrodynamic and elastic forces on an

infinitesimal domain on the membrane that [σn]+− = −FΓ.

Collecting the elements above, we end with the following

coupled model describing the Eulerian fluid-membrane

interaction problem: P : find the velocity u, pressure p,
surface tensor Ts and level set function ϕ such that

ρ

(
∂u

∂t
+ u.∇u

)
− divσ(u, p, ϕ) = ρg in (0, T )× (Λ\Γ)

div u = 0 in (0, T )× Λ

[u]
+
− = 0 on (0, T )× Γ

[σn]+− = −divs σs on (0, T )× Γ

∂Ts

∂t
+ u ·∇Ts = sym (∇uTs) on (0, T )× Λ

∂ϕ

∂t
+ u.∇ϕ = 0 in (0, T )× Λ

ϕ = ϕb, on (0, T )× Σ−
u = ub, on (0, T )× ΣD

σν = 0 on (0, T )× ΣN .

The system is endowed with initial data which are given by

u(0) = u0, ϕ(0) = ϕ0 and Ts(0) = Ts,0. We assume that the

membrane shape Γ is sufficiently regular during the dynamics.

The normal stress discontinuity across the membrane leads to

a singular elastic force in the momentum equation.

III. FINITE ELEMENT APPROXIMATION

The present method has been implemented using

the C++ library for scientific computing Rheolef [30].

Distributed-memory parallelism relies on MPI [23]. The

package Mumps [1], [24] is used for the factorization and as

direct solver on distributed memory architectures. Numerical

results are displayed graphically using the softwares Paraview

[26] and Gnuplot [36].

A. Time Discretization

Let us divide [0, T ] into N subintervals [tn, tn+1), n =
0, . . . , N − 1 of uniform time steps Δt. For any n � 1, the

unknowns un, pn, Tn
s and ϕn at time step n are computed

iteratively. The surface projector is approximated at tn by

πn
Γ = I − nn ⊗ nn. Accordingly, the surface operators divns

and ∇n
s are approximated at time tn.

To write the variational formulation, the problem P is

tested with suitable test functions and we shall integrate the

momentum equation in both Ω and Λ\Ω separately. It follows

from the Green formulation adapted for surface integrals that:∫
Γ

divs σs · v =

∫
Γ

H (σsn) · v −
∫
Γ

σs : ∇sv +

∫
∂Γ

(σsν) · v

=

∫
Γ

W ′ (Js)πΓ : ∇sv,

resulting from the assumption of a closed membrane. We

introduce the functional spaces of admissible velocities,

pressures, membrane tension and level set function:

V(ub) =
{
v ∈ (

H1 (Λ)
)d

: v = ub on ΣD

}
,

Q =

{
q ∈ L2 (Λ) :

∫
Λ

q dx = 0

}
,

W =
{
τ ∈ (

L2(Λ)
)d×d

: τ = τT
}

and X(ϕb) =
{
ψ ∈W 1,∞ (Λ) : ψ = ϕb on Σ−

}
.

The semi-discretized problem P reads:

find χ ≡ (un, pn,Tn
s , ϕ

n) ∈ V(ub) × Q × W × X(ϕn−1)
such that∫

Λ

ρ

(
un − un−1

Δt
+ un ·∇un

)
· v +

∫
Λ

2μD (un) : D(v)

+

∫
Λ

δε (ϕ
n) |∇ϕn|W ′ (Jn

s )

(
I − ∇ϕn∣∣∇ϕn

∣∣ ⊗ ∇ϕn∣∣∇ϕn
∣∣
)

: ∇v

−
∫
Λ

pn div v =

∫
Λ

ρ g · v, (4)∫
Λ

q div un = 0, (5)∫
Λ

Tn
s −Tn−1

s

Δt
: τ +

∫
Λ

(un · ∇Tn
s ) : τ

−
∫
Λ

sym (∇unTn
s ) : τ = 0, (6)∫

Λ

ϕn − ϕn−1

Δt
ψ +

∫
Λ

(un · ∇ϕn)ψ = 0, (7)

defined for all v ∈ V(0), q ∈ Q, τ ∈ W and ψ ∈ X (0).
Let us denote by χ the global vector of unknowns

(u, p, λ, ϕ), and let Ψ = (v, q, ξ, ψ) be the corresponding

vector of test functions. All surface integrals in Pn are

transformed into integrals over Λ as aforementioned in

Section II-C. Let R (χ) be the global residual vector

corresponding to the regularized problem. Let 〈., .〉 stand for

the duality product. The problem (4-5-6-7) reads in a compact

form:

find the unknowns χn such that〈
R (χn) ,Ψ

〉
≡

(〈
Rχ (χn) ,v

〉
V(0)′,V(0),

〈
Rp(u

n), q
〉
Q′,Q,〈

RTs
(un,Tn

s ), ξ
〉
W′,W,

〈
Ru,ϕ(u

n, ϕn), ψ
〉
X(0)′,X(0)

)T

= 0, ∀Ψ.

B. Consistent Linearization and Newton Algorithm

Let DR (χ) [δχ] represent the directional derivative of R
in the direction δχ. The Newton-Raphson method reduces the

nonlinear problem R (χn) = 0 (4-5-6-7) into a sequence of
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linear sub-problems [28]. Given the starting value χn
0 = χn,

the strategy consists in computing iteratively the solution χn
k

with k > 0. We search the velocity, pressure, surface tension

and level set increments δχn
k = (δun

k ; δp
n
k , δλ

n
k , δϕ

n
k ) at each

sub-iteration k � 1 in such a way that

〈
DR (χn

k ) [δχ
n
k ] ,v

〉
= −

〈
R (χn

k ) ,v
〉
. (8)

The solution is subsequantly updated by

χn
k+1 = χn

k + δχn
k . (9)

The Newton method is known to have local convergence

properties, which means that the starting value needs to be

close enough to the expected solution in order to ensure

the convergence. For that reason, we use a second order

extrapolation of the solution at the previous time steps to

assign the initial guess χn
0 . We apply recursively the algorithm

and the stopping criterion is based on the computation of the

global residual. We set the Newton tolerance to ε = 10−8.

Note that one can use an inexact version of the Newton

method, that consists in computing the tangent problem based

on some simplifying assumptions. For instance, we can assume

that the signed distance property is always achieved, due

to the resolution of the redistancing problem until reaching

the convergence. However, the quadratic convergence of the

Newton algorithm can be drastically deteriorated if the signed

distance property is not respected. In this work, we derive the

exact tangent problem for a general level set function.
In what follows, we will drop the superscript n whenever it

is clear from the context, and we rather write k as a superscript.
To write the derived problem in a compact manner and to allow
a straightforward finite element implementation, we introduce
the following multi-linear forms:

a(u,v) =

∫
Λ
2D(u) : D(v); b(u, q) = −

∫
Λ
q divu;

c(u,v;w) =

∫
Λ

(
(u ·∇)w + (w ·∇)u

)
.v;

d(ϕ,v;w,P) =

∫
Λ
(w ·∇ϕ) (P : ∇v); g(τ ,T) =

∫
Λ
τ : T;

f(τ ,v; P̄,P) =

∫
Λ

(
τ : P̄

)
(P : ∇v) ; m(u,v) =

∫
Λ
u · v;

h(ϕ,ψ;w) =

∫
Λ
wϕψ; i(ϕ,ψ;w) =

∫
Λ
ψw ·∇ϕ;

j(ϕ,u;w) =

∫
Λ
ϕu ·w; s(ϕ,v;P) =

∫
Λ
ϕP : ∇v;

α(τ ,T;u) =

∫
Λ

(
u ·∇τ − sym (∇uτ )

)
: T;

β(u,T;P) = α(P,T;u);

l (ϕ,v;w,w,P) =

∫
Λ
w
((

P∇ϕ
)⊗w +w ⊗ (

P∇ϕ
))

: ∇v;

γ
(
ϕ,v;w,P, P̄

)
=

∫
Λ

(
P : ∇v

)

P̄ :
((

P∇ϕ
)⊗w +w ⊗ (

P∇ϕ
))

;

defined for all u,v ∈ V; q ∈ Q; τ ,T ∈ W; ϕ, ψ ∈ X;

w,wi,Pi,j , P̄i,j ∈ L∞(Λ) with 1 � i, j � d.

The residuals of the coupled system (4-5-6-7) are given,

respectively, in a compact form by:

〈Rχ

(
χk

)
,v〉 = ρ

Δt
m
(
uk − un−1,v

)
+
ρ

2
c
(
uk,v;uk

)
+ μa

(
uk,v

)
+ b

(
v, pk

)
− ρm (g,v)

+ s
(
δε (ϕ

n) |∇ϕn|W ′ (Jn
s ) ,v;π

k
Γ

)
(10)

〈Rp

(
uk

)
, q〉 = b

(
uk, q

)
, (11)

〈RTs(u
k,Tk

s), τ 〉 = α
(
Tk

s , τ ;u
k
)

+
1

Δt
g
(
Tk

s −Tn−1
s , τ

)
, (12)

〈Rϕ

(
ϕk,uk

)
, ψ〉X(0)′,X(0) = 1

Δt
h
(
ϕk − ϕn−1, ψ; 1

)
+ i

(
ϕk, ψ;uk

)
, ∀ψ ∈ X(0). (13)

For ease of exposition, the details on the linearization

procedure are provided in Appendix A. The tangent problem

corresponding to the coupled system (4-5-6-7) expresses in a

compact form as:

given χk, find δχk ≡ (
δuk, δpk, δTk

s , δϕ
k
) ∈ V(ub)×Q×

W× X(ϕn−1) such that
ρ

Δt
m
(
δuk,v

)
+ ρc

(
δuk,v;uk

)
+ μa

(
δuk,v

)
+ s

(
δϕk,v; δ′ε

(
ϕk

) ∣∣∇ϕk
∣∣W ′ (Jk

s

)
πk

Γ

)
+ d

(
δϕk,v; δε

(
ϕk

)W ′ (Jk
s

) ∇ϕk

|∇ϕk| ,π
k
Γ

)

− l

(
δϕk,v; δε

(
ϕk

)W ′ (Jk
s

)
,
∇ϕk

|∇ϕk| ,π
k
Γ

)

+ f

(
δTk

s ,v;
∣∣∇ϕk

∣∣W ′′ (Jk
s

) δε (ϕk
)

2Jk
s((

Tk
s : πk

Γ

)
I −Tk

sπ
k
Γ

)
πk

Γ,π
k
Γ

)

+ γ

(
δϕk,v;∇ϕk,πk

Γ,W ′′ (Jk
s

) δε
(
ϕk

)
2Jk

s |∇ϕk|
(
Tk

sP
kTk

s − (
Tk

s : Pk
)
Tk

s

))

+ b
(
v, δpk

)
= −

〈
Rχ

(
χk

)
,v

〉
V(0)′,V(0)

, (14)

b
(
δuk, q

)
= −

〈
Rp

(
uk

)
, q

〉
Q′,Q

, (15)

1

Δt
g
(
δTk

s , τ
)
+ α

(
δTk

s , τ ;u
k
)
+ β

(
δuk, τ ;Tk

s

)
= −

〈
Ru,Ts(u

k,Tk
s), τ

〉
W,W′

, (16)

1

Δt
h
(
δϕk, ψ; 1

)
+ i

(
δϕk, ψ;uk

)
+ j

(
ψ, δuk;∇ϕk

)
= −

〈
Rϕ

(
ϕk,uk

)
, ψ

〉
X(0)′,X(0)

. (17)

for all test functions v ∈ V(0), q ∈ Q, τ ∈ W and ψ ∈ X(0).
Regarding the space discretization by finite elements, a

Taylor-Hood finite element is considered for the velocity u and

pressure p, while the P1 Lagrange polynomials are considered
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Algorithm 1 Eulerian fluid-membrane interaction coupling

1: set initial conditions and Newton tolerance ε
2: from the known values χn−1

3: for t = (n− 1)Δt, . . . , T do
4: set initial increment

(
δun

0 , δp
n
0 , δT

n
s,0

)
= (0, 0,0)

5: initialize Newton residual εk = 2ε
6: set, from the known values, pn0 = pn−1

k

7: initialize the velocity un
0 , tensor Tn

s,0 and level set

ϕn
0 by a second order extrapolated prediction.

8: for k = 1, . . . do
9: assemble the Jacobian DR from (14-15-16-17)

10: evaluate the residual R (χn
k ) from

(10-11-12-13)

11: compute δχk
n from (8)

12: update χn
k from (9)

13: compute Newton residual εk+1 ≡ ∥∥Rχ

(
χk

)∥∥
14: if εk < ε then
15: break

16: end if
17: end for
18: update solution χn = χn

k+1

19: update un−1 ← un, Tn−1
s ← Tn

s , ϕn−1 ← ϕn

20: end for

for the approximation of both tensor Ts and level set ϕ. The

fluid-membrane interaction coupling method is summarized in

Algorithm 1.

IV. NUMERICAL RESULTS AND PERFORMANCE

A. Dynamics of an Oscillating Elastic Membrane

In this example, we present some numerical results for

an immersed elastic membrane undergoing an oscillating

movement in a surrounding viscous fluid. We follow the test

case described in [35]. A stretched pressurized membrane

is placed at the center of a square cavity [−1.5, 1.5] ×
[−1.5, 1.5].Homogeneous Dirichlet boundary conditions are

prescribed for the velocity field, i.e. ub = 0 and ΣD = ∂Λ.

We consider a linear stress-strain law such that

W ′(Js) = κ(Js − 1),

where κ represents a constant tension coefficient, see [35]. We

set κ = 9 in our simulations. The fluid is initially stationary.

We consider the fluid density ρ = 1 and the dynamic

viscosity μ = 0.015. The membrane has an ellipsoidal shape

at t = 0 with major and minor axes 0.75 and 0.5, respectively.

Indeed, the membrane is initially stretched and the stretching

is equal to 1.2625. Remark that the unstretched configuration

corresponds to a circle having the radius r = 0.5. Due

to the restoring elastic force, the membrane oscillates with

gradually smaller oscillations until reaching a circular steady

state having the same enclosed area as the initial ellipse.

We perform simulations on a regular mesh generated using

the software Gmsh [9] and having h = 1/100. We provide

in Fig. 2 snapshots showing the oscillating elastic membrane

and the velocity field during the first period. Results are in

good qualitative agreement with those in [35]. In addition,

Fig. 3 shows the temporal evolution of the major and minor

axes of the membrane. We clearly see the relaxation of the

membrane to the stable circular shape having the radius r =√
0.75× 0.5 ≈ 0.6128.

B. Convergence Properties of the Newton Strategy

We now proceed with the study of the convergence

properties of the Newton method, and we observe the

convergence behavior for several values of the time step size.

In fact, by increasing Δt, the expected solution becomes far

from the starting values of the algorithm (i.e. the second order

extrapolation of the solutions at previous time steps). That

influences the performance of the method.

We plot in Fig. 4 the convergence curves of the residuals

in the semi-logarithmic scale for several time steps. We report

the orders of convergence, referred to as ROC, of the residuals

in Table I. The ROC is computed as:

ROC =

ln

(
|R (χn

k ) |V′(0)

|R (
χn

k−1

) |V′(0)

)

ln

(
|R (

χn
k−1

) |V′(0)

|R (
χn

k−2

) |V′(0)

) , for k > 2.

Fig. 4 shows that the convergence of the algorithm is very

fast, always less that 10 iterations. From Table I, we observe

that the method features a quadratic convergence behavior as

expected from a theoretical point of view. Nevertheless, we

remark that the number of iterations required for convergence

increases when using too large values of Δt. Remark that

for large Δt, the convergence is first difficult to reach and

the residuals decrease slowly, while approaching the expected

second-order behavior beyond a certain threshold value. That

results from the local convergence property of the Newton

method, and the convergence is deteriorated when the initial

guess is not close enough to the solution. In the literature,

several strategies enable to address this issue, such as the

damped Newton method. That is, however, beyond the scope

of the present work.

C. Computational Convergence Study

We now perform a grid convergence study. We perform fully

Eulerian simulations of an oscillating pressurized membrane

immersed in a viscous fluid, and we use the same setup

described above. We study the spatial accuracy of the

numerical approximation by computing the normalized errors

in several norms on successively refined meshes. The errors

are computed with respect to a reference solution obtained

with the finest mesh size h = 1/160 (referred to by a tilde

symbol). Let ‖ · ‖0,2,Λ and ‖ · ‖1,2,Λ design the L2-norm and

the semi-norm H1, respectively. The errors are computed at

the same time T = 5 and are given by:

e(u) =
‖uh − ũ|1,2,Λ

‖ũ‖1,2,Λ , e(Ts) :=
‖Ts,h − T̃s‖(L2(Γ))d×d

‖T̃s‖(L2(Γ))d×d

,

e(p) =
‖ph − p̃‖0,2,Λ

‖p̃‖0,2,Λ and e(ϕ) =
‖Hε(ϕh)− Hε(ϕ̃)‖0,2,Λ

‖Hε(ϕ̃)‖0,2,Λ .
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Fig. 2 Snapshots showing the dynamics of the elastic membrane in a
viscous flow (shape and velocity profile) at successive times

t ∈ {
0.1, 0.48, 0.78, 1, 1.38, 1.6, 1.8, 2.2, 2.5, 2.84

}
, respectively from top

to bottom and from left to right: Γ is plotted with a continuous red line

0.5

0.55

0.61237

0.65

0.7

0 2 4 6 8 10 12 14 16 18 20

0.75

time

elastic membrane

μ = 0.015

Fig. 3 Temporal evolution of the major and minor axes of the elastic
stretched membrane for μ = 0.015

10−12

10−6

1

1 2 3 4 5 6 7 8 9 10

k

∣∣∣R (
χk
h

) ∣∣∣ Δt = 0.001
0.01

0.05

0.1

0.2

0.4

Fig. 4 Convergence curves of the residuals with respect to the Newton
iteratios for various time step sizes: Results are plotted in the

semi-logarithmic scale

We also evaluate the rate of convergence ROC with respect to

the corresponding refinement level, referred to as a superscript

l, as:

ROC =

ln

(
El−1

El

)

ln

(
hl−1

hl

) .

The computed errors are reported in Table II, along with the

corresponding rates of convergence. The time steps are small

enough to avoid significantly influencing the accuracy. Results

show that suboptimal convergence rates are obtained for the

errors in velocity u and pressure p, whereas e(ϕ) converges

with almost a linear convergence behavior. The error in the

membrane tension has a convergence behavior of about 0.8.

TABLE I
ORDERS OF CONVERGENCE OF THE RESIDUALS FOR VARIOUS VALUES

OF THE TIME STEP

k Δt = 10−3 10−2 5× 10−2 0.1 0.2 0.4

3 – 1.8810 2.0141 2.0936 3.7611 3.1352
4 2.0229 1.7789 1.5019 0.8045
5 2.1102 1.2234
6 1.2565
7 1.7121
8 2.0023
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TABLE II
SPATIAL CONVERGENCE IN THE NATURAL NORMS FOR A PRESSURIZED

ELASTIC MEMBRANE IMMERSED IN A FLUID

1/h e(u) ROCu e(p) ROCp

20 7.790E-1 5.125E-1
40 3.795E-1 1.037 2.028E-1 1.337
80 1.928E-2 0.977 9.784E-2 1.051

1/h e(Ts) ROCTs e(ϕ) ROCϕ

20 9.855E-1 9.355E-2
40 5.581E-1 0.820 4.887E-2 0.937
80 3.249E-1 0.780 2.572E-2 0.926

0

0.05

0.1

0.15

0 2 4 6 8 10 12

time

membrane elastic energy∫
Γ
W(Js)

Fig. 5 Temporal evolution of the membrane elastic energy

D. Three-Dimensional Test Case

We now investigate the applicability of the present method

in the three-dimensional case. To that aim, we consider a test

case in which the elastic membrane is first gradually squeezed

under the effect of an external force. Beyond a certain time, the

external force vanishes and the membrane is released. Such a

membrane squeezing and releasing dynamics can be found in

several physical and biological applications, for instance, the

GTP-dependant hydrolysis of membranes during endocytosis

[4]. There are many industrial applications including the

mechanical squeezing of high elastic membranes, such as the

industrial filtration process using membrane chamber plates

[34]. The fluid is initially at rest and we set the density and

viscosity to ρ = 1 and μ = 0.5, respectively. The time step

size is Δt = 2×10−2. We simulate the dynamics of the elastic

membrane in the time interval (0, 12). The external squeezing

force is given by

g(x) =

{
4Hε

(
x2 + y2 − 0.3

)
sgn ε(z)δε(ϕ)z if t � 1,

0, otherwise.

where x = (x, y, z) ∈ R3 denotes the position.

Snapshots in Fig. 6 show the dynamics of the elastic

membrane. After releasing the membrane, the shape is relaxed

and deforms gradually until reaching the unstretched spherical

configuration, where the velocity vanishes. We plot in Fig. 5

the temporal evolution of the membrane elastic energy:∫
Γ

W(Js),

showing the energy peak at t = 1 when the maximum loading

force holds. The elastic energy decreases after the release until

reaching zero.

TABLE III
EVALUATION OF THE MAXIMUM TIME STEP ΔtMAX ALLOWED BY THE

PRESENT METHOD AND THE EXPLICIT METHOD FOR VARIOUS VALUES

OF THE MESH SIZE

h Δtmax(Fully implicit) Δtmax(Explicit)

1/20 0.41 2.1× 10−2

1/40 0.16 7.3× 10−3

1/80 7.4× 10−2 2.4× 10−3

1/160 2.9× 10−2 7.2× 10−4

E. Comparison with an Explicit Decoupling Scheme

We finally perform a comparative study with a fully explicit

decoupling scheme, usually used in the published literature.

The explicit scheme consists in decoupling and solving the

fluid problem, the level set equation and the advection of

the surface tensor in a segregated manner. We first compute

the velocity and pressure by solving the fluid problem, in

which the elastic force appears as a source term evaluated

using the membrane position and the strain invariant at the

previous time step. The level set function and the surface

tensor are subsequently advected with the computed velocity

field. We measure in Table III the maximum time step size

allowed by the explicit and implicit methods. Results show

that the present method has a significant stabilizing effect and

allows to use significantly larger time steps, up to 40 times

larger, compared to those allowed by the explicit method. The

theoretical investigations of the stability conditions are beyond

the scope of this work.

V. CONCLUSION

In the present paper, we have introduced a fully implicit

and purely Eulerian finite element method for the numerical

modeling of highly deformable membranes immersed in a

Newtonian fluid. The method is based on the use of the

Newton-Raphson method and a monolithic solver has been

implemented. We have considered a simplified characterization

of the mechanical properties of the membrane, in which

the elastic response is restricted to the surface stretching.

A consistent linearization has been performed and an exact

Jacobian matrix has been derived. The quadratic convergence

of the Newton method has been numerically obtained. In

addition, the method has been compared to the standard

fully explicit method, showing the robustness of the present

approach. The numerical stability has been maintained for

significantly larger time steps.

This work represents a first step towards modeling the full

mechanical response of elastic membranes. Some extensions

of the approach presented in this paper are being currently

explored. We are focusing on the development of a cubically

convergent Newton variant that would allow significant

computational savings. In addition, further investigations of

the performance of the present method when using more

complex constitutive laws are part of our current work. We also

foresee the applicability of the present framework to model the

dynamics of highly deformable leaflets of heart valves.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

673

Fig. 6 Snapshots showing the relaxation of an elastic membrane in a viscous
flow at successive times t ∈ {

0.06, 0.18, 0.3,
0.4, 0.6, 0.9, 1.32, 1.5, 2, 4.18

}
, respectively from left to right and from top

to bottom: The figures show the velocity field on the membrane Γ (red
color)

APPENDIX

USEFUL DERIVATIVES AND LINEARIZATION EXPRESSIONS

In this Appendix, we provide the directional derivatives of

the main problem quantities in the direction of the increment

δχ ≡ (δu, δp, δTs, δϕ). We have:

D∇ϕ[δϕ] = ∇δϕ, D|∇ϕ|[δϕ] = ∇δϕ · n,
and D

1

|∇ϕ| [δϕ] = −n ·∇δϕ

|∇ϕ|2
yielding the following expression for the linearization of the

normal vector:

Dn[δϕ] =
∇δϕ

|∇ϕ| −
(∇ϕ ·∇δϕ)∇ϕ

|∇ϕ|3 =
∇sδϕ

|∇ϕ| .

The linearization of the surface projector reads:

DπΓ[δϕ] =
−1

|∇ϕ|2
(
∇sδϕ⊗∇ϕ+∇ϕ⊗∇sδϕ

)
.

For a test function v, that leads to:

D divs v[δϕ] = DπΓ[δϕ] : ∇v.

The linearization of the surface stretching Js reads:

DJs[δχ] = DJs[δϕ] +DJs[δTs]. (18)

We first show that:

D tr (Bs) [δχ]

= DBs : I[δχ] = DTs : πΓ[δχ]

= D trBs[δTs] +D trBs[δϕ]

= δTs : πΓ −
(
∇sδϕ⊗ ∇ϕ

|∇ϕ|2 +
∇ϕ

|∇ϕ|2 ⊗∇sδϕ

)
: Ts.

Analogously,

tr
(
B2

s

)
= (TsπΓ) : (πΓTs) = (TsπΓ)

2
: I.

We compute D tr
(
B2

s

)
[δχ] following:

D tr
(
B2

s

)
[δχ] = D tr

(
B2

s

)
[δTs] +D tr

(
B2

s

)
[δϕ].

We can express the surface stretching as:

Js =

√
1

2

(
(Ts : πΓ)

2 − (TsπΓ)
2
: I

)
.

We end with:

DJs[δTs] =
1

2Js

(
(Ts : πΓ)I −TsπΓ

)
δTs : πΓ.

The remaining term in the linearization of the strain invariant

Js (18) reads:

DJs[δϕ] =
1

4Js
D
(
(Ts : πΓ)

2 − (TsπΓ)
2
: I

)
[δϕ]

=
1

2Js

(
tr (Bs) Ts : DπΓ[δϕ]−TsπΓTs : DπΓ[δϕ]

)
=

1

2|∇ϕ|2Js
(

TsπΓTs :
(∇sδϕ⊗∇ϕ+∇ϕ⊗∇sδϕ

)
− (

Ts : πΓ

)(
Ts : (∇sδϕ⊗∇ϕ+∇ϕ⊗∇sδϕ)

))
.

Finally, the full expression of DJs[δχ] is obtained using (18).
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