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Abstract—Solvability of the model matching problem for
input/output switched asynchronous sequential machines is discussed
in this paper. The control objective is to determine the existence
condition and design algorithm for a corrective controller that can
match the stable-state behavior of the closed-loop system to that of
a reference model. Switching operations and correction procedures
are incorporated using output feedback so that the controlled
switched machine can show the desired input/output behavior. A
matrix expression is presented to address reachability of switched
asynchronous sequential machines with output equivalence with
respect to a model. The presented reachability condition for the
controller design is validated in a simple example.

Keywords—Asynchronous sequential machines, corrective control,
model matching, input/output control.

I. Introduction

ASYNCHRONOUS sequential machines, or clockless

logic circuits, as they are often called, are

hardware/software systems that operate sequentially with no

global synchronizing clock [1]. Since first invented in mid

1950’s [2], asynchronous sequential machines have been

used in various areas as an important building block of the

system, e.g., digital systems [3], communication networks

[4], parallel computation [5] etc. Corrective control is a

novel automatic control theory developed exclusively for

asynchronous machines. It utilizes the unique feature of

asynchronous machines that the speed of their transient

transitions is very fast (in zero time, ideally). As long as

the stable reachability is guaranteed from a given state to a

desired state, a corrective controller can generate a control

input sequence that drives the considered machine towards the

desired state. With the aforementioned capability, corrective

control has been successfully applied to compensating the

stable-state behavior of a given asynchronous machine with

various faulty behavior [6]–[9].

In this paper, we address the model matching problem

of switched asynchronous sequential machines. The switched

systems are a kind of hybrid systems that consist of several

submachines and a rule that coordinates switching operations

between them. Due to their importance in both theoretical

and practical applicability, the study of switched systems
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has drawn a great attention, especially in the field of linear

systems [10]. In event-driven dynamics, however, few studies

on switched systems have been reported so far. Notable among

them are switched Boolean networks for gene regulatory

networks [11] and control of switched asynchronous sequential

machines by [12].
In [12], the problem of model matching for switched

asynchronous sequential machines is investigated in the

framework of corrective control wherein submachines have

the characteristics of input/state machines, namely the present

state is given as the output. In this study, we focus our concern

on the case that submachines have the form of input/output

machines whose output value is different from the present

state. In contrast to the case of switched machines with

input/state submachines, the closed-loop system does not have

to match the behavior of the model in terms of the input/state

specification. Instead, model matching is regarded as complete

if the controlled machine provides the same output as that of

the reference model in response to a given external input. The

necessary and sufficient reachability condition for the existence

of an appropriate corrective controller will be addressed based

on corrective control theory and asynchronous mechanism.

Note that a discussion on detailed procedures of controller

construction is omitted in this paper and left as a further

research (see [7] for prior works on input/output corrective

control of single asynchronous machines).
The rest of this work is structured as follows. Section

II provides a modeling formalism of input/output switched

asynchronous machines and the problem statement for

model matching. In Section III, stable reachability of

input/output switched asynchronous machines is described in

terms of Boolean matrices and the condition for corrective

controllability is addressed. A simple example is provided in

Section IV to validated the presented scheme and theorem.

Finally, Section V concludes the paper.

II. Preliminaries

A. Switched Asynchronous Sequential Machines
Let us consider a switched asynchronous sequential machine

Σ with m submachines. Assume that each submachine is a

single input/output asynchronous sequential machine, namely

the present output of the machine is different from the state

value. Σ is represented as

Σ � �Σi�i � M�

Σi � �A,Y, X, x0, fi, hi�
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where M :� �1, . . . ,m�, Σi is the ith submachine, A is the

input set, Y is the output set, X is the state set with n states,

x0 � X is the initial state, fi : X�A � X is the state transition

function partially defined on X � A, and hi : X � Y is the

output function. Since every submachine is assumed to have

an equal operational domain, the input, state, and output sets

of Σi are the same for every i � M; only fi and hi differ from

one another.

Each submachine Σi is operated according to the

characteristics of a single asynchronous sequential machine,

that is, it is not governed by any synchronizing clock and

the state transition is executed only in response to changes of

external inputs. A state–input pair �x, v�� � X � A is a stable

pair of Σi if fi�x, v�� � x and x is a stable state. If fi�x, v�� � x,

on the other hand, x is a transient state and �x, v�� is a transient

pair. Note that x may be stable or transient depending on the

value of the present input. Denote by

Ui�x� :� �v � A	 fi�x, v� � x�

the set of external inputs that make a stable pair with x in

Σi. Owing to the absence of a synchronizing clock, Σi stays

at a stable pair �x, v�� indefinitely. If the input v� changes to

another value v for which �x, v� is a transient pair, Σi engages

in a series of transient transitions

fi�x, v� � x1

fi�x1, v� � x2

...

where v remains fixed. Assuming no infinite cycles, Σi reaches

the next stable state xk such that xk � fi�xk, v� at the end

of the chain with k transient transitions. Since the transition

speed of asynchronous sequential machines is very fast, the

meaningful behavior of asynchronous sequential machines

may be described merely in terms of stable states. To this

end, we introduce the stable recursion function s as [6]:

si : X � A � X

si�x, v� � x�

where x� is the next stable state of a valid state–input pair

�x, v�. A chain of transient transitions from a stable state to

its next stable state, as represented by si, is termed a stable

transition. The domain of si can be expanded to X � A� in a

natural way as follows, where A� is the set of all nonempty

strings of characters in A.

si�x, v1v2 
 
 
 vk� � si�si�x, v1�, v2 
 
 
 vk�,

v1v2 
 
 
 vk � A�.

B. Problem Statement

A control configuration for the switched asynchronous

sequential machine Σ is shown in Fig. 1 where C is

the corrective controller, D is the demultiplexer, P is the

multiplexer, v � A is the external input, u � A is the control

signal, σ � M is the switching signal, and yi � Y , i � M, is the

output of Σi. Let Σc denote the closed-loop system consisting

of C, D, P, and Σ.

C D

m

P

u
v

i y

y

y

ym

Fig. 1 Control configuration for the switched asynchronous sequential
machine Σ

Since C is also designed in the form of an asynchronous

sequential machine, Σc has the asynchronous mechanism. C
provides Σ with u or σ, either of which is generated at a

time, but not simultaneously. D plays the role of determining

the active submachine whose dynamics is manifested by Σ.

Upon receiving σ, D selects Σσ as the active submachine and

delivers the present control signal u to Σσ. Hence changing

σ equals the activation of switching operation. P receives m
output feedback values from all submachines Σ1, . . . ,Σm and

selects y, the feedback value generated by Σσ. P forwards y
and i � M, the index of the active submachine, to C.

The control objective is to present the existence condition

and design algorithm for a corrective controller C that matches

the stable-state behavior of Σc to that of a reference model

Σ� � �A,Y,Z, z0, f �, h��.

Note that Σ� has the same input and output set as those of Σ

whereas its state set

Z � �z1, . . . , zr�

differs from X. Accordingly, f � and h� have mapping relations

f � : Z � A � Z and h� : Z � Y . We also assume that h�

is an injective function, namely each zp � Z corresponds to a

distinctive output value.

We regard that model matching between Σc and Σ� is

accomplished if two machines show the same input/output

behavior, i.e., for an external input, they provide an identical

output value. Moreover, each submachine Σi can serve as

structural redundancy of Σ in model matching control. In

the case of input/output control for single asynchronous

machines [7], model matching is infeasible if the considered

machine does not have enough reachability to realize the

matched behavior with Σ�. However, the switched machine

Σ can change its mode to another submachine whenever the

active submachine does not have the required reachability, and

can active the correction procedure to take the new active

submachine toward the desired state.

To avoid unpredictable behaviors caused by the absence of

a synchronizing clock, we assume that Σc always preserves

the principle of fundamental mode operations [13] whereby

a variable must change its value when both C and Σ are in

stable states, and no two or more variables can be altered

simultaneously.
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III. Main Result

A. Skeleton Matrices

We first introduce several skeleton matrices that are needed

to describe stable reachability of switched machines for model

matching control.

Definition 1: Given Σ� � �A,Y,Z, z0, f �, h�� with the stable

recursion function s�, the one-step skeleton matrix S 1�Σ�� is

an r � r matrix whose �p, q� entry is defined as

S 1
p,q�Σ

�� �

�
1 �v � A such that s��xp, v� � xq

0 otherwise

S 1�Σ�� epitomizes stable reachability of the model Σ� via

unit input characters. Note that we have to consider only

one-step stable reachability of Σ� since model matching control

will be activated upon the transmission of an input character

to Σ and Σ�.

Definition 2: Given Σi � �A,Y, X, x0, fi, hi� and Σ� �
�A,Y,Z, z0, f �, h��, the output equivalence list of Σi with respect

to Σ� is E�Σi,Σ
�� :� �Ei

1
, . . . , Ei

r� where

Ei
p :� �x � X	hi�x� � h��zp��, p � 1, . . . , r.

Ei
p � X represents the subset of X every element of which

has the same output as zp � Z. If Σi and Σ� stay at x � Ei
p and

zi, respectively, they are said to have output equivalence.

Definition 3: Given the output equivalence list E�Σi,Σ
�� �

�Ei
1
, . . . , Ei

r�, the fused skeleton matrix Δ�i� is an r� r matrix

whose �p, q� entry is defined as

Δp,q�i� �

��
�

1 
x � Ei
p, �x� � Ei

q and t � A�

such that si�xp, t� � xq

0 otherwise

Δ�i� depicts stable reachability of Σi in terms of elements

of E�Σi,Σ
��. Δp,q�i� � 1 if every state of Ei

p can reach at

least a state of Ei
q via a chain of stable transitions (si�xp, t� �

xq). Note that the final state of Ei
q is unspecified since stable

reachability between elements of E�Σi,Σ
�� is measured with

respect to outputs, that is, any state of Ei
q shows identical

output characteristic.

Switching capability of Σ implies the ability of Σ to change

its mode from a submachine to another submachine at a

specific stable state. In [12], a constraint is imposed on

the switching operation that as the result of switching, the

active submachine always takes the same state possessed by

the previous submachine. In this study, we generalize the

switching operation by relaxing the foregoing constraint. In

other words, the new active submachine does not necessarily

transfer to the same state at which the old one has stayed

before switching. To address the switching relation between

two submachines, we define the following matrix.

Definition 4: W�i, j�, the switching incidence matrix of two
submachines Σi and Σ j, is an n� n matrix whose �p, q� entry

is

Wp,q�i, j� �

��
�

1 Σ switches the mode from Σi at xp

to Σ j at xq

0 otherwise

W�i, j� represents switching capability of Σ in the most

general way, that is, the state of the present submachine may

differ from the previous one after switching. The motivation

for introducing W�i, j� stems from the fact that some switched

machines have multiple submachines that share the same

system module to compose the state space. As the switching

operation depends on this implementation restraint, the next

state may be different from the previous one.

Note that for switching from Σi at xp to Σ j at xq, there must

exist an external input a � A that makes a stable pair with both

xp of Σi and xq of Σ j, i.e.,

Wp,q�i, j� � 1 � Ui�xp� � U j�xq� � ∅. (1)

Under the principle of fundamental mode operations, Σi should

stay at the stable state xp at the moment that the switching

signal σ changes. Hence the present control signal is u �
Ui�xp�. Moreover, u must also make a stable pair with xq

in Σ j, namely u � U j�xq�; otherwise Σ j could not maintain

xq upon completion of the switching operation. However, the

condition u � U j�xq� may not be always valid since u is

determined only by the past state trajectory of Σi. Still, as

long as Ui�xp� � U j�xq� � ∅ is held true, C can achieve

the switching operation by changing the control signal to

u� � Ui�xp� � U j�xq� right before transmitting the switching

signal σ � j. In this sense, (1) is a requisite for guaranteeing

consistent switching.

While the switching incidence matrix W�i, j� is defined

based on states, it can be transformed into a matrix based

on the entries of the output equivalence list as:

Definition 5: Let E�Σi,Σ
�� and E�Σ j,Σ

�� be the output

equivalence ist of Σi and Σ j with respect to Σ�, and let W�i, j�
be as defined in Definition 4. G�i, j�, the switching incidence
matrix of Σi and Σ j with output equivalence with respect to
Σ�, is an r � r matrix whose �p, q� entry is

Gp,q�i, j� �
�

1 
xp� � Ei
p, �xq� � Ei

q s.t. Wp�,q��i, j� � 1

0 otherwise

In short, Δ�i� shows stable reachability of single

submachines and G�i, j� provides switching capability of Σ

between different submachines, both represented in terms of

output equivalence with respect to Σ�. The following definition

combines stable reachability and switching capability of Σ in

one matrix expression.

Definition 6: C k�Σ�, the one-step switching skeleton matrix
of Σ with output equivalence with Σ� (k � 1, 2, . . .), is an

rm � rm matrix recursively defined as

C 1�Σ� :�

�
����
Δ�1� G�1, 2� 
 
 
 G�1,m�

G�2, 1� Δ�2� 
 
 
 G�2,m�
...

...
...

...
G�m, 1� 
 
 
 
 
 
 Δ�m�

�
			


C k�Σ� :� C k�1�Σ� �B C 1�Σ�

where ‘�B’ denotes the Boolean product of two Boolean

matrices where logic AND and OR are used instead of

multiplication and plus operations in the matrix product.
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Definition 7: Π�Σ�, the switching skeleton matrix of Σ with
output equivalence with Σ�, is an rm � rm matrix defined as

Π�Σ� :�
nm�1�

k�1

�BC k�Σ�

where ‘�B’ denotes the Boolean addition of two matrices.

C k�Σ� shows whether an element of the output equivalence

list of a submachine can be reachable from another element

of the output equivalence list of another submachine in

exactly k steps. Here, “one-step” implies that Σ takes either

one switching operation or a chain of stable transitions.

Π�Σ� is a generalized description of stable reachability for

the switched asynchronous sequential machine Σ interpreted

in term of output equivalence with respect to the given

model Σ�. Not only does Π�Σ� represent stable reachability

within each submachine, it also elucidates whether a state

of a submachine can be reached from another state of a

different submachine by a combination of stable transitions

and switching operations wherein both start and final state are

represented as entries of the corresponding output equivalence

list. Since Σ has nm states in total, any state in Σ can be reached

within nm � 1 steps of switching and correction procedures.

Hence C 1�Σ�, . . . ,C nm�1�Σ� are sufficient to express the entire

reachability of Σ.

Note that Ei
j � E�Σi,Σ

��, or the jth entry of the output

equivalence list of Σi, has the jth position of the ith block of

C k�Σ� and Π�Σ�. Denoting by θij � �1, . . . , rm	 the index of

Ei
j, we have

θij � �i � 1�r � j. (2)

B. Model Matching

Remind that for Σ� with its state set Z � �zr, . . . , zr	,
the output equivalence list of submachine Σi is denoted by

E�Σi,Σ
�� � �Ei

1
, . . . , Ei

r	, i � 1, . . . ,m. Hence for each z j � Z,

we have m equivalent subsets of states, namely E1
j , . . . , E

m
j .

Definition 8: Given Σ and Σ�, Φ, a subordinate state list
with output equivalence with respect to Σ�, is

Φ :� �x j � Eij

j 
i j � M, j � 1, . . . , r	.

K�Φ�, the skeleton matrix of Φ, is an r�r matrix whose �p, q�
entry is defined as (p, q � �1, . . . , r	)

Kp,q�Φ� :� Πp�,q��Σ�

where Π�Σ� is the switching skeleton matrix of Σ with output

equivalence with Σ� introduced in Definition 7, and p� � θip
p

and q� � θiqq (see (2)).

Φ consists of r states, each state x j taken from an entry Eij

j
of the output equivalence list of Σi j . i j implies that submachine

Σi j having the entry Eij

j may differ from each z j. In other

words, Φ represents a collection of r states that are output

equivalent with Z, while elements of Φ may belong to different

submachines.

Using Φ and the skeleton matrices defined in the previous

discussion, we now present the existence condition for a

corrective controller that solves the model matching problem

between Σc and Σ�.

Theorem 1: Given the switched asynchronous sequential

machine Σ and the model Σ�, a corrective controller C in Fig. 1

exists that matches the stable-state behavior of Σc to that of

Σ� if and only if a subordinate state list Φ � �x j � Eij

j 
i j �
M, j � 1, . . . , r	 exists for which

K�Σ�� � K�Φ�. (3)

Condition (3) means that Σ possesses a subordinate state

list Φ � �x1, . . . , xr	 whose stable reachability is greater than

the model Σ�. Provided that (3) is valid, assume Kp,q�Σ
�� � 1

for some p, q � �1, . . . , r	, which implies that Σ� has a stable

transition from zp to zq. But since K�Σ�� � K�Φ�, Kp,q�Φ� � 1.

According to Definition 8, the latter leads to Πp�,q��Σ� with

p� � �ip�1�r�p and q� � �iq�1�r�q, which means that xp �
Φ of Σip can be reached to xq � Φ of Σiq through a sequence

of switching operations and correction procedures. Hence we

can design a controller module that realizes the corresponding

feedback path. After constructing each controller module for

all stable transitions of Σ�, the overall controller C is completed

by assembling each controller module using join operation [8]

that combines two corrective controller modules. A detailed

algorithm for constructing C is omitted in this study.

IV. Example

x x
c

c
b

b

x

a

c a

x x
c

c
b

b

x

a

c

Fig. 2 State flow diagram of Σ � �Σ1,Σ2�

z z
c

c
b

b

z

a

c

Fig. 3 State flow diagram of Σ�

Consider a simple switched asynchronous sequential

machine Σ � �Σ1,Σ2	 (M � �1, 2	) shown in Fig. 2,

where X � �x1, x2, x3	 with x0 :� x1, A � �a, b, c	, and

Y � �1, 2, 3	. The output of each state is marked after dash

‘/’ in the figure. For simplicity, we set fi�x, v� � si�x, v�
for all i � 1, 2 and �x, v� � X � A. Solid arrows represent

state transitions in submachines and dashed arrows switching
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capability between Σ1 and Σ2. Fig. 3 shows the state flow

diagram of the model Σ, where the state set is Z � �z1, z2, z3�.
First, we derive the output equivalence list of Σ1 and Σ2

with respect to Σ�.

E�Σ1,Σ
�� � �E1

1, E
1
2, E

1
3� � ��x1, x2�, �x3�,∅�

E�Σ2,Σ
�� � �E2

1, E
2
2, E

2
3� � ��x1, x2�,∅, �x3��.

Next, referring to Figs. 2 and 3, we compute the fused

skeleton matrix and switching incidence matrix as follows.

Δ�1� �

�
�1 1 0

1 1 0

0 0 0

�
�

Δ�2� �

�
�1 0 1

0 0 0

1 0 1

�
�

G�1, 2� �

�
�0 0 1

0 0 0

0 0 0

�
�

G�2, 1� �

�
�0 0 0

0 0 0

0 1 0

�
�

The one-step switching skeleton matrix C 1�Σ� is derived as

C 1�Σ� �

�
Δ�1� G�1, 2�

G�2, 1� Δ�2�

�

�

�
�������

1 1 0 0 0 1

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 1 0 1 0 1

�
�������

The one-step skeleton matrix S 1�Σ�� of the model Σ� is

computed as

S 1�Σ�� �

�
�1 1 1

1 1 1

1 1 1

�
�

To determine the existence of a corrective controller for

model matching between Σ and Σ�, we compute C k�Σ�, k �
2, . . . , 5, so as to derive the switching skeleton matrix Π�Σ�
according to Definitions 6 and 7.

Π�Σ� �

�
�������

1 1 0 1 0 1

1 1 0 1 0 1

0 0 0 0 0 0

1 1 0 1 0 1

0 0 0 0 0 0

1 1 0 1 0 1

�
�������

Referring to the above result, take a subordinate state list Φ

as follows.

Φ � �x1 � E1
1, x3 � E1

2, x3 � E2
3�.

The corresponding index set of Φ is �1, 2, 6�. Finally, by

Definition 8, we derive the skeleton matrix K�Φ� of Φ as

K�Φ� �

�
�1 1 1

1 1 1

1 1 1

�
�

For instance, K1,3�Φ� � Π1,6�Σ� � 1 and K3,2�Φ� � Π6,2�Σ� �
1. Clearly, since Φ satisfies condition (3), by Theorem 1 a

corrective controller C can be designed that solves the model

matching problem between Σ and Σ�.

V. Summary

We have investigated controllability of a class of

switched asynchronous sequential machines. When switched

asynchronous sequential machines are endowed with

submachines having the form of input/output machines, their

reachability are described in terms of output equivalence

with respect to a given model. We have presented that

stable reachability and switching capability of switched

asynchronous sequential machines can be represented by

matrix expressions, which leads to the existence condition for

a corrective controller solving the model matching problem.

The examination of the controller existence has been practised

in the case study.
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