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Abstract—Traditionally, the three important manufacturing 
functions, which are process planning, scheduling and due-date 
assignment, are performed separately and sequentially. For couple of 
decades, hundreds of studies are done on integrated process planning 
and scheduling problems and numerous researches are performed on 
scheduling with due date assignment problem, but unfortunately the 
integration of these three important functions are not adequately 
addressed. Here, the integration of these three important functions is 
studied by using genetic, random-genetic hybrid, simulated 
annealing, random-simulated annealing hybrid and random search 
techniques. As well, the importance of the integration of these three 
functions and the power of meta-heuristics and of hybrid heuristics 
are studied. 
 

Keywords—Process planning, weighted scheduling, weighted 
due-date assignment, genetic search, simulated annealing, hybrid 
meta-heuristics. 

I. INTRODUCTION 

ROCESS planning, scheduling and due date assignment 
are the three important functions in a modern 

manufacturing system. First function, which is the process 
plan, specifies what things are going to be needed to produce a 
product and their production processes. Process planning 
consists of two section, the first of them is the selection of 
operation and the second one is the operation sequencing [1]. 
Therefore, most manufacturing systems work with alternative 
process plans because a company needs to be flexible to 
produce many different products. Once a process plan is done, 
the outcome of the process planning is the input of scheduling 
[2]. Although process planning and scheduling are related to 
each other, traditionally, they are usually considered two 
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separate and different functions. It is assumed that there is no 
other process plans for each product part in the traditional 
manufacturing system [3]-[5]; this causes major problems for 
process planning and scheduling; that is why, to integrate 
process planning and scheduling has become a crucial 
problem and received the attention of researchers and 
engineers. The integration of those two functions contributes 
positively to the manufacturing system performance system. 
Only the scheduling problem is categorized as NP-Hard 
problem. Thus, the integration problems of scheduling are also 
categorized as NP-Hard problem. In the past 20 years, a 
significant number of researchers and engineers have studied 
the integration of process planning and scheduling (IPPS); as 
well, numerous meta-heuristic approaches have been 
developed to solve the IPPS. Some of those meta-heuristic 
algorithms are genetic algorithm (GA), simulated annealing 
(SA), taboo search (TS), ant colony optimization (ACO), 
particle swarm optimization (PSO), and the hybrid algorithms.  

The other integration problem is to integrate scheduling and 
due date assignment functions. In scheduling with due date 
assignment (SWDDA), firstly due dates of jobs are determined 
and production planning are scheduling according to due 
dates. In modern manufacturing systems, due dates are 
determined with the negotiation of customers and 
manufacturers. Making too short due date assignments may 
lead to missed due dates. Besides, making too long due date 
assignments may lead to lost customers for manufacturers. 
That is why, due date assignment and scheduling should be 
considered together to make better decisions [6].  

In recent years, the study of integration of two (IPPS and 
SWDDA) or three (IPPS with due date assignment) 
manufacturing functions has attracted significant attention, 
due to the advantages of working with alternative process 
plans. Expanding this research, this study investigates the 
integration of three manufacturing functions, which are known 
as integrated process planning, scheduling and due date 
assignment (IPPSDDA). There are relatively a few published 
on IPPSDDA in the literature. Integration of three production 
functions (process planning, scheduling and due date 
assignment) would show a more efficient way in terms of 
production management [7]. In this study, various numbers of 
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meta-heuristic algorithms were applied to solve the integration 
problem. The methods used are genetic, hybrid random 
search-genetic algorithm (RS/GA), SA, hybrid random search-
simulated annealing algorithm (RS/SA) and random search 
algorithms. Furthermore, the importance level of the 
customers was also taken into account, since there is always 
priority scheduling in real companies. 

The remainder of this paper is organized as follows. Section 
II gives some literature reviews on integration problems. 
Section III describes the problem. Section IV provides the list 
of approaches, which are genetic, random-genetic hybrid, 
simulated annealing, random-simulated annealing hybrid and 
random search algorithms, for solving integration optimization 
problems based these algorithms. Then, Section V provides an 
experimental study and the results. And finally, the 
conclusions are given in Section VI.  

II. LITERATURE REVIEW 

Since IPPS provides great improvements for the 
productivity of manufacturing companies in terms of lead-
time, usage rate of resources etc., there have been plenty of 
studies studied by many researchers. Chryssolouris first used 
the IPPS term in 1984; and specifies IPPS as (Manufacturing 
Decision Making Approach (MADEMA) [8]. They generated 
a decision matrix to choose one from several alternatives. 
After that Sundara and Fu, proposed a scheduling approach in 
order to minimize the make span [9]. In addition, Shrihari and 
Greene proposed a prototype referred to as the computer aided 
process planning (CAPP) in 1990 [10]. In recent years, many 
literatures can be found, such as [11]-[13], and some important 
literature papers [14]-[17], show that the attention on IPPS is 
very high. Therefore, many approaches have been used to 
integrate process planning and scheduling, such as GA [18], 
[19], TS [18], [20]-[24], SA [25]-[27], ACO [7], [28], [29], 
PSO [15], [30]-[32], evaluation strategy [33], agent-based, and 
algorithm based .  

Kim et al. [33] have studied the merging of two 
manufacturing functions and proposed a new method by using 
artificial intelligence on searching methods. Lim and Zhang 
[34] optimized the system of integration of dynamic process 
planning and dynamic production scheduling. Kumar and 
Rajotia [17] proposed a framework for the IPPS g. While Li et 
al. [11] evaluated the integrated process planning and 
scheduling.  

Besides IPPS, many papers have been published on 
SWDDA. Due dates given at the same time with other 
functions can lead to a significant improvement. Therefore, it 
can be said that integrating due date assignment with 
scheduling have a growing interest in the today’s competitive 
world. Gordon et al. [35] emphasized the performance of 
scheduling and due date assignment for an evaluation of an art 
study. Single machine scheduling with due date assignment 
(SMSWDDA) problem is also included in SWDDA problems 
and some studies for SMSWDDA can be listed as [33]-[38]. 

In previous researches, scheduling multiple jobs with a 
single machine problem has been studied and completed using 
various methods. In the paper of [39], the differential 

evaluation method was utilized to solve job shop problems for 
the objective of optimizing earliness/tardiness penalty costs. 
Uncertain processing times were used in [40] to establish job 
sequence and due date assignment for the purpose of 
minimizing earliness/tardiness penalty costs. Similarly, in the 
research of [41], single machine scheduling and due date 
assignment problems have been studied. 

In spite of the great number of scientific research on IPPS 
and SWDDA, there are few studies on IPPSDDA in the 
literature. Some studies related to IPPSDDA were given at 
[42]–[45]. 

III. DESCRIPTION OF THE PROBLEM 

In this study, the integration of process planning and the 
due date assignment problem was studied, and an attempt was 
made to integrate those three manufacturing functions with 
weighted scheduling and due date assignment. The tests were 
conducted in four different size shop floors, the details of 
which are given in Table I. In Table I, there are five machines 
and 25 jobs in Shop Floor 1. There are five alternative routes 
for small shop floors and three alternative routes for large 
shop floors. The time for all operations will be produced 
randomly and determined with the function of  12 6 z   . 

Furthermore, it is assumed that all jobs have 10 operations. 
 

TABLE I 
SHOP FLOORS 

Shop 
Floor 

Number of 
Machines 

Number of 
Jobs 

Number of 
Routes 

Operation 
Time 

Number of 
Operation 

1 5 25 5  12 6 z    10 

2 15 75 5  12 6 z    10 

3 25 125 3  12 6 z   10 

4 35 175 3  12 6 z   10 

 
It is also assumed that one shift is eight hours; this makes 

8*8=480 minutes. Weight (j) will be used for all customers. 
Earliness/tardiness penalties, penalty for due dates and total 
penalty points are calculated in:  
 

8
480j j

D
PD w

   
 

                                    (1) 

 

5 4
480j j

E
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     
  

                             (2) 
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480j j

T
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     
  

                           (3) 

 

j j j jP PD PE PT                                 (4) 

 

jj
TP P                                    (5) 

 
The notations to explain the equations are represented as:  

 wj: the importance of job j 
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 D: the assigned due date of job j 
 E: earliness of job j 
 T: tardiness of job j 
 PDj: penalty for due date 
 PEj: penalty for earliness 
 PTj: penalty for tardiness of job j 
 Pj: total penalty for a job is determined by (4) 
 TP: the total penalty for all of the jobs 

As mentioned earlier, six different approaches will be used 
to solve the problem. The sample chromosome is shown in 
Fig. 1. Here, there are n+2 genes, and the first and second 
genes represent due date and scheduling, while the rest 
represents the routes of each of the jobs. Shop Floor 1 and 
Shop Floor 2 have five routes, and Shop Floor 3 and 4 have 
three routes. Three alternative routes were chosen for Shop 
Floor 3 and 4 to run the computer program faster and stronger. 
Likewise, the marginal gains of the alternative routes reduce, 
since the alternative number increases. In this way, the first 
alternative routes are the most advantageous in terms of 
marginal gains.  
 

 

Fig. 1 Chromosome representation 
 

Due date assignment procedure consists of two different 
rules, which are weighted number of operation plus processing 
time (WNOPPT) and random due date assignment (RDM). 
Basically, WNOPPT works internally and conversely RDM 
works externally. Operations and processing time multipliers 
are determined and WNOPPT main rules are increased by nine 
working with different multipliers. Likewise, RDM rules are 
represented by 10. Those rules are shown in the Table II.  

 
TABLE II 

DUE DATE RULES 

Method Multiplier1 Multiplier2 Rule No 

WNOPPT kx=1,2,3 ky=1,2,3 1,2,3,4,5,6,7,8,9

RDM 10 

 
TABLE III 

DISPATCHING RULES 

METHOD MULTIPLIER RULE NO 

WATC kx=1,2,3 1,2,3 

ATC kx=1,2,3 4,5,6 

WMS, MS  7,8 

WSPT, SPT  9,10 

WLPT, LPT  11,12 

WSOT, SOT  13,14 

WLOT, LOT  15,16 

WEDD, EDD  17,18 

WERD, ERD  19,20 

SIRO  21 

The second gene is the dispatching rule, which can be seen 
in Fig. 1; it has nine different possible rules. Table III shows 
the scheduling rules. At the second gene of the chromosome, 
dispatching rules can be one of nine different main rules. With 
the multipliers and weights of the jobs, the second gene 
assumes one of 21 values and these rules are listed at Table 
III. The explanation of the methods can be found in the 
Appendix section. 

IV. OPTIMIZATION APPROACHES FOR IPPSDDA 

A. GA 

GA is search and optimization method, which works the 
same with the evolutionary process observed from nature. It 
searches for the best solution in terms of the best ones survive 
in the complex multi dimension search space. The essentials 
of GA were introduced by Holland at Michigan University. 
Holland gathered all his studies on the book namely, 
“Adaptation in Natural and Artificial Systems” [46]. Fig. 2 
shows the workflow of GA.  
 

 

Fig. 2 The workflow of GA 

B. Hybrid RS/GA Algorithm  

In this approach, both random search and genetic search 
techniques will be used. First, the solution set will be scanned 
more efficiently with a random search. Second, it will attempt 
to take advantage of the power of the directed search by 
continuing with the genetic search. The same number of 
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iterations is applied for making comparisons fairer. For 
instance, 200 genetic iterations, 200 random iterations and 20-
180 hybrid RS/GA algorithm combinations are used.  

The benefit of starting with a random iteration can be 
summarized as follows: If we generate one random number 
between 0 and 1,000, 500 (1/2) would be the expected value of 
this random number and that marginal gains would be 500. 
Therefore, if we generate two random numbers between 0 and 
1,000, and if we take the maximum of it, the expected value of 

667 (2/3) and the marginal gains would decrease to 167; 
however, that is still a high marginal benefit. Likewise, if we 
generate three random numbers, and if we take the maximum 
of it, the expected value of 750 (3/4) and the marginal gains 
would decrease to 83; which is still a high marginal benefit. 
When we sort the marginal gains that would be 500,167 and 
83, the solution set would be scanned more efficient. Fig. 3 
shows the workflow of hybrid RS/GA algorithm. 

 

 

Fig. 3 The workflow of hybrid RS/GA 
 

C. SA 

SA was introduced by Kirkpatrick et al. [47] in 1983 and 
Černý contributed to SA a local search algorithm to solve the 
complex problems [48]. The origin of the SA was inspired by 
a similarity with the SA process of solids. This similarity is 
quite appealing and in SA, it is used as a background. 
Annealing process is known as the thermal process for taking 
low energy states of a solid in a heat beat. SA is a strong 
algorithm uses randomization to escape from local optima. 
Given a current state i of Ei, the resulting state j is produced by 
applying a perturbation mechanism that changes the present 
state into a next state by a little mutilation, for example, by a 
displacement of a single particle. 

 

i j

B

E E

k T
acceptP e

 
  
                                      (6) 

 
where, T: the temperature of the heat bath, kB: the Boltzmann 
constant, Ei: the energy of the current state, Ej: the energy of 
the next state 

The acceptable rate depends on the value of the 
temperature. When the temperature is high, the acceptable rate 
of the move that makes an objective function increased, and 
the temperature drops, this possibility will also be decreased. 
That is why, it is necessary to begin the search at the highest 
point of temperature. In the algorithm, while the temperature 
was slowly reduced, the search process is continued by trying 
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a certain number of moves at each temperature value. Fig. 4 
shows the workflow of SA. 

D. Hybrid RS/SA Algorithm 

In this hybrid search, we start with random search and 
continue with SA; 10% of the searches are random and 90% of 
the searches are performed using SA. 

E. Random Search  

In this search, individuals are produced for each iteration 
randomly, and an attempt to get a better solution is undertaken 
by using the random search method. Marginal gain is higher at 
the first iteration, increasing of the number of iterations would 
result in reduced increase of the performance. Since the best 
solutions of the previous search make no contribution to the 
new individuals, this search method is oriented, unlike the 
genetic search. Genetic search uses the best solutions of the 
previous iteration for the next iteration. Fig. 5 shows the 
workflow of random search. 

V. COMPARISONS MADE 

Ordinary solutions are the basic solutions; thus, all the 
solutions are going to be compared with the ordinary 
solutions. The different integration levels are listed below:  
 SIRO-RDM (Ordinary, GA, Hybrid GA/RS, SA, Hybrid 

SA/RS, RS): This integration level is the lowest one 
among the all integration levels, where jobs are scheduled 
in random order and due dates are generated randomly.  

 SIRO-WNOPPT (Ordinary, GA, Hybrid GA/RS, SA, 
Hybrid SA/RS, RS): Although jobs are scheduled 
randomly, WNOPPT due-date assignment is integrated 
with process planning. 

 WSCH-RDM (Ordinary, GA, Hybrid GA/RS, SA, Hybrid 
SA/RS, RS): Although due dates are still generated 
randomly, different number of dispatching rules are 
worked together with process planning.  

 

K=1, β, N
Generate S1

Sopt=S1

Sactive<Sopt
Uk=Uniform(0,1) generate random number

P(Sk, Sactive) = e (̂G(Sk)-G(Sactive))/βk

Sopt=Sk+1=Sactive

βk+1≤βk

k=k+1

Sk+1=sactive

βk+1≤βk

k=k+1
Uk<=P(Sk,Sactive)

k<N Stop

Start

Sactive<Sk

Generate Sactive

Sactive<SkYes No

Yes No

Sk+1=sk

βk+1≤βk

k=k+1

NoYes

No

Yes

 

Fig. 4 The workflow of SA 
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 WSCH-WNOPPT (Ordinary, GA, Hybrid GA/RS, SA, 
Hybrid SA/RS, RS): The highest level of integration is 
used here. Process planning, weighted scheduling and 
WNOPPT weighted due-date assignments are integrated. 
Table IV shows the number of iterations of GA, RS/GA, 
RS, SA and RS/GA. 
 

TABLE IV 
ITERATION NUMBERS FOR PURE AND HYBRID SEARCHES 

 GA RS/GA Hybrid RS SA RS/SA Hybrid

Shop Floor 
GA 
Iter. 

Random 
Iter. 

GA 
Iter # 

Random Iter. 
SA 
Iter. 

Random
Iter. 

SA 
Iter.

1 200 20 180 200 2600 260 2340

2 150 15 135 150 1950 195 1755

3 100 10 90 100 1300 130 1170

4 50 5 45 50 650 65 585

 
As can be seen in Table IV, there are 200 iterations for 

Shop Floor 1; 10% of the total number is covered with RS 
iterations for hybrid meta-heuristics. In addition, the number 
of SA iterations is equal to 13 multiple. Likewise, 10% of the 
iterations are random for RS/SA hybrid search. 

VI.  EXPERIMENTAL STUDIES AND DISCUSSION 

In this section, the experiments of integration of the process 
planning, scheduling and due-date assignment were conducted 
and the results of techniques are given and compared with 
results of each of the techniques, which are GA, Hybrid 
RS/GA, Random, SA, Hybrid RS/SA. As the problem was 
categorized as an NP-Hard problem, different meta-heuristic 
approaches were applied and the results of the experiments 
were compared according to their performance levels. 

The approaches for IPPSDDA was coded in C++ with 
Borland 5.02 compiler software and implemented on a 
computer with 3.3 GHz Intel Core (TM) CPU, 8 GB RAM 
with the Windows 10 operating system. In the following 
section, the performance of the chosen meta-heuristic methods 
is investigated. 

A. Comparison of the Used Search Techniques 

As stated in literature review section, GA and SA have been 
successfully utilized to solve the IPPS and SCHWDDA 
problems. In this section, the main objective is to compare the 
performance of the GA and SA algorithms with random and 
ordinary search methods. In this study, five different search 
methods are used to solve the problem. Table V shows the 
results, performance measures of costs, as well as the CPU 
time of each of the methods, separately. The integration levels 
(SIRO-RDM, WSCH-RDM, SIRO-WNOPPT, WSCH-
WNOPPT) with the shop floors (Shop Floor 1-4), and search 
methods (Ordinary, GA, Hybrid RS/GA, Random, SA, Hybrid 
RS/SA) and CPU times are given in Table V. Comparisons 
and improvements are evaluated based on the ordinary 
technique results.  

As can be seen from Table V, optimal solutions are 
improved by using the higher integration level and 
optimization techniques. For instance, the ordinary result of 
Shop Floor 1 with SIRO-RDM level is improved from 292 to 

256 by using GA. In Shop Floor 4, optimal solution with 
WSCH-WNOPPT is improved from 1,463 to 1,290 by using 
GA, again. An example where Hybrid RS/SA is the most 
superior among the other techniques can be given as at Shop 
Floor 1 with WSCH-WNOPPT level. Optimal solution is 
improved from 208 to 175 at that experiment. 

The result obtained by the methods are summarized and 
illustrated in Figs. 6-9. Results for Shop Floor 1 are shown in 
Fig. 6. It is seen that methods show similar ranking in Shop 
Floor 1; however, Hybrid RS/SA and SA methods are 
outperformed by GA. The performance of GA, Hybrid RS/GA 
and Hybrid RS/SA are very close to the optimum solution, 
whereas random search achieved the lowest solution at that 
floor. The results for Shop Floor 2 are demonstrated in Fig. 7. 
It is clearly seen that GA is the most superior algorithm to 
solve the IPPSWDDA problem. The results for Shop Floor 3 
support the main outcome of the study and are shown in Fig. 
8. Lastly, the results for Shop Floor 4 are shown in Fig. 9. 

 

 

Fig. 5 The workflow of random search 
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Fig. 6 Results of Shop Floor 1 
 

 

Fig. 7 Results of Shop Floor 2 
 

 

Fig. 8 Results of Shop Floor 3 
 

 

Fig. 9 Results of Shop Floor 4 

TABLE V 
RESULTS OF THE STUDY 

Level of 
Integration 

(Combination) 
Approaches 

Shop Floor 1 Shop Floor 2 Shop Floor 3 Shop Floor 4 

Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU Best Avg. Worst CPU

SIRO-RDM 

Ordinary 292 292 292 18 906 906 906 235 1412 1412 1412 274 2019 2019 2019 278 

GA 249 256 259 16 803 816 820 201 1291 1300 1305 256 1846 1856 1863 268 

Hybrid RS/GA 265 269 272 16 814 818 822 204 1305 1312 1315 260 1856 1869 1878 270 

Random 268 273 275 17 853 864 870 211 1354 1371 1378 274 1907 1925 1934 278 

SA 256 260 261 15 531 547 553 89 1357 1365 1369 234 1881 1896 1903 241 

Hybrid RS/SA 258 263 266 18 846 857 864 235 1292 1317 1325 223 1876 1888 1899 240 

WSCH-RDM 

Ordinary 276 276 276 27 802 802 802 253 1372 1372 1372 332 1885 1885 1885 338 

GA 218 219 219 17 676 678 679 220 1092 1095 1097 278 1523 1526 1529 292 

RS/GA 215 216 216 17 657 658 659 208 1036 1038 1039 257 1464 1467 1469 282 

Random 213 218 220 20 676 684 689 253 1085 1097 1108 332 1531 1559 1583 338 

SA 205 211 213 27 648 657 661 177 1038 1044 1047 260 1569 1580 1586 248 

Hybrid RS/SA 209 210 210 15 661 665 667 193 1045 1048 1050 247 1484 1497 1503 254 

SIRO-WNOPPT 

Ordinary 287 287 287 20 874 874 874 233 1315 1315 1315 349 1938 1938 1938 315 

GA 231 238 241 20 749 757 760 230 1228 1242 1249 323 1753 1764 1773 313 

Hybrid RS/GA 240 242 244 20 759 764 765 228 1228 1238 1242 329 1719 1730 1742 310 

Random 252 259 264 20 807 815 821 233 1273 1287 1292 349 1779 1801 1815 315 

SA 247 257 262 19 781 804 810 204 1247 1263 1274 248 1758 1787 1803 250 

Hybrid RS/SA 251 255 257 20 773 797 805 204 1263 1273 1281 259 1781 1793 1805 266 

WSCH-WNOPPT 

Ordinary 208 208 208 45 654 654 654 367 1009 1009 1009 539 1463 1463 1463 549 

GA 176 176 177 34 599 605 609 218 862 865 866 539 1282 1287 1290 549 

Hybrid RS/GA 176 177 179 33 585 587 588 385 873 877 880 504 1286 1291 1293 541 

Random 189 192 193 25 624 632 636 284 915 930 942 365 1301 1332 1353 379 

SA 179 180 182 45 629 634 636 199 903 916 924 255 1328 1347 1360 262 

Hybrid RS/SA 175 178 179 34 593 604 608 367 883 886 888 452 1312 1322 1328 470 
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VII. CONCLUSION 

In this paper, five different meta-heuristic methods were 
utilized and can be adapted to solve the IPPS with due-date 
assignment problem. Two types of Hybrid methods for the 
IPPSWDDA problem have been implemented, and consist of 
random search with GA and random search with SA 
algorithm. As it can be seen in Figs. 6-9, the performance 
difference between GA and Hybrid RS/GA is very close. 
Hybrid RS/SA and Hybrid RS/GA algorithms are 
outperformed by GA. 

As a conclusion, although Hybrid RS/SA and Hybrid 
RS/GA algorithms can be suitable to solve the IPPSWDDA 
problem, GA is still the best algorithm to solve the problem 
with a full integration level. 
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APPENDIX 

A. Due-Date Assignment Rules  

 WNOPPT: 1 1 2 2Due w k TPT w k NOP        

 RDM:  23 , ( )avg avgDue N P P     

 TPT: Total processing time 
 Pavg: Mean processing time of all job waiting 

B. Dispatching Rules 

 WATC/ATC ((Weighted) Apparent Tardiness Cost): This 
is composite dispatching rule, and it is a hybrid of MS and 
SPT and takes into account importance of customers. 

 WMS/MS: Weighted/Minimum Slack First 
 WSPT/SPT: Weighted/Shortest Processing Time First 
 WLPT/LPT: Weighted/Longest Processing Time First 
 WSOT/SOT: Weighted/Shortest Operation Time First 
 WLOT/LOT: Weighted/Longest Operation Time First 
 WEDD/EDD: Weighted/Earliest Due-Date First 
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