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Abstract—The present study is concerned with the optimal
design of functionally graded plates using particle swarm
optimization (PSO) algorithm. In this study, meshless local Petrov-
Galerkin (MLPG) method is employed to obtain the functionally
graded (FG) plate’s natural frequencies. Effects of two parameters
including thickness to height ratio and volume fraction index on the
natural frequencies and total mass of plate are studied by using the
MLPG results. Then the first natural frequency of the plate, for
different conditions where MLPG data are not available, is predicted
by an artificial neural network (ANN) approach which is trained by
back-error propagation (BEP) technique. The ANN results show that
the predicted data are in good agreement with the actual one. To
maximize the first natural frequency and minimize the mass of FG
plate simultaneously, the weighted sum optimization approach and
PSO algorithm are used. However, the proposed optimization process
of this study can provide the designers of FG plates with useful data.

Keywords—Optimal design, natural frequency, FG plate, hybrid
meshless method, MLPG method, ANN approach, particle swarm
optimization.

I. INTRODUCTION

Anew generation of materials including two or more
phases with a smoothly varying composition of gradually
changing of the volume fraction of the materials is called
functionally graded materials (FGMs). This kind of composite
materials have some improved properties in comparison to
conventional composites. Some research works have been
performed by focusing on the vibration of FGMs [1]-[3]. Also,
Vel and Batra [4] have proposed a solution for free and forced
vibrations of rectangular FG plates. In another study, Batra
and Jin [5] investigated the FGM anisotropic plates with
various boundary conditions by applying the finite element
method and the first-order shear deformation theory. Ferreira
et al. [6] and Roque et al. [7] presented a meshless method
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based on radial basis functions for free vibration of FG plates.
Matsunaga [8] performed a dynamic and stability analysis of
simply supported edges FGM plates using several sets of 2D
advanced approximate theories. In another study, Igbal et al.
[9] investigated the vibration characteristics of FG cylindrical
shells by wave propagation approach. An analytical method
for dynamic response analysis of FG thick hollow cylinders
under impact loading was presented by Hosseini and
Abolbashari [10]. In their study, the wave motion equation
was analytically solved by using the composition of Bessel
functions. In another study, Asgari et al. [11] studied a thick
hollow cylinder with finite length made of 2D-FGM and
subjected to impact internal pressure. Najafizadeh and
Isvandzibaei [12] presented a study on the vibration of thin
cylindrical shells with ring supports made of FGMs composed
of stainless steel and nickel, which was carried out based on
third order shear deformation shell theory. Fallah et al. [13]
studied free vibration analysis of moderately thick rectangular
FG plates on elastic foundation with various combinations of
simply supported and clamped boundary conditions based on
the Mindlin plate theory. In another study, Aragh and Yas [14]
investigated three-dimensional (3D) free vibration analysis of
four-parameter continuous grading fiber reinforced cylindrical
panels resting on Pasternak foundations by using generalized
power-law distribution. Ebrahimi and Rastgoo [15] presented
a theoretical model for geometrically nonlinear vibration
analysis of thermo-piezoelectrically actuated circular FG
plates based on Kirchhoff’s—Love hypothesis with von-
Karman type geometrical large nonlinear deformations.
Furthermore, Allahverdizadeh et al. [16] studied the nonlinear
vibration of a thin circular FG material plate using shooting
and Runge—Kutta methods.

MLPG is the first monograph on new class of meshless
methods that are expected to revolutionize engineering/science
analyses. The MLPG method eliminates the intensive human-
labor costs involved in an analysis. It is often computationally
less-expensive, as compared to the Finite Element and
Boundary Element Methods. Atluriet and Zhu [17], [19] and
Atluriet et al. [18] developed the MLPG method which is
based on the local weak instead of global weak formulation of
the problem. Sladek et al. [20] presented a review study on the
analysis of problems in engineering and the sciences using
MLPG method. In another study, Sladek et al. [21] used
MLPG method for 2D static and dynamic deformations of FG
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solids. In two other studies, Qian et al. [22] and Gilhooley et
al. [23] investigated the static and dynamic deformations of
thick FGM plates by applying a higher-order shear and normal
deformable plate theory and the MLPG method.
RezaeiMojdehi et al. [24] presented the static and dynamic
analysis of thick FG plates using MLPG method. Also, a
hybrid technique based on composition of Newmark finite
difference and MLPG methods was applied for natural
frequencies analysis of a thick FG cylinder by Hosseini [25].

In the recent years, artificial intelligence techniques such as
ANN and optimization algorithms have attracted the attention
of many researchers in the different fields of study such as
vibration of FG structures. For example, Kamarian et al. [26]
applied ANN, genetic and imperialist competitive algorithm
(ICA) for optimization of volume fraction of FG beams resting
on elastic foundation for maximizing the first natural
frequency. Furthermore, Jodaei et al. [27] used ANN
technique for 3D analysis of FG annular plates by applying
state-space based differential quadrature method. Jam et al.
[28] also focused on free vibration characteristics of FG
rectangular plates resting on Pasternak foundation based on
the 3D elasticity theory and by means of the generalized
differential quadrature method. They carried out a detailed
parametric study to highlight the influences of different
affecting parameters on the vibration characteristics of the FG
plates. The main goal of their study was FG plate’s density
minimizing to achieve a specified fundamental frequency
using ICA and ANN and presenting the optimized material
profile.

In this study, PSO algorithm and a hybrid meshless method
based on MLPG and ANN approach are used for the optimal
design of FG plates to maximize the first natural frequency
and minimize the mass of FG plate, simultaneously. The
MLPG method is employed to obtain some data for training
the ANN. The trained ANN can predict the first natural
frequencies in various conditions. Finally, the PSO algorithm
is used to maximize the first natural frequency and also to
minimize the mass of FG plate.

II. MODEL DESCRIPTION

A rectangular FG plate with uniform thickness is considered
in this study. Fig. 1 shows a schematic view of the plate in the
Cartesian coordinates (X, y, z).
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Fig. 1 Schematic of FG plate in rectangular Cartesian coordinate

A common pattern for describing the FG variation of
material properties is power-law function. Also the elasticity
modulus and density assumed to vary continuously due to
gradually changing the volume fraction of the constituent
materials. The Poisson’s ratio is assumed to be constant and
equal to 0.3. Along the thickness direction of the plate, volume
fraction of material number 1 (bottom surface) is assumed to
obey (1):

gy =pu’ (1)

where p stands for volume fraction index of power-law
pattern and g=z/h. Also, volume fraction function at any
height is denoted byg. The mixture rule is to express the

effective material properties of the plate along the thickness
consists of Young’s modulus and mass density according to

).
7 (1) =1}, +( =7 )91 &

wherey, denotes the effective material properties of FG plate.
The terms 7, and 7, in (2) are the properties of the bottom

and top surfaces, respectively.

III. APPLYING THE MLPG METHOD FOR 3D PROBLEMS

Assume the problem of linear elasticity where the 3D
equation of motion in the domain of €, which is bounded by
the surface I, in absence of any body force, is as:

o, (X, D)= p(X)i;(X,1), in Q 3)

where the indices i and j take the values of 1, 2, and 3 and
refer to Cartesian coordinates of x, y, and z, respectively.
Also, o, (X, ) p and (i, (X ,t) = du,(X,t)/ ot* are the stress

tensor, density and acceleration field, respectively. The
boundary conditions are assumed as:

oy (XN, (X)=t(X,tyon T, (4)

ui(X,t):UI(X,t) on T, 5)

where Ny, u (X,t), and ti (X,1) represent the unit outward

vector normal to boundary I',, the displacement component
and the surface traction components, respectively. Also
o (X,t) and t(X,t)are the prescribed displacement and
prescribed traction on I'; and I', , respectively.

For a plate undergoing free vibration, its periodic
displacement components can be illustrated in terms of the
displacement amplitude functions, u, =U, exp(J wt), where

-1 and @andU; denote the natural frequency of the
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plate and maximum amplitude of U , respectively.

As indicated in Fig. 2, brick-shaped local domains in this
study are considered as sub-domains and support domains.
Because the global domain of the rectangular plate is

Local boundary Q=T Jor an internal node

z

parallelepiped when the local sub-domain intersects the global
boundary, the mapping procedure is simple, and no special
treatment is needed.

Sub-domain Q_ for node I

Fig. 2 Sub-domains and global domain for a rectangular plate

A. 3D Elastic Body Local Symmetric Weak Form

The generalized local weak form of the equilibrium
equations over a local sub-domain around node i, can be
written as:

.[ (aijyj(x?t)+wzpui(x’t))ﬂ’l (X)dew
ol B (6)
—& [ @D =Ui(X,0)4 (X)dT =0

As this paper deals with the free vibration analysis, the
body force vector is assumed to be zero. In this
equation 4, (X) and u;(X,t)are the test and trial functions,
respectively. In (6), the term T is a part of the boundary
Q! over which the essential boundary is prescribed. Also £ is a

penalty parameter to impose the essential boundary condition
& £1. One can write:

(X,D4, = (o;(X,0)4); — 0y (X.DA, (7

Ti. i

Using the divergence theory and (7), (8) is obtained:

[ o, (X, 0N, (X)4, (X)dT

- [ (0,(X,04,,(X)dQ

~ ®)
—& [ @ (XD =ui(X, )4 (X)dT

|
FSH

+jw2pui(x,t)/1|(X)dQ=o

By substitution of T,(X,t)=0 in (8), (9) which is the

symmetric local weak form of linear elastic free vibration is

obtained.
[ o (X,04,,00dQ - [ (X4, (X)dT

= [HOGHACOAT+& [ U, (X,04 (X)dT ©)

—o" [ pu(X,H4,(X)dQ=0.

In (9), T}, is a part of local boundary which is placed inside
the global domain. It does not have any contact with the
problems’ global boundary. Furthermore, '}, and T, are

parts of the local boundary that coincide with the global
traction and displacement boundaries, respectively. It should
be mentioned that 4, (X) should be chosen such that to be

vanished outside and positive inside the€2,. Consequently,
Q! (the boundary of local sub-domain) consists of three
parts,0Q! =T, UT!, UT}.

B. MLS 3D Approximation

The unknown trial approximantU(X) of u(X) in Moving

Least Square (MLS) approximation is as follow:

a(X)=p' (X)a(X) vX eQ; p'(X)
=[P (XD, P, (X), Py (X)), Py (X)]

(10)

where p' (X)is a complete monomial basis of orderm , which
for 3D problems a quadratic basis vector can be defined as
(11). Furthermore, the defined domain of MLS approximation
at point X for the trial function is denoted by Q, .

P (X)=[LXY,2,X*,y*,2°, Xy, yz,2x]. (11)
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A weighted discrete L2-norm of equation is as follow:

J(t’=l(><))=Zg|(X)[DT(XJa(X)—O']2

=[P.a(X)-a] G(X)[P.a(X)-u].

(12)

By minimizing (12), the coefficient vector of a(X)is
determined. In (12), g, (X) is the weight function of node 1.
Also, it is strictly positive (g, (X)>0) for all points located
in the support domain of weight function. Moreover, X, is the
I™ node position, and U'(l =1,2,3,...,N TQx)presents the

fictitious nodal value. Furthermore, G , P and ( are as:

(X))
pT(X,)
P= ' )
P O
Xy 0 . . . 0
0
13)
G= >
. . 0
0 0 9y (X)
Gz[apazr“adm]lw
In this study, 0(.)/0X; is denoted by(.);. The

approximation of U((X)can be obtained by substitution of
a(X) in (10) as (14).

U(X)=Z¢'(X)ﬁ' (14)

Also, the partial derivatives of the trial function, U;(X),
and MLS approximation shape function, f'(X), and its
derivative, f_i' (X), are obtained as (15)-(17), respectively.

0, (X) =2 ¢;(X)' (15)

#'(X) =2 p; OIA™ (X)B(X)], (16)
j=1

gi(X)=>[p;;(A'B); + p;(A'B; +A'B); 1 (17)

j=1

Moreover, R, is the support size of the weight function, defined

=1
asR, =7l (18), where r denotes the dimensionless size of

cubic support domain.

RX =T|x,

=l
Ry :le; (18)
R =Z'|_Iz.

Furthermore, | denotes the average of nodal spacing in the
vicinity of node I between two neighboring nodes in (19):

L' =[x=x;
L =ly=y; (19)
1'=|z-2,

C.Heaviside Step Test Function

In this study, the test function assumed to be Heaviside step
function which corresponds to MLPGS5 (20):

1 XeQ,
0 XegQ,

AX) :{ (20)

In MLPGS5 method, the local nodal-based test function, over
a local sub-domain centered at a node, is the Heaviside step
function. In numerical integration, a definite integral is
approximated by evaluating the integral at a finite set of points
called integration points and then a weighted sum of these
values is used to provide an approximation. If Gaussian
quadrature is used as a rule for the approximation, the
integration points take specific locations and weights, thus an
integration point becomes a Gauss point. By using this
method, there is no need for both a domain integral in the
attendant symmetric weak-form and a singular integral.

The sub-domain dimension for node I is defined as

Qyl,")x (Zl//l_y' )x(2wl,"), where y is a constant between 0
and 1. For support of the test function, brick-shaped sub-
domain is selected.

The discretized system of linear equations is obtained by
substituting the MLS approximation function, (14) into (9) and
summing up for all nodes, as:

5 N
DKy =M, (X,1) =0, @1
J=1

In this equation, S s K , and M denote the total number of
nodes, the stiffness and mass matrixes, respectively.

Therefore, for the MLPGS5 method, Kand M are as:

I\/NIU:Ip(DJdQ (22)

Q;
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K, =—[ NDB’dr - j SNDBJdngj S®’'dr  (23)
I l—-l

1
T Cau su

The vectors and matrices of (22) and (23) in 3D space are as
(24)-(29). Also Poisson’s ratio and Young’s modulus are
denoted by v and E , respectively. In this study, E and p are
considered to vary through the thickness according to power-
law model.

Y 0 0
1-v 1-v
L 0 0
1-v 1-v
]l % 10 0 0
_ -V -V
p_ -y o o8
(1=2v)1+v)| ¢ 0 0 0 0
21-v)
0 0 0 0 =2
21-v)
0 0 0 0 el
L 201-v) |
43 0 0]
0 ¢, O
0 0 !
B =| , | b , (25)
¢,y ¢,x O
J J
0 ¢, o,
¢, 0 ¢,
0 0
=0 ¢ 0], (26)
0 0 ¢
l:iJ
~J A
=40 ¢, 27)
0
S, 0 0
S=/0 S, 0
0 0 S,
1 u, is prescribed onT’
Sk — ( .k p ) u) ’ (28)
0  (u,isnot prescribedonT,)
k=xy,2
i, 0 0 A, 0 A,
N=l0 A, 0 A A, 0] (29)
0 0 A 0 A, n

N
<
>

IV. ARTIFICIAL INTELLIGENCE APPROACH FOR PREDICTION
AND OPTIMIZATION

The proposed procedure of this study for optimization of
FG plate is based on the PSO algorithm and a hybrid meshless
method. The employed hybrid meshless method is based on
MLPG and ANN approaches. In this approach, the MLPG
method is used for obtaining the natural frequencies of FG
plates for different plate thicknesses and volume fraction
index values. The ANN is trained based on the MLPG results.
Then, the trained ANN is used to predict the first natural
frequency of the plate for some other plate thicknesses and
volume fraction index values. Indeed, the trained ANN
converts the discrete data to a continuous function, which can
provide the first natural frequency of the plate for any plate
thicknesses and volume fraction index values. As the next
step, the PSO algorithm is applied for simultaneous
optimization of plate mass and natural frequency. It is clear
that the mass of the plate is desired to be minimized and the
natural frequency be maximized. In this respect, since global
minimization of mass and global maximization of first natural
frequency do not necessarily occurs simultaneously, the
weighted sum optimization approach is employed. The main
idea in the weighted sum method is to choose a weighting
coefficient for each objective functions. So, the multi-criteria
optimization problem is transformed to a single-objective one.
In this study, for different weighting coefficient values, the
optimum plate thickness and volume fraction index values are
obtained. The optimization procedure furnishes the designers
with useful information which they need for FG plate.

A. Artificial Neural Network

ANNSs are a form of a multi-processor system with a high
degree of inter-connection simple processing elements,
adoptive interaction between elements and simple scalar
messages. The multi-layer feed forward (MLFF) is the most
popular type of ANNs which is shown in Fig. 3.

‘ Input layer Hidden layer Output layer ‘

O=O=0
@%@%@
NN

O,

Fig. 3 A typical MLFF neural network

The MLFF network consists of an input layer, one or more
hidden layers and an output layer which each layer includes
some neurons. As can be seen in Fig. 3, number of neurons in

10
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input, hidden, and output layers of ANN denoted with NI, NH,
and NO, respectively. In this network, knowledge is stored in
connection weights. In this study, an ANN is trained based on
the most widely used learning algorithm of MLFF ANNs
which called back error propagation (BEP) method [29]. For
the prediction of first non-dimensional natural frequencies of
FG plate, the inputs of the ANN are the volume fraction index
and non-dimensional FG plate thickness, and corresponding
non-dimensional first natural frequency is the target outputs.
[8].
B. Back-Error Propagation

Repeating three BEP stages lead to a value of the error
function, which will be zero or a constant value and so the
designed ANN is trained.

The transfer function for the neurons of hidden and output
layers of all ANNs is Tansig and is defined in (30).

The operation of the BEP method consists of three steps as:
1- Feed-forward stage:

T =W, (MY (™), 31)
— == 2
O(n):@(T(n)):m—l, (32)

where the output, input, output of hidden layer, and activation
function are denoted with 6,1T,Y_ and © , respectively.
2- Back-propagation stage:

(33)

where O and D are the actual and desired outputs,
respectively. Also, II is the local gradient function, and z

illustrates the error function, respectively.
3- Weight values correction stage:

_ (34)

where7 is the learning rate. Also, W, and W, are the

weights between the input and hidden layers, and between the
hidden and output layers, respectively.

C.Particle Swarm Optimization (PSO)

The PSO is an optimization method based on population
inspired by social behavior of bird flocking or fish schooling
developed by Eberhart and Kennedy [30]. The optimization
procedure of PSO is initiated with a population of random
solutions and searches for optima by updating generations.

PSO has no evolution operators such as mutation and
crossover in genetic algorithm; instead, potential solutions that
named “particles” fly through the space of problem by
following the current optimum particles. Each particle keeps
track of its coordinates in the problem space which are
associated with the best solution (best fitness) called "pbest”
that it has achieved up to now. Another "best" value that is
tracked by using PSO is the best value achieved so far by any
particle in the particle neighbors. This parameter is "lbest".
When a particle takes all the population as its topological
neighbors, a global best is the best value which called "gbest".
The PSO concept at any time stage consists of changing each
particle’s velocity toward its "pbest" and "lbest" locations.
Acceleration using a random term is weighted by separate
random numbers being generated for acceleration toward
"Ibest" and "pbest" locations. A conceptual flowchart of PSO
algorithm is illustrated in Fig. 4.

The numerical results of this work are presented separately
in three following sections as: parametric analysis, prediction,
and optimization.

Initial Population

| Fitness Evaluation for All Individuals |

|

| Comparison and Replacement |

|

| Update Population |

Stopping Criteria
Satisfaction

Fig. 4 A conceptual flowchart of PSO algorithm

V.NUMERICAL RESULTS

A. Parametric Analysis

In 3D MLPG problems, there are three degrees of freedom
at the distributed nodes which are regularly or randomly
distributed along all directions. These DOFs are in x, y and z

directions which denotes asu,, u,, and Uu,, respectively.

y b
Also, for obtaining the desired accuracy, the nodes can be
added in each direction easily. Meanwhile, the number of
gauss points is obtained based on a parametric analysis for

11
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results accuracy maximization and finally assumed to be equal
to 216 in the local sub-domain integration. In this study, the
assumed boundary condition of the plate is simply supported
edges, which can be defined as:

x=0
o, =0,u,=u, =00n « ;

(35)
y=0
g, =0,u, =u, =00n
y=b

The dimensionless sub-domain and support-domain sizes
are described by y and r, respectively. The values of these
parameters are considered to bey =0.75 and 7 =0.29, which
are obtained with investigation of accuracy of the results.

The obtained natural frequencies of MLPG method for
simply supported square FG plate of this study is verified by
comparing with those obtained by Qian et al. [22] for P=2 and
h/a=0.2. The bottom layer in this study assumed to be zirconia

with E; 0, =200GPa and p,o, =5700kg/m’, and the top

layer aluminum with E, =70GPa and p, =2707kg/m’.

The number of nodes in each x, y, and z directions of the plate
assumed to be 11 nodes. In this study, the natural frequency is
presented in non-dimensional form as:

Pm
v=wm.h [/ 36
® VE, (36)

where E,, =70GPa and p,, =2702kg/m’.

The percentage of differences between the obtained
data (wp) and results presented by Qian et al. [22] ((@wq)) is

defined as error in the following form:

(Z)P_- ®Q)

Q

Error (%) = x100 37

In Table I, the errors of 1% to 5" natural frequencies are
tabulated.

TABLEI
COMPARISON OF THE FIRST FIVE NON-DIMENSIONAL NATURAL FREQUENCIES
OF THIS STUDY AND THAT OF QIAN ET AL. [22] FOR P=2 AND H/A=0.2

Parameter ZD’l ZD’Z ZD'3 ZD'4 ZD'S

Present study 0.2177 04168 0.4175 0.4804 0.4817
Qian etal. [22] 0.2153 0.4034 0.4034 0.4720 0.4720
Error (%)  1.1436 3.3411 3.5173 1.7842 2.0588

The maximum and minimum percentages of errors are
1.14% and 3.51%, respectively. Therefore, the presented
results can be regarded as good and reliable results.

The effects of volume fraction index of power-law FG
model and also plate thickness to width ratios on non-
dimensional natural frequencies are discussed using the
MLPG analysis. Fig. 5 shows the effect of the volume fraction
index on the first five non-dimensional natural frequencies of
the FG plate for various values of thickness to width ratios.

|-

- _
g

15 S S

ey SR
- - - - m B -_m __m-—_n

I e s LTI S S S

—— hfz=01
—8— hy3=02

—a— hfz=03

Hoomeneen, r—
_____ ..|......----.+....._____+_________+_________+_________+_________+__________‘_
=) —%  hj=0s
1 e * 4 4 . .
* *: * * * #* #* R 1521
- —— h/=07
— % hfzs=0E
0= e - # 2 2 * & 2
— & — hjz=03
. —a—8— §m » o o o
0
[1] 1 2 3 4 b 7 B ] 10
p

12



(it g

{5

25

15

0.5

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950
Vol:11, No:1, 2017

2
.
ol
- - - - m - m———E———W 4 h=01
-
Em - - - M- - X - —E - —Kk — —F ——X _a t=02
15 T
* o & ——8— 8% — 9§ —a hix=03
+------1_.+___
T I — T R I S A — N — 4 —%— hfz=04
1 W # +: * " " % *® 4 hfz=05
e t+--- hfiz=05
e e 2 " & " & i —e—hE=0T
05
s 5 5 o o = o m % h=0E
— & — hfz=02
— s s s s a4
0
1 2 3 4 & 7 8 g 10
P
(B)
B
.- a _ a s . a_m__ —e— h/=01
S —=— iy
-— - hfa=02
oo Ee — E - X X R —m - _ ’

—a— hf3=03

13



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:11, No:1, 2017

3
Tt i
25 - - - - - m —E-——g——-—g —+— =01
"'l‘--—x——-;—-——;-—-;——;——x———!———lt #—hiz=02
5 .—'—-—--_._____’__ . . . . . . — - hie=03
L ———
e N— - e - A R e Ao 4 ne=os
15 )ﬁ-—-—-_.*__ e e e vEes
s 4 ~+: + 4 #: #: #*:
3 -——4--- hfz=05
EE Fa)
1 —_— £ 3 " " " i ik ‘ e
— %= hfz=0E
05 — ro— r— - - = o L — | | — & — hfz=05
— 4%
]
0 1 2 3 4 5 B 7 8 9 1o
1]
(D)
3
[ S
x. . W -m--a - a . _a_a__ ———l
TE - R - E _x - - =% x % .
25 L . . L . _:_._._u hia=0
L —a—
[t AL T L o S S S e . . - 4 hiz=02
2 —&— hfa=03
e #: + 4 * + — % hi=04
15 *—he=as
. M e
]
smmgem-= hfE=0E
1 — & = e A N . " —— /=07
— %= hfz=0E
0.5 . —8— 8 5 p
L = = = n — w— hfz=0%
]
0 S 2 3 4 6 7 :} 3 10

Fig. 5 Effect of volume fraction index on non-dimensional A) Ist B) 2 C) 3'4D) 4" and E) 5" natural frequencies of the FG Plate for different
thickness to width ratios (MLPG Results)

In Fig. 5, it can be seen that the curves have a slight
decrease from h/a=0.1 to h/a=1 for all first five natural
frequencies with respect to p. Also, it can be concluded that

the graphs of bigger h/a values are upper than smaller ones.
So, it is found that increasingh/a values leads to increasing
of natural frequencies. Also, the absolute value of the curve’s
slop is decreased by increasing the value of p.

B. Prediction

In this part of study, a combination of MLPG method and
ANN is employed to predict the non-dimensional first natural
frequency of FG plate. MATLAB commercial software [31] is

used to apply the ANN.

First of all, a MLFF neural network is created with one
input, hidden and output layers. In the designed ANN,
N, =2,N, =20and N, =1. The inputs of the ANN areh/a
and p, and the target output is a non-dimensional first natural
frequency. In the next step, the ANN is trained based on the
data of 96 different conditions of FG plate, using the BEP
method. BEP training trends are shown in Fig. 6. In the
considered BEP training progress, 70%, 20%, and 10% of
MLPG data are used for training, testing and verification,
respectively.
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Fig. 6 BEP training trends

As can be seen the training error is less than 10, In the
training process of ANN, the BEP iterations are assumed to be
200. Although prediction results would be affected by taking
other values for BEP constants, but it is not a concern of this
study.

The BEP-based trained ANNs are tested for four other
conditions of the FG plate which have not been used in the
training procedure. The obtained results are compared with
MLPG results and are tabulated in Table II.

TABLE II
ANN PREDICTED RESULTS VERIFICATION

CaseNo. h/a P &-MLPG &-ANN  Error (%)

1 03 6 0.425 0.427 0.25
2 05 4 0.955 0.956 0.01
3 06 5 1.209 1.210 0.025
4 07 7 1.399 1.401 0.09
Average 0.1

It can be found from Table II that the average error in
prediction of first non-dimensional natural frequencies using
proposed hybrid MLPG and ANN method is within 0.1%.
Therefore, the predicted data have a good agreement with the
actual data. It can be further concluded that the proposed
method has a good capability of predicting the FG plate
natural frequencies.

The predicted first non-dimensional natural frequencies for
some other volume fraction index and plate thickness where
MLPG results are not available are presented in Table III.

TABLE III
ANN-BASED NATURAL FREQUENCY PREDICTION

CaseNo h/a P ©-ANN
1 0.35 0.55 0.549
045 0.75 0.809
0.67 042 1.365
0.54 0.85 1.043
0.65 04 1.329
0.8 035 1.625

AN AW N

C.Optimization
In this study, the PSO algorithm specifications are

considered to be as follows: Population size = 10, Number of
iterations = 20, Optimization variables = 2, The cost function
is as (38):

CF =w; fj, -w,,m, (38)

wherew; and W, are the weights of non-dimensional first
natural frequency and non-dimensional total mass,
respectively. Also f,, and m, are non-dimensional first

natural frequency and non-dimensional total mass,
respectively, which are defined as (39) and (40):

fio=f/ 1" (39)
m, =m/m#* (40)

where f " is the biggest value of 1st natural frequencies among
100 plates with different volume fraction index and plate
thickness values. This maximum value belongs to plate with
volume fraction index equal to 1 and plate thickness to width
ratio equal to 1. This value in this study is 2.1365 (Hz).
Also, m"is the total mass of the plate with thickness to width
ratio equal to 1 and the material of plate is purely zirconia.
This value in this study is 5.7 x 106 kg. As stated in (41), the
sum of weights of Wy and W, is equal to 1.

Wi +m, =1 (41)

For some different values of W and W, , optimization is

performed by using the PSO algorithm, and the results are
presented in Table I'V.

TABLEIV
OPTIMIZATION RESULTS OBTAINED FROM PSO ALGORITHM

Wg Wy p h/a CF

1 0 1 1 0.975
09 0.1 1524 1 0.805
08 02 2665 1 0.643
0.7 03 6771 1 0.492
06 04 9404 1 0.345
05 05 10 1 0.200
04 06 10 1 0.055

035 0.65 10 0.637 -0.008
03 0.7 10 0.1 -0.028
02 08 10 0.1 -0.036
0.1 09 10 0.1 -0.044

0 1 10 0.1 -0.052

As can be seen in this table, for Wy between 0 to 0.5 (W,
between 0.5 to 1), the optimum value of p is 10. Also, for w;

between 0.4 to 1 (W, between 0 to 0.6) the optimum value of
h/a is 1. Furthermore, for w; between 0 to 0.3 (W,
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between 0.7 to 1), the optimum value of h/a is 0.1.

The optimization trends of PSO algorithm for two
considered weights pairs of mass and natural frequency are
illustrated in Fig. 7. As can be seen, the cost function is
increased in 20 iterations and converges to a constant optimum
value. Also, it is seen that in the first 3 PSO iterations, the cost
function values increase sharply and then converge to
optimum values.

VI. CONCLUSION

In this study, natural frequencies of a rectangular FG plate
have been obtained by using MLPG method. The effects of
two parameters fraction index and thickness to width ratios on
the plate natural frequencies have been investigated. Then, an
ANN is trained based on MLPG results and used for natural
frequency prediction in some other cases where MLPG results
are not available. The PSO algorithm was utilized for
simultaneous optimization of plate mass and natural
frequency. The optimization results provide the designers with
useful information for specifying the parameters of the desired
FG plate. All novelties of this study can furnish a designer
with some beneficial information about the FG plate natural
frequency and mass which can be summarized as follows:

(A) Parametric analysis of rectangular thick FG plate natural
frequencies using 3D MLPG methods.
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Fig. 7 The optimization trends of PSO algorithm for (a)
,Wg =0.7& W, = 0.3 (b) Wy, =0.35&W,, =0.65

(B) Prediction of the FG plate natural frequencies in some
conditions where MLPG results were not available using
ANN.

(C) Specifying the optimum values of parameters that
concluded to maximum value for natural frequencies and
minimum for mass by employing PSO and ANN.
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