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Optimal Bayesian Control of the Proportion of
Defectives in a Manufacturing Process
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Abstract—In this paper, we present a model and an algorithm for
the calculation of the optimal control limit, average cost, sample size,
and the sampling interval for an optimal Bayesian chart to control
the proportion of defective items produced using a semi-Markov
decision process approach. Traditional p-chart has been widely
used for controlling the proportion of defectives in various kinds
of production processes for many years. It is well known that
traditional non-Bayesian charts are not optimal, but very few optimal
Bayesian control charts have been developed in the literature, mostly
considering finite horizon. The objective of this paper is to develop
a fast computational algorithm to obtain the optimal parameters of a
Bayesian p-chart. The decision problem is formulated in the partially
observable framework and the developed algorithm is illustrated by
a numerical example.

Keywords—Bayesian control chart, semi-Markov decision process,
quality control, partially observable process.

I. INTRODUCTION

COntrol charts are powerful tools used to control

the process parameters to ensure the process

stability, identify the occurrence of assignable causes

and reduce the proportion of defectives produced. The

application of the control charts has not been limited to

manufacturing. They have been applied in various areas

such as healthcare [1], condition-based maintenance [2],

and financial engineering [3]. The traditional control chart

procedures take samples from the process output at equally

spaced sampling epochs and calculate the appropriate value

of the statistic to control a particular process parameter. If

the value of the statistic is beyond the control limits, the

process is stopped and the search for assignable causes of

variation is initiated. The control charts can be categorized

as Bayesian or non-Bayesian, traditional charts. Very few

Bayesian control charts have been developed in the literature.

Reference [4] presented a control policy for an np-chart with

a variable sampling interval such that a sample is taken at

the instant the prior probability of the process being out of

control reaches a certain predetermined constant level. He

did not prove that such a policy is optimal. The optimality of

this kind of policy for a simple, one-cycle control problem

was proved by [5]. Further development in the area on an

economic design of an attribute np-chart using a variable

sample size can be found in [6].

The Bayesian approach focuses on determining the optimal

control policy based on the posterior probability that the

process is out of control, updated after each sample using

Bayes’ theorem. The models in [7]-[10], not directly linked
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to a control chart design, are the early contributions to the

Bayesian process control. It was shown in [11] and [12]

that non-Bayesian techniques are not optimal and it was

suggested that in the general case, the action decision, sample

size, and the sampling interval should be determined based

on the probability that the process is in the out-of-control

state. The papers [13]-[17] and [4] are the contributions

dealing directly with the Bayesian control chart design issues.

References [14], [15] and [17] have considered a finite horizon,

univariate Bayesian chart, showed some results partially

characterizing the optimal policy, and presented computational

algorithms for finite production runs. It was shown in [13] that

for a given sample size and sampling interval, a control limit

policy with the optimal control limit dependent on the number

of remaining periods is optimal for a finite-horizon Bayesian

p-chart.

The optimality of a multivariate Bayesian control chart

for the process mean was proved in [18] considering an

infinite time horizon. In [19], the structure of the optimal

Bayesian control policy for the process mean was established

considering finite time horizon and multivariate observations.

There have been several approaches to the traditional

design of control charts, namely statistical, economic, and

economic-statistical design approaches. A statistical design

may have poor economic performance and, alternatively,

an economic design that does not consider any statistical

objectives may result in an excessive number of false

alarms that may introduce extra variability into the process

and destroy confidence in the control procedure [20].

Economic-statistical design considers both the statistical and

economic requirements. It has been shown both for the

univariate (e.g. [21]) and multivariate charts (e.g. [22]) that

the additional statistical constraints have little effect on the

cost, and thus both economic and statistical objectives can

be met simultaneously, without too much compromise. The

traditional approach to a control chart design with fixed or

varying parameters (see a review paper [23] of the basic

adaptive control charts) considers the classical control chart

framework with the objective to determine the values of the

chart parameters, namely, the sample size, sampling interval,

and the control limits satisfying the economic and/or statistical

requirements.

The optimality of the Bayesian p-chart for an infinite time

horizon was proved in [24]. The λ-maximization technique

was used to derive the optimality equation for the value

function considering both the infinite time horizon as well as

the m-stage stopping problem and the structure of the optimal

policy was determined by analyzing the optimality equations.

It was found that the algorithm based on the optimization
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and calculation of the value function is quite slow because it

requires a large number of computationally intensive iterations.

The objective of this paper is to develop a faster

computational algorithm by modeling the posterior probability

stochastic process as a semi-Markov decision process. The

rest of the paper is organized as follows. The decision

model is described in Section II. Section III is devoted

to the formulation of the Bayesian decision problem in

the semi-Markov framework. It is shown that the optimal

parameters of the Bayesian p-chart can be found by

iteratively solving a system of linear equations. An effective

computational algorithm is presented in Section IV, which is

illustrated by a numerical example in Section V. Conclusions

are presented in Section VI.

II. MODEL DESCRIPTION

In this section, a brief review of a Bayesian control chart

for the proportion of defectives is provided. The process is

assumed to be in two states, namely, in an in-control state

(state 0) and out-of-control state (state 1). Bayesian control

chart for attributes monitors the posterior probability that the

process has shifted to the out-of-control state given the history

of the process, when the fraction defective is the quality

parameter of interest. The process makes transition from state

0 to state 1 when an assignable cause occurs. It is assumed

that the time between occurrences of two randomly assignable

causes follows exponential distribution with the mean 1
θ . A

sample of size n is taken at time mΔ for m = 1, 2, ...,Δ is

the sampling interval, and the number of defectives denoted

by D is observed. The proportion of defectives is a function

of the state of the process. When the process is in control,

the proportion of defectives is denoted by p0, and when the

process is out of control, the proportion of defectives is p1.

Let π(t) = P (Xt = 1 | St) denote the probability that the

process is out of control at time t given the observations up

to time t. By applying the Bayes’ formula, [13] proved that

π(t) is given by:

πmΔ =
ν1

ν0 + ν1
(1)

where

ν1 =

(
n

D

)
pd1(1− p1)

n−D[1− (1− π)e−θΔ] (2)

and

ν0 =

(
n

D

)
pd0(1− p0)

n−De−θΔ(1− π) (3)

We further need to simplify the posterior probability given

by (1). We divide both numerator and denominator by(
n
d

)
pD1 (1− p1)

n−D. The posterior probability simplifies as:

πmΔ =

1− (1− π(m−1)Δ)e−θΔ

1−(1− π(m−1)Δ)e−θΔ + ( p0
p1
)D( 1−p0

1−p1
)n−D(1−π(m−1)Δ)e−θΔ

(4)

In this paper, we design the Bayesian control chart for

monitoring the proportion of defectives in order to minimize

the long-run expected average cost per unit time. It is assumed

that the process starts in the in-control state and it remains

in that state until an assignable cause occurs. We make a

reasonable assumption that the proportion of defectives when

the process is out of control is greater than the proportion of

defectives when the process is in control, i.e., p1 > p0. We

monitor the process at periodic sampling epochs mΔ. If the

posterior probability that the process is out of control exceeds

the control threshold denoted by L, the process is stopped

and a search for an assignable cause is started. There are

two scenarios at this time: (i) there is a true alarm when the

assignable cause is found and repair action is needed to fix

the process, and (ii) there is a false alarm when the search for

an assignable cause failed and the process continues without

any corrective action.
From the renewal theory, for any stationary policy,

determined by the sampling interval and control limit (Δ, L),
the long-run expected average cost per unit time is calculated

as the fraction of the expected total cost (TC) over the

cycle length (CL) where a cycle is completed when either

a corrective action is applied or when false alarm occurs. The

objective is to minimize the long-run expected average cost per

unit time given by g(Δ, L) = ER(TC)
ER(TC) . In order to minimize

the long-run expected average cost per unit time, the standard

cost assumptions similar to [13] and [18] are considered in

this paper as:

• A: cost associated with the search for an assignable cause.

• R: cost of the process repair.

• M: quality-related expected cost per unit time incurred

due to the increased proportion of defectives when the

process is out of control.

• a: fixed cost per sample.

• b: cost per unit sampled.

This completes our model assumptions and model description.

In the next section, we formulate the proposed problem in the

SMDP framework.

III. FORMULATION OF THE BAYESIAN CONTROL

PROBLEM IN THE SMDP FRAMEWORK

In this section, we formulate and solve the control problem

in the SMDP framework. In order to calculate the minimum

value of the long-run expected average cost per unit time,

for a fixed control limit L ∈ (0, 1), the posterior probability

interval [0, 1] is partitioned into K sub-intervals. We obtain

the posterior probability at sampling time mΔ assuming that

the system has not failed by that time. For a fixed large K, the

SMDP is defined to be in sate 1 ≤ k ≤ K if the coded value

of the posterior probability is in the interval [k−1
K , k

K ). If the

posterior probability is below the control limit, the SMDP is

in the set W1, where W1 = {i : 1 ≤ i ≤ K}. If the posterior

probability exceeds the control limit, the process is stopped

and full inspection is performed. At this point, the SMDP is

in the set W2 = {h : L ≤ h ≤ 1}. After the full system

inspection, if true alarm occurs, the SMDP is defined to be

in state r and repair action should be initiated. We denote the

set W3 = {r}. Otherwise, the SMDP is defined to be in state

0. Thus, the state space for SMDP formulation is given by

W = {0 ∪W1 ∪W2 ∪W3}.
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To minimize the long-run expected average cost, the SMDP

is fully determined by the following quantities:

1) Pm,k = the probability that the process will be in state

k at the next decision epoch given the current state is

m ∈ W .

2) τm = the expected sojourn time until the next decision

epoch given the current state is m ∈ W .

3) Cm = the expected cost incurred until the next decision

epoch given the current state is m ∈ W .

Using the quantities defined above, for a fixed control limit L
and sampling interval Δ, the long-run expected average cost

g(Δ, L) can be obtained by solving the following system of

linear equations (see [25]):

um = Cm − g(Δ, L)τm +
∑
k∈W

Pm,kuk, for each m ∈ W

ul = 0. for some l ∈ W (5)

The next subsections are devoted to explicitly computing the

quantities Pm,k, τm, Cm, defined above.

A. Calculation of Transition Probabilities

In this subsection, the formulae for the calculation of the

transition probabilities are presented.

• For states i and k, the control limit:

Pi,k = P
(k − 1

K
< πmΔ ≤ k

K
| π(m−1)Δ = i

)
. (6)

Note that π(m−1)Δ is the coded value of the posterior

probability which is the mid-point of the corresponding

interval.

• When the posterior probability exceeds the control limit,

the process is stopped and full inspection is performed.

In this case, the SMDP enters the inspection state and the

transition probability is given by:

Pi,h = P
(h− 1

K
< πmΔ ≤ h

K
| i
)
. (7)

• The process can make transition from inspection state

either to state 0 if the false alarm occurred, or to the

repair state r when a true alarm occurred. The transition

probabilities for the two cases are given as:

Ph,0 = 1− h− 0.5

K

Ph,r =
h− 0.5

K
(8)

• When the process is out of control, the repair action must

be performed to bring the process into the in control state.

So, the transition probability is given by:

Pr,0 = 1 (9)

To calculate the transition probability in (6), we need to

develop the posterior probability defined in (4) as:

Pi,k = P
(k − 1

K
< πmΔ ≤ k

K
| π(m−1)Δ = i

)

= P
(k − 1

K
<

1− (1− π(m−1)Δ)e−θΔ

1− (1− π(m−1)Δ)e−θΔ + ( p0
p1

)D( 1−p0
1−p1

)n−D(1− π(m−1)Δ)e−θΔ

≤ k

K
| i,XmΔ = 0

)
× P (XmΔ = 0 | i)

+P
(k − 1

K

<
1− (1− π(m−1)Δ)e−θΔ

1− (1− π(m−1)Δ)e−θΔ+( p0
p1

)D( 1−p0
1−p1

)n−D(1− π(m−1)Δ)e−θΔ

≤ k

K
| i,XmΔ = 1

)
× P (XmΔ = 1 | i) (10)

To simplify notation, let (1−π(m−1)Δ)e
−θΔ = α and denote

π(m−1)Δ = π. Then, the first term in (10) can be written as:

Pi,k = P
(k − 1

K
< πmΔ ≤ k

K
| π = i

)

= P
(k − 1

K
<

1− α

1− α+
[ p0(1−p1)
P1(1−p0)

]D
( 1−p0
1−p1

)nα
≤ k

K
|π,XmΔ = 0

)

= P
(k − 1

K
[1− α+

[p0(1− P1)

p1(1− p0)

]D(1− p0

1− p1

)n
α] < 1− α

≤ k

K
[1− α+

[p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
α] |π,XmΔ = 0

)

= P
(
(
k − 1

K
)(1− α) + (

k − 1

K
)[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
α

< 1− α ≤
(
k

K
)(1− α) + (

k

K
)[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
α|π,XmΔ = 0

)

= P
(
(
k − 1

K
)[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
α

<(1− α)(1− (
k − 1

K
)) ≤

(
1− α

K
) + (

k

K
)[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
α |π,XmΔ = 0

)

= P
(
[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
︸ ︷︷ ︸

Term I

<(
1− α

α
)((

K − (k − 1)

k − 1
)) ≤

(
1− α

α(k − 1)
)+(

k

k − 1
)[
p0(1− p1)

p1(1− p0)

]D(1− p0

1− p1

)n
︸ ︷︷ ︸

Term II

|π,XmΔ = 0
)

(11)

By taking the logarithm of both sides, Term I and Term II

are summarized as:

Term I = [
p0(1− p1)

p1(1− p0)︸ ︷︷ ︸
<1

]d
<

( 1−α
α )(K−(k−1)

k−1 )(
1−p0

1−p1

)n

= D >

log(
( 1−α

α )(
K−(k−1)

k−1 )(
1−P0
1−P1

)n )

log(P0(1−P1)
P1(1−P0)

)
, (12)
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and

Term II = [
p0(1− p1)

p1(1− p0)︸ ︷︷ ︸
<1

]D ≥ ( 1−α
α )(K−k)

k )(
1−p0

1−p1

)n

= D ≤
log(

( 1−α
α )(K−k

k )(
1−p0
1−p1

)n )

log(p0(1−p1)
p1(1−p0)

)
. (13)

So, the transition probability in (11) can be summarized as:

Pi,k = P
(k − 1

K
< πmΔ ≤ k

K
| π = i

)
=

P
(⌊ log(

( 1−α
α

)(
K−(k−1)

k−1
)(

1−p0
1−p1

)n )

log(
p0(1−p1)
p1(1−p0)

)

⌋
<D≤

⌊ log(
( 1−α

α
)(K−k

k
)(

1−p0
1−p1

)n )

log(
p0(1−p1)
p1(1−p0)

)

⌋
|i, 0

)
.

(14)

The number of defectives in a sample follows binomial
distribution with mean np0 when the process is in control
and np1 when the process is out of control. For ξ = 0, 1, the
first and third term in (10) can be calculated as:

P (A < D ≤ B | π = i,XmΔ = ξ)

= P (D ≤ B | π = i,XmΔ = ξ)

− P (D ≤ A | π = i,XmΔ = ξ)

=

B∑
j=0

(n
j

)
pjξ(1− pξ)

n−j −
A∑

j=0

(n
j

)
pjξ(1− pξ)

n−j .

(15)

The second term in (10) is calculated as:

P (XmΔ = 0 | π = i) =P (XmΔ = 0 | i,X0 = 0)(1− π)

+ P (XmΔ = 0 | i,X0 = 1)π

= e−θΔ(1− π) (16)

Finally, the last term in (10) is given by:

P (XmΔ = 1 | π = i)=P (XmΔ = 1 | i,X0 = 0)(1− π)

+ P (XmΔ = 1 | i,X0 = 1)π

= (1− e−θΔ)(1− π) + π

(17)

This completes the calculation of transition probability defined

in (6). A similar approach will be used to calculate the

transition probability given by (7) which is omitted here to

save the space.

In the next section, the calculation of the average cost and

the sojourn times in the SMDP framework is presented.

IV. CALCULATION OF THE EXPECTED COSTS AND

SOJOURN TIMES

In this section, we derive the formulae for the expected costs

and the sojourn times.

• For state i, the average cost is calculated as:

Ci = E(Cost | i) = a+ bn+ E(

∫ Δ

0

(MI{Xs=1} | i) ds)

= a+ bn+

∫ Δ

0

M × P (Xs = 1 | i) ds

= a+ bn+M

∫ Δ

0

[(1− e−θs)(1− π) + π]ds,

(18)

and the sojourn time is:

τi = Δ (19)

• The average cost in inspection state is given by:

Ch = E(Cost | h) = A, (20)

and the sojourn time is:

τh = TI , (21)

where TI denotes the time required for performing the

inspection.

• Finally, the average cost in state r is given by:

Cr = E(Cost | r) = R, (22)

and the sojourn time is:

τr = TR, (23)

where TR is the repair time of the process.

This completes the calculation of the required components

for SMDP. In the next section, we present numerical examples

to illustrate the developed SMDP algorithm.

V. NUMERICAL EXAMPLES

In this section, numerical examples are provided to show the

performance of the proposed model. The numerical example

is provided in two parts: in part (i), four sets of parameters

are considered and the program is run for these four sets

to find the optimal values for the long-run expected average

cost as well as the control chart parameters, and in part (ii),

the proposed Bayesian control chart performance is compared

with the results in [13] using traditional p-chart.

Part (i): Four sets of different input parameters are

considered in Table I. We also assume that TI = TR = 1.

TABLE I
SETS OF PARAMETERS

Sets θ a b p0 p1 M A R
I 0.01 1 0.1 0.05 0.2 100 500 250
II 0.01 5 1 0.05 0.2 100 500 250
III 0.01 1 1 0.05 0.2 100 500 250
IV 0.01 5 0.1 0.05 0.2 100 500 250

The interval [0, 1] of the posterior probability is discretized

into K = 50 subintervals. The computational algorithm was

very fast, the results were obtained in 2.3208 seconds for

each run on an Intel Core (TM) i5 CPU with 2.27 GHz. By

applying policy iteration algorithm explained in Section III,

the optimal sample size, optimal control limit and optimal
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sampling interval are obtained and the results are given in

Table II for all sets. The results for sets I and II show that

TABLE II
RESULTS FOR THE OPTIMAL BAYESIAN CONTROL CHART FOR ALL SETS

Sets Optimal Sample Sampling Average
control size interval cost

limit (L) (n) (Δ) (g)
I 0.55 60 4 13.9620
II 0.35 30 8 18.8186
III 0.35 30 8 18.3291
IV 0.55 60 4 14.7902

when the sampling costs are increased (set II), the average cost

will be increased and the control limit decreases significantly.

These results can be explained as: When the sampling is costly,

the sample size is decreased and the control limit decreases

to compensate for the lower control chart sensitivity. On the

other hand, the sampling interval is increased due to costly

sampling.

The results for sets I and IV are similar, except the total

average cost which is higher for set IV. The input parameters

for both sets are the same except the fixed cost per sample

which is higher for set IV than for set I and it leads to the

increase in the total average cost. But it does not affect the

other control parameters such as the control limit and the

sampling interval because it is a fixed cost which does not

depend on the sample size.

Part (ii): In this part, the results of the Bayesian p-chart

are compared with the results obtained by traditional p-chart

(see [13]). To make a fair comparison, the same input

parameters as in [13] are considered in this paper. For the set

TABLE III
SET OF PARAMETERS

θ p0 p1 M A R
0.01 0.05 0.2 100 500 250

of parameters in Table III, the sampling costs are not taken

into account and the times to inspect and repair the process are

negligible. For given sampling intervals Δ = 4,Δ = 6,Δ = 8,

and sample size n = 5, the results are obtained in Table IV.

TABLE IV
COMPARISON RESULTS OF THE PRESENTED MODEL WITH THE

TRADITIONAL p-CHART

Δ Proposed λ-MAX Traditional
approach algorithm p-chart

4 19.5650 19.12 22.12
6 20.9460 20.98 26.18
8 22.9614 22.30 29.46

The average cost results obtained using the presented

approach and the λ-maximization algorithm are very close, but

the computational times for the SMDP algorithm developed

in this paper are considerably lower when compared with the

λ-maximization algorithm for which the computational times

were about 5 times higher on average. For a set of given

parameters, each SMDP run took only 2.3208 seconds which

is very fast. It is also shown that the average cost of the

proposed model is considerably lower than the cost for the

traditional p-chart.

VI. CONCLUSIONS

In this paper, we have developed a fast computational

algorithm for the design of a Bayesian control chart for

monitoring the proportion of defectives. The process is

monitored at periodic sampling epochs and the posterior

probability of the process being out of control is updated

at each sampling epoch after collecting a new sample.

If the posterior probability exceeds the control limit, the

chart signals, the process is stopped, and a search for

an assignable cause is initiated. If true alarm occurs, the

process is repaired, otherwise it continues without any action.

The cost components of the process include quality cost,

sampling, repair and inspection costs, which are considered

for designing the proposed optimal Bayesian p-chart. The

objective is to find the optimal values of the control chart

parameters, namely, the sampling interval, sample size, and

the control limit to minimize the long-run expected average

cost per unit time.The problem is formulated and solved

in SMDP framework and numerical examples illustrate the

effectiveness of the proposed model and a high speed of

the computational algorithm. In addition, the developed

Bayesian control chart is compared with the traditional p
control chart and the results show that the proposed chart

has a considerably lower expected average cost per unit time

and hence, it is a highly effective tool for controlling the

proportion of defectives in modern manufacturing processes.
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