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 
Abstract—In this paper, we present an adaptive controller for 

decentralized coordination problem of multiple non-holonomic 
agents. The performance of the presented Multi-Agent Bounded Gain 
Forgetting (BGF) Composite Adaptive controller is compared against 
the tracking error criterion with a Feedback Linearization controller. 
By using the method, the sensor nodes move and reconfigure 
themselves in a coordinated way in response to a sensed 
environment. The multi-agent coordination is achieved through 
Centroidal Voronoi Tessellations and Coverage Control. Also, a 
consensus protocol is used for synchronization of the parameter 
vectors. The two controllers are given with their Lyapunov stability 
analysis and their stability is verified with simulation results. The 
simulations are carried out in MATLAB and ROS environments. 
Better performance is obtained with BGF Adaptive Controller. 

 
Keywords—Adaptive control, Centroidal Voronoi Tessellations, 

composite adaptation, coordination. 

I. INTRODUCTION 

ULTI-AGENT coordination is a challenging problem 
studied intensively in the past years. In many 

applications, using more than one agent is necessary to achieve 
better and faster results. So, a subtopic of multi-agent 
coordination, multi agent distributed coverage control has its 
importance in mobile sensor networks. It uses locational 
optimization and Centroidal Voronoi Tessellations to place the 
sensors in optimal way in order to improve coverage 
performance.  

In literature, there are existing works related to the adaptive 
coverage problem. One of the works [1] proposes a method to 
drive the mobile robots to an optimal configuration by means 
of a decentralized, adaptive control law with a Lyapunov-type 
proof. In another work [2], an adaptive and decentralized 
coverage control for a team of mobile sensors is proposed with 
a Lyapunov stability proof. It uses non-holonomic sensors and 
time-varying sensory functions. In another paper [3], a control 
strategy for groups of vehicles for motion and reconfiguration 
to a sensed environment is given. Its framework uses virtual 
bodies and artificial potentials. The method adapts to the 
sensed environment to optimize the climb mission. Another 
work [4] discusses coverage control, spatial partitioning and 
dynamic vehicle routing problems in detail. Those problems 
include distributed optimization of the configuration of the 
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robots in order to minimize a cost function. The distributed 
stochastic gradient algorithms for this purpose are described 
since they are related to adaptive coverage with heterogeneous 
agents. In another work [5], a multiscale adaptive search 
algorithm for seeking an unknown number of targets using 
multiple mobile sensors is proposed. The Sequential Ratio 
Probability Test and Recursive Least Squares estimation enable 
calculation of uncertainty of the target and its location, 
respectively. A similiar work [6] presents a modified model 
reference adaptive control (MRAC) approach which brings 
high performance as well as higher level of robustness. 
Additionally, a time delay resistant (TDR) adaptive control 
method is proposed. The two methods are used in simulation of 
the longitudinal dynamics of an aerial vehicle. Another paper 
[7] proposes a deployment strategy maximizing the area 
coverage of the mobile nodes using K neighbors constraint. It 
is distributed, scalable and based on potential fields.  

In one of our previous works [8], a power aware adaptive 
control structure is proposed used with the same coverage 
control framework which uses the consensus protocol to 
synchronize the agents and simultaneously adapts to the 
environment. 

In this paper, an adaptive controller is presented. The 
presented controller uses BGF Composite Adaptive Control 
laws which are shown to have faster convergence than MRAC 
and conventional adaptive control approaches as given in [9]. 
In none of the works mentioned above, a BGF Composite 
Adaptive Control law is used. The problem studied in this work 
is to position the non-holonomic sensor nodes optimally in 
response to the sensed environment in a coordinated way using 
BGF based adaptive control structures. This approach has 
better performance with respect to other adaptive control 
methods that are defined as a main contribution of this paper. 
For the given purpose, the sensors used in simulation are light 
sensors on the robots giving the location of the global light 
source. Additionally, a multi-agent adaptive control algorithm 
with consensus protocol is used to estimate the model 
parameters. The reason to choose an adaptive algorithm for the 
kinematic model is to improve the tracking errors which is 
accomplished by the composite adaptive algorithm using the 
sensor data in the both in the estimation loop and the control 
loop. To the best of the author’s knowledge, this is the first 
work using a BGF Composite Adaptive Controller which uses 
both the tracking and estimation errors in adaptation law for the 
multi-agent coverage control problem with non-holonomic 
agents. 

The paper is organized as follows: In Section II, 
mathematical background of the optimal coverage control 
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problem is given. In Section III, the application of the coverage 
control for non-holonomic sensors is mentioned with a new 
adaptive controller for coverage. Then, Section IV gives the 
stability analysis of the controllers and in Section V, we present 
the simulation results. Lastly, the conclusions of the presented 
work are given in Section VI. 

II. PROBLEM STATEMENT 

Introductory information about the adaptive coverage 
control problem will be given in this section. 

A. Voronoi Diagrams 

In [2] and [8], the Voronoi tessellation of an open set 
NS R  is defined as k  satisfying the condition 

k l     for k l  and k k S   . The definition of the 

Voronoi region k  is as: 

 

 | ,k k lq S q p q p k l         (1) 

 
The Euclidean norm is defined in NR  by the  operator 

and the generator points are given with kp . In the work, the 

Voronoi tessellations are calculated by using Fortune’s 
Sweepline algorithm. 

B. Optimal Coverage Formulation 

Consider NS R  as a bounded environment and 

: NR R   as a density function. Let :f R R   be a non-

increasing performance function. Then we define locational 
optimization function   as: 

 

1 2
1

( , ,..., ) ( ) ( )
k

m

m k
k

p p p f q p q dq
 

    
 

 (2) 

 
The k  is Voronoi region k and kp  is the generator point of 

the corresponding Voronoi cell and m is the number of the 
generator points. 

 

 

Fig. 1 Example Voronoi Tessellation 
 
The centroid 

k
  and mass 

k
  of Voronoi regions defined 

in [10] are given by: 

1
( )

k

k k

q q dq
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 (3) 
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If we define the function 
2

( )k kf q p q p    and take 

the partial derivative of locational optimization function   
with respect to kp , we get the following equations as given in 

[2]: 
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The locational optimization function given in (2) is 

minimized by using the centroid positions given in (3). The 
centroid positions should be equal to the positions of the agents 
for the optimal solution. The definition of the Centroidal 
Voronoi Tessellations comes from this equality as shown in 
[2]. 

III. COVERAGE CONTROL FOR TEAM OF NONHOLONOMIC 

AGENTS 

An adaptive control scheme with a linear consensus protocol 
for a nonholonomic agent model is presented in this section. 
The kinematic model parameters are estimated within the 
adaptive control law. 

A. Nonholonomic Control Law 

 

Fig. 2 Position of the agent and model parameters 
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In this work, the adaptive control law given is based on the 
control method proposed by [2] with a unicycle model. It is 
used to drive the agents to the centroid locations. 

In Fig. 2, kp  and 
kVC  are the position of the agent and the 

centroid location for a single agent. The control inputs are 
defined as ku  and k  which represent linear and angular 

velocities, respectively. The heading angle is shown with k  

and the Euclidean distance between the agent and the centroid 
is defined as ke . Lastly, the angle between the agent and the 

centroid is given as k . 
 

cos

sin

sin

k k
k

k
k k k

k
k

k
k

k

u
e

u
e

u
e




 
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 
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             
   

  
 



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   (7) 

 
The control law proposed is: 
 

cos

2 sin cos ( )
k k k

k k k k k

u e 
      
   

       
  (8) 

 
0   and 0   are control gains. The control law drives 

the agents to the centroid 
kVC  positions. 

B. Feedback Linearization Controller for Multi-Agent 
Coverage Problem 

In order to apply Feedback Linearization control method, 
first, the system model given in (7) should be considered. As 
stated in [9], the state vector kx  can be redefined and the 

combined error vector ks  for kth agent can be shown as: 

 

k
k

k

e
x


 

  
    

 (9) 

 

0k ks x    (10) 

where 0  is a positive constant. The system matrix 1F  can 

be denoted as: 
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

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 (11) 

 
So, the system equations can be rewritten as: 
 

1
k

k
k

u
F x


 
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 


  

 (12) 

The matrices K  and uK  are defined as: 

 
4cos 0

0 1
kK

  
  
    

 (13) 

 
Then, the control law can be written as: 
 

1
k

k k d k
k

u
u F x s KK s


 
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 

 
 

 (14) 

 

It can be seen that K  is positive definite for 
2k

   and 

  is a small positive real number. Since the robot is moving 

both forward and backward directions, the angular error 

assumption holds. Also, ,1 ,2( )d d dK diag K K     is a 

positive definite gain matrix. 
The nonlinear terms in the system model are canceled with 

the first term in the controller. 

C. BGF Composite Adaptive Controller for Multi-Agent 
Coverage Problem 

Different from the traditional adaptive controllers, the 
composite adaptive controllers take the tracking error as well as 
the prediction error into account. 

Based on the system model given in (7), in order to apply 
BGF adaptive control method, the state vector kx  and the 

combined error vector ks  for kth agent should be defined, as 

stated in [9]: 
 

k
k

k

e
x


 

   
   (15) 

 

0k ks x    (16) 

 
The system matrix 2F  is defined in (17). The system 

equations can be rewritten as: 
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The known matrix ( , )Y x x  yields: 

2 k kF x Ya    (19) 
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where  1, 2,

T

k k ka a a  is the parameter vector to be 

estimated defined for kth agent [9]. Obviously, Y and Y   
matrices can be selected as: 
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sin
1 0

0 1

k
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keY


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 
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   (21) 

 
The matrix Y   is used for cancelling the term coming from 

uK  in Lyapunov proof which will be given in the next 

section. The uK  matrix is defined as: 
 

0

2sin cosu
k k

K
 

 
  
    

 (22) 

 
A linear consensus protocol is used in the estimation of the 

nonlinear model parameters for the agents. In an undirected 
graph of the mobile agents and n  vertices  1 2, ,...,k nV v v v , 

the agents share their estimated parameter vector. Let the 
neighborhood of kth agent be defined as: 

 

  | ,k k lL l v v G     (23) 

 
The communication among the nodes can be represented by 

the m  edges  1 2, ,..., mG g g g  where jth element of G is 

 ,j k lg v v . The consensus protocol provides 

synchronization among the mobile agents. 
The control and parameter update law as stated in [9] with 

linear consensus can be obtained as: 
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k d k d u
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
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where ( )P t  is a uniformly positive definite gain matrix and 

( )R t is a uniformly positive definite weighting matrix. The 

prediction error ,pred ke  for kth agent is defined as: 

 

, ˆpred k k ke a a      (26) 

 

The control input and the matrix ( , )W x x can be written after 

passing a first order low pass filter: 

1( , ) ku Y x x a      (27) 
 

1( , ) ( , )f

f

W x x Y x x
p







 
  

 (28) 

 

where f  is the filter coefficient and dp dt  is the 

differential operator. 
 

1 1( ) ( ) ( ) Td
P t t P t W W

dt
   

  
 (29) 

 

0
0

( ) 1
P

t k 
 

  
 

   (30) 

 
where ( )t  is the variable forgetting factor. The 0  and 0k are 

positive constants. The 0  determines the maximum value of 

the forgetting factor and the 0k gives the upper bound of the 

gain matrix norm. 
If the gain matrix ( )P t is calculated by using a BGF law as 

given in (29), then the controller is called as BGF Composite 
Adaptive Controller. Since ( )P t is positive definite, its 

determinant is always positive and it is non-singular. 
The control and parameter update law for BGF Composite 

Adaptive Controller are as in (24) and (25), respectively. 
By using the control and adaptation laws, the nonlinear 

dynamics of the system can be estimated and cancelled. The 
proof of convergence of the laws will be given in the stability 
analysis section. 

IV. STABILITY ANALYSIS 

In this section, the Lyapunov stability of the presented 
controllers are given with their proofs. 

A. Feedback Linearization Controller for Multi-Agent 
Coverage Problem 

Theorem 1: Let dK  be a positive definite gain matrix and k be 

the agent number. For each agent k, the tracking errors ks  and 

the estimation errors ka  converge to zero asymptotically and 

the internal dynamic k  is stable as t  . 

Proof: If the nonlinearity in the model is cancelled by applying 
the control input in (14) to the system, the equations become: 

 

k d ks KK s     (31) 

 
The Lyapunov function candidate is defined as: 
 

( ) ( )k
k

V t V t    (32) 

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:10, No:12, 2016

1464

  

The matrix K  is positive definite for 
2k

   and assumed to 

be a constant matrix and 0  , so the Lyapunov function 

candidate can be written as: 
 

11
( )

2
T

k k kV t s K s    (33) 

 
Taking the derivative of the Lyapunov function candidate 

yields: 
 

1( ) ( )T T T
k k k k d k k d kV t s K s s K s s K s        (34) 

 
Since K  and dK  are positive definite matrices, by 

Barbalat’s Lemma, ( ) 0V t   and the errors converge to zero 

asymptotically since ( )V t is positive and lower bounded, and 

( )V t is bounded as t  . 

The internal dynamic k  can be investigated by applying 

the control law to the system model: 
 

k k      (35) 
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k k k       (37) 

 

The term k

k

e

e


is negative and ke  is bounded since ke is stable. 

From the fact that, sin k k   and cos 1k  , the first term 

dominates the others. Thus, the following equations hold: 
 

0 0 0

0 0 0
k k k

k k k

  
  

    
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


  (38) 

 
So, it can be concluded that the internal dynamic k  is 

stable. 

B. BGF Composite Adaptive Controller for Multi-Agent 
Coverage Problem 

In this section, the stability analysis of the multi-agent BGF 
Composite Adaptive Controller is given. Using a multi-agent 
BGF controller with a consensus law is the novelty of this 
work.  
Theorem 2: Let   and ( )R t  be positive definite matrices and 

I  be the identity matrix. For each agent k, the tracking errors 

ks  and the estimation errors ka  converge to zero 

asymptotically and the internal dynamic k  is stable as 

t  . 

Proof: Let us first define   0.5 1diag  . Taking ( )R t I  

where I  is the identity matrix and defining the Lyapunov 
function candidate yields: 
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Since ( )P t  is now changing with respect to time, taking the 

derivative the equation leads to: 
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The first, second, third and fourth terms are negative since 

K , dK  and W  are positive definite matrices, and 

1

0
( ) IP t k

   and ( )t  is positive.  
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 (43) 

 
The fourth term is also negative by using (39) and (43), the 

detailed proof for binary protocol is given in [11]. Here, A  
denotes adjacency matrix. 

By Barbalat’s Lemma, ( ) 0V t   and the errors converge to 

zero asymptotically since ( )V t is positive and lower bounded, 

and ( )V t is bounded as t  . The detailed proof is given in 

the Appendix A. 
Since all the errors converge to zero, we can investigate the 

internal dynamics of k . By applying the control law to the 

system, we obtain the following dynamics: 
 

k k      (44) 
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Hence, the following equations hold near the origin since the 
first term dominates the others: 
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0 0 0

0 0 0
k k k

k k k

  
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    
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
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Thus, it can be concluded that the internal dynamic k  is 

stable. 

V. SIMULATION RESULTS 

In this section, the simulation results of the sensor coverage 
problem are studied. The simulation results carried out in 
MATLAB environment are given for the two controllers. The 
dimensions of the map are 10x10 meters and the robot count is 
5. 

The coefficients used in simulations are  0.4 0.4
T

dK  , 

 0 ( 0.01 0.2 )P diag , 0 0.1   and 3  . The distributed 

density function ( )q  is chosen as expanding circle and it is 

triggered at predefined time instants in the simulation. The 
variance parameter of the Gaussian is taken as 2 0.05  . For 

the adaptive controller, the parameters are  ( 1 1 )R diag , 
410f
 , 0 0.1k   and 0 10  . 

The simulation starts with a trigger which corresponds a 
density function with an expanding circle of Gaussians. The 
final radius of the circle is 3.5 meters. The adaptive control 
algorithm enables the agents to position themselves according 
to the density function in approximately 20 seconds. In this 
time period, the angular and distance errors converge to zero as 
given in Fig. 3. 

 

Fig. 3 Angular and Distance Errors of the Two Controllers 
 

The second and third triggers come at 30th and 60th seconds 
from the start of the simulation. The final radii of the 
expanding circle are now 2 and 3 meters, respectively. Again, 
the adaptive control algorithm positions the mobile agents to 
their calculated positions in approximately 20 seconds. 
Similarly, with the fourth trigger at 90th second, the final radius 
of the expanding circle is 2.5 meters. The angular and distance 
errors converge to zero asymptotically. 

The distance and angular errors of the two controllers for 5 
agents are given in Fig. 3. 

The distance and angular errors of BGF Adaptive Controller 
in Fig. 4 show that the errors of the individual agents converge 
to zero asymptotically. The estimation and consensus errors of 
BGF Adaptive Controller are given in Fig. 5. 

  

 

Fig. 4 Distance and Angular Errors of Each Agent for BGF Adaptive 
Controller 

 

Fig. 5 Estimation and Consensus Errors of Each Agent for BGF 
Adaptive Controller (Filtered) 

 
The main difference between the Feedback Linearization 

controller and the adaptive one is the consensus protocol. In the 
BGF Adaptive Controller, each agent shares its parameter 
vector with its neighbors. This provides synchronization among 
the mobile nodes since the agents communicate with each 
other. The ROS simulation video with three agents can be 
viewed at [12].  

VI. CONCLUSIONS 

A multi-agent adaptive controller for coverage control 
problem is presented. The controller estimates the model 
parameters of the kinematic model of the robot. The Centroidal 
Voronoi Tessellations provide decentralized multi-agent 
coordination. 
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Different from the traditional constant gain adaptive 
controllers, the composite adaptive controllers take the tracking 
error as well as the prediction error into account. The Feedback 
Linearization and BGF Composite Adaptive Controller are 
proven to be asymptotically stable with Lyapunov stability 
theory. The estimation errors of the adaptive controller 
converge to zero asymptotically. The theoretical results are 
verified with the simulation results.  

With the BGF Composite Adaptive Controller, the best 
tracking error performance is achieved. The adaptive controller 
can deal with the unknown dynamics since the unknown 
parameters are estimated while the Feedback Linearization 
Controller can only deal with the nonlinearities derived in the 
design phase based on the system model. 

APPENDIX A. STABILITY PROOF OF THE BGF COMPOSITE 

ADAPTIVE CONTROLLER 

The Lyapunov function candidate is defined as: 
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For simplicity, K  is taken as constant and is positive 

definite for 
2k

  . Since the robot is moving both forward 

and backward directions, this assumption holds. 
Taking the derivative of the Lyapunov candidate yields: 
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If we choose ( )R t I  and apply the control law to the 

system, we get: 
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If we use Y Y  and apply the control law to the system 

equations we obtain the following time derivative: 
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Substituting ks  with  T

k k ks e     in the equations 

yields: 
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The equation becomes: 
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The first, second, third and fourth terms are negative since 

K , dK  and W  are positive definite matrices, and 

1

0
( ) IP t k

   and ( )t  is positive.  

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:10, No:12, 2016

1467

  

2

1
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

2

1
ˆ ˆ

2

k

k

k k l k l k l

k l

T T
kl

k k ll

k l

a a a A a a a a

a a

 







     

  

 








 

 
The fourth term is also negative by using (39), the detailed 

proof for binary protocol is given in [11]. Here, A  denotes 
adjacency matrix. 

By Barbalat’s Lemma, ( ) 0V t   and the errors converge to 

zero asymptotically since ( )V t is positive and lower bounded, 

and ( )V t is bounded as t  . 
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