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 
Abstract—In this paper, we extend the fuzzy subrings with 

operators to the (λ, μ)-fuzzy subrings with operators. And the concepts 
of the (λ, μ)-fuzzy subring with operators and (λ, μ)-fuzzy quotient 
ring with operators are gived, while their elementary properties are 
discussed. 

 
Keywords—Fuzzy subring with operators, (λ,μ)-fuzzy subring 

with operators, (λ,μ)-fuzzy quotient ring with operators. 

I. INTRODUCTION 

INCE the concept of the fuzzy set appeared, many scholars 
have applied it to the ring and obtained many fuzzy theories 

about the ring. In 1982, Liu [1] first raised the fuzzy subring. 
After that, [2] and [3] discussed fuzzy quotient ring. Reference 
[4] proposed the notion of fuzzy subrings and fuzzy quotient 
ring with operators. Reference [5] defined ( , )   fuzzy 

subrings. Besides, [6] gave ( , )   intuitionistic fuzzy 

subgroups with operators. In this paper, we further develop the 
fuzzy ring theory and give the definition of ( , )   fuzzy 

subring with operators and ( , )   fuzzy quotient ring with 

operators, while some elementary properties are discussed.  

II. PRELIMINARIES 

In this paper, we always assume 0 1    .  

Definition 1. [1] Let A  be a fuzzy subset of ring R . Then A  
is called a fuzzy subring of R  if for all ,x y R , 

1.      x y x yA A A   ; 

2.      xy x yA A A  . 

Definition 2. [4] Let A  be a fuzzy subring of M  ring R . 
Then A  is called a M  fuzzy subring of R  if for all 

,x y R , m M ,    mx xA A . 

Definition 3. [5] Let A  be a fuzzy subset of ring R . Then A  
is called a ( , )   fuzzy subring of R  if for all ,x y R , 

1.       x y A x A yA      ; 

2.    x xA A     ; 

3.       xy A x A yA     . 
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Definition 4. [7] A subring R  of M  ring is said to be an 
M  subring if for all M  , ,a b R , 

1.  a b a b     ; 

2.    ab a b  . 

Definition 5. [7] Let f : 'R R  be a homomorphism of 

M  rings. Then f  is called a M   homomorphism if for all 

x R , m M ,    mx xf mf . 

Proposition 1. [5] Let A  be a fuzzy subset of R . Then A  is a 
( , )   fuzzy subring of R  iff for all ,x y R , 

1.       x y A x A yA      ; 

2.       xy A x A yA     . 

Proposition 2. [4] Let S  be a nonempty subset of M  ring 

R . If sI  is the characteristic function then S  is an M   

subring of R  iff sI  is an M  fuzzy subring of R . 

Proposition 3. [5] Let A  be a fuzzy subset of R . Then A  is a 

( , )   fuzzy subring of R  iff for every ( , ]   , A  is a 

subring of R  when A   . 

Proposition 4. [8] Let f : 'R R  be a homomorphism of 

M  rings, A  be a fuzzy subring of R , and 'A  be a fuzzy 
subring of 'R . Then the following statements hold: 
1.  Af  is a fuzzy subring of 'R ; 

2.  1
'Af   is a fuzzy subring of R . 

III. ( , )    FUZZY SUBRING WITH OPERATORS 

Definition 6. Let A  be a fuzzy subring of M  ring R . Then 
A  is called a fuzzy subring with thresholds ( , )   of 

operators or a ( , )   fuzzy subring with operators a 

( , )   M  fuzzy subring of R  if for all x R , m M , 

   mx xA A    , and denoted by a ( , )   M  fuzzy 

subring of R . 
Proposition 5. Let S  be a nonempty subset of M  ring R . If 

sI  is the characteristic function then S  is an M  subring of 

R  iff sI  is an ( , )   M  fuzzy subring of R . 

Proof. According to Proposition 2, sI is an M  fuzzy subring 

of R  when S  is an M  subring of R . 
For all x R , m M , let mx S , then  
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   1 1 1s smx xI I             . 

 
Also x S  when mx S , and hence  
 

   0 0 0s smx xI I             . 

 

Thus, sI  is an ( , )   M  fuzzy subring of R . Conversely, 

it is can be obtained from Proposition 2. 
Proposition 6. Let A  be a ( , )   M  fuzzy subring of 

M  ring R . Then the following statements hold: 

1.       m xy mx myA A A     ; 

2.     m x xA A     . 

Proof. (1) For all ,x y R , m M , we have 
 

           .m xy mx my mx myA A A A         

 

Thus,       m xy mx myA A A     . 

(2) For all x R , m M , we have 
 

         
     
    .

m x mx A mx

A mx A mx

x x

A A

A A



 

  

 

  

   

 

    

   

    

 

 

Thus,     m x xA A     . 

Proposition 7. Let both A  and B  are ( , )   M  fuzzy 

subring of M  ring R . Then A B  is a ( , )   M  fuzzy 

subring of R . 
Proof. For all x R , m M , we have 
 

   mx xA A    ; 
 

   mx xB B    . 
 
Then 
 

              
          

    .

A B mx A mx B mx A mx B mx

A x B x A x B x

A B x

 

 

 





   

  



    

   

 
 

Thus, A B  is a ( , )   M  fuzzy subring of R . 

Proposition 8. Let A  be a ( , )   M  fuzzy subring of 

M  ring R . Then A  is a ( , )   M  fuzzy subring of R  

iff for every ( , ]   , A  is a M  subring of R  when 

A   . 

Proof. It is easy to know by Proposition 3 A  is a subring of 

R  when A    for every ( , ]    in case of A  being an 

M  fuzzy subring of R . Also for all x A , m M , we 

have 
 

 xA  . 
 
Then 

   mx xA A   , 
 

and hence mx A . Thus, A  is a M  subring of R . 

Conversely, we get the information from Proposition 3 that A  
is a ( , )   fuzzy subring of R  for every ( , ]    

when A   . If there exists 0x R , 0m M  such that 

 

   0 0 0m x A xA      
 
Let 

 0xA   , 
 

then for ( , ]   ,  
 

 0 0m xA   
 
and 

0x A . 

 

But 0 0m x A , so here emerges a contradiction. Hence  

 

   mx xA A     
 
always holds for any x R , m M . Therefore, A  is a 
( , )   M  fuzzy subring of R . 

Proposition 9. Let f : 'R R  be a M  homomorphism of 

M  rings and A  be a ( , )   M  fuzzy subring of R . 

Then  Af is a ( , )   M  fuzzy subring of 'R . 

Proof. It is clear from Proposition 2.4 that  Af is a fuzzy 

subring of 'R .  
For all y R , m M , we have 
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       

    
    
    
    
    

   

1

' ' , '

' ' , '

' ' , '

' ' , '

sup

sup

sup

sup

sup

sup

.

A my A x x f my

A x f x my

A x f mx my mx R

A x f mx my mx R

A x f x y x R

A x f x y x R

A y

f

f





 









  
 



 

  

  

 

  

 

 





 

   
 

Thus,  Af  is a ( , )   M  fuzzy subring of 'R . 

Proposition 10. Let f : 'R R  be a M  homomorphism of 

M  rings and 'A  be a ( , )   M  fuzzy subring of 'R . 

Then  1
'Af  is a ( , )   M  fuzzy subring of R . 

Proof. It is clear from Proposition 4 that  1
'Af   is a fuzzy 

subring of R .  
For all x R , m M , we have 

 

         
      

1

1

'

'

' '

' .

A mx f mx mf x

f x A x

f A A

A f

  

 





    

   

 

 

Thus,  1
'Af   is a ( , )   M  fuzzy subring of R . 

IV. ( , )    FUZZY QUOTIENT RING WITH OPERATORS 

Let B  be a ( , )    fuzzy ideal of ring R . For all 

, ,a b R  we define a fuzzy set a B of R  as: 
 

      , .a B x B x a x R         

 

Let   ./ r B r RR B    For all
1 2
,r r R , we define them on 

/R B  as: 
 

     
   

1 2 1 2

1 2 1 2

;

.

r B r B r r

r B r B

B

r r B

  

  

  

 

 

 

Reference [2] proved that  / ; ,R B    is a ring. 

Proposition 11. Let R  be a M  ring and B  be a ( , )    

fuzzy ideal of R . For any / ,R B R B  ,m M  we define 

  .m r B mr B   Then  / ; ,R B    is a M  ring. 

Proof. First we prove the existence of the definition 

  .m r B mr B    

If 
1 2

,r B r B   then  
 

     1 2 2 1
0 .B r r B r r B     

        1 2 1 2 1 2
0 .B mr mr B m r r B r r B       

 

Hence, 
1 2

.mr B mr B    Similarly, we have 
 

        2 1 2 1 2 1
0 .B mr mr B m r r B r r B       

 

Hence, 
2 1

.mr B mr B    Therefore, we have  
 

2 1
.mr B mr B    

 
Namely, 

   1 2
.m r B m r B    

 
Thus, the above definition is reasonable. 
On the one hand, 
 

         
   

   

1 2 1 2 1 2

1 2 1 2

1 2
.

m r B r B m r r B m r r B

mr mr B mr B mr B

m r B m r B

        

      

   
 

On the other hand, 
 

       
     

1 2 1 2 1 2

1 2 1 2

m r B r B m r r B m r r B

mr r B mr B r B

     

    

 

         
    

1 2 1 2 1 2

1 2
.

m r B r B r mr B r B mr B

r B m r B

       

  

 

 

Thus, /R B  is a M  ring. 
Let R  be a M  ring, A  be a ( , )   M  fuzzy subring 

of R , B  be a ( , )    fuzzy ideal of R , and /A B  is a fuzzy 

set of /R B . Now for any /r B R B  , we define it as: 
 

 0,1/ : /A B R B   satisfying    / .sup
x B r B

r B xA B A
  

   

 

Reference [4] proved /A B  is a M  fuzzy subring of 
/R B . 

Proposition 12. The above fuzzy subset /A B  is a 
( , )   M  fuzzy subring of /R B . 

Proof. Let A  be a ( , )   M  fuzzy subring of R .Then 

/A B  is an M  fuzzy subring of /R B . For 
any /r B R B  , m M , we have 
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      

   

   

/ / sup

sup sup

/ .sup

x B mr B

my B mr B y B r B

y B r B

m r B mr B x

my my

y r B

A B A B A

A A

A A B

  

 

 

  

     

  

 



    

   

   

 

Thus, /A B  is a ( , )   M  fuzzy subring of /R B . 

Definition 7. The ( , )   M  fuzzy subring /A B  is called 

a ( , )   fuzzy quotient ring of A  with operators with respect 

to B , denoted by the ( , )   M  fuzzy quotient ring of A  

with respect to B . 
Proposition 13. Let R  be a M  ring, A  be a ( , )   M   

fuzzy subring of R , B  be a M   fuzzy ideal of R , and 
 

: / ,f R R B  

.x x B   
 

Then f  is a M  homomorphism from R to / ,R B and 

  / .f A A B  

Proof. It is clear that f  is a homomorphism from R to / .R B  

For any ,x R ,m M we have 
 

       .f mx mx B m x B m f x      

 

And for any / ,a B R B  we have 
 

      

 
( )
sup sup

/ .

f x a B x B a B
f A a B A x A x

A B a B

    
  

 
 

 

Thus, f  is a M  homomorphism from R to / ,R B and 

  / .f A A B  
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