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Abstract—Modelling realized volatility with high-frequency
returns is popular as it is an unbiased and efficient estimator of return
volatility. A computationally simple model is fitting the logarithms of
the realized volatilities with a fractionally integrated long-memory
Gaussian process. The Gaussianity assumption simplifies the
parameter estimation using the Whittle approximation. Nonetheless,
this assumption may not be met in the finite samples and there may
be a need to normalize the financial series. Based on the empirical
indices S&P500 and DAX, this paper examines the performance of
the linear volatility model pre-treated with normalization compared to
its existing counterpart. The empirical results show that by including
normalization as a pre-treatment procedure, the forecast performance
outperforms the existing model in terms of statistical and economic
evaluations.
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I. INTRODUCTION

HE availability of high-frequency data on financial assets

has motivated research related to return volatility.
Amongst the proxies of volatility, the realized volatility (RV)
is popular as it is simple, yet an efficient estimator of return
volatility [1]-[3]. RV is a sum of squares of the high-
frequency returns over a desired estimation or forecast
horizon. Andersen et al. [4] testified that although the
distributions of the RV are right-skewed, the distributions of
the logarithms of RV are approximately Gaussian, and the
long-run dynamics of these quantities are well approximated
by a fractionally-integrated long memory process.
Subsequently, based on the simple long-memory Gaussian
model for the logarithmic daily RVs, Andersen et al. [5]
reported that the volatilities can be forecast with great
accuracy, and their results are promising for practical
modelling and forecasting of the large covariance matrices
relevant in asset pricing and the related financial risk
management applications.

With the assumption of Gaussian process, it is well-known
that Whittle approximation offers an easier way to minimize
the frequency domain approximation to the time domain
Gaussian negative log likelihood [6]. The approximation is
computationally fast due to the Fast Fourier Transform (FFT)
[7]. Apart from the Gaussian case, the consistency of the
Whittle estimator was proven for a general class of ergodic
sequences [8]. It then becomes a popular methodology to
obtain the approximate maximum-likelihood estimates in the
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long-memory time series analysis [9], [10].

This paper intends to examine the performance of the
fractionally-integrated linear long memory process in
modelling the log RV as proposed by Andersen et al. [5]
henceforth referred to as ABDL. This is illustrated using the
high-frequency returns of S&P500 and DAX. It is noted that
the logarithms of the daily RV do not follow a Gaussian
distribution, and hence, the performance of the parameter
estimation assuming a Gaussian process is of interest of this
paper. To meet the Gaussian assumption, a parsimonious
normalization transformation is proposed before fitting the
series to the linear long-memory model. The normalization
method is adopted from Bivona et al. [11], of which the
empirical cumulative probabilities are fitted to the Gaussian
cumulative distribution function. The performance of the
proposed model is compared to the ABDL model with several
loss functions used in the literature and the superior predictive
ability (SPA) developed by Hansen [12]. Besides the statistical
evaluation, literatures show that an accurately predicted
volatility is materialized into an accurate Value-at-Risk (VaR)
forecast [13]-[15]. This motivates us to evaluate the
performance of the models via the economic evaluation in the
context of the forecast in VaR.

In the remainder of this paper, we proceed as follows.
Section II describes the fractionally-integrated linear long
memory  Gaussian  process, whereby the proposed
normalization method as a data-pre-treatment procedure is
detailed. Section III presents the empirical illustrations with
the methodology used for statistical and economic forecast
evaluations, and Section IV concludes.

II. FRACTIONALLY-INTEGRATED LINEAR LONG MEMORY
GAUSSIAN PROCESS

An autoregressive fractionally integrated moving average
ARFIMA(p, d, q) for process y;,t € N is given by:

P - L)%, = 0(L)e (M

where L denotes the backshift operator, ¢; are i.i.d. with zero
mean and finite variance 62, ®(z) = 1 — Zﬁ;l ¢;z’, and 0(z) =
X9_6;7’ are polynomials with no common roots and all roots

lie outside the unit circle. The process is stationary if d €

(—%é). The series (1 —2z)¢ can be expanded as ¥, a;z/,

d i r(d+1
where a; = (]) (-1 = %
(p + q + 2)-dimensional parameter vector 9(c2,d, ¢, 8) with
¢ € ® S RP and 6 € © € RY, it is convenient to assume that y,
is a zero mean Gaussian process so that the Gaussian

(=1)/. To estimate the
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maximum likelihood estimate might have optimal asymptotic
statistical properties. In particular, it is easy to minimize the
frequency domain approximation to the time domain Gaussian
negative log likelihood, called the Whittle estimator, given by

(2):

I:

L,(9) = ZL_l] flog (fo(@) + 755

J
@j

} @)

a2 lo(=iw)*
2 | (~iwj)|*|1-exp(-iw;)|

where f3(w;) = 5z is the spectral density
-t
~ 2mn

of v, I; T, v, exp(—iw,-)|2 is the periodogram of y, at

the j*"Fourier frequency w; = 2%, and [-] is the integer part of
(). Although the Whittle estimates 9, are asymptotically
efficient when y; is Gaussian [16], [17], Hannan [8] showed
that the limit distribution of the Whittle estimates is
unchanged by many departures from Gaussianity.

It is interesting to know if the Gaussianity assumption is
critical in the finite samples. To examine this, let us compare
the performance of the ARFIMA models on the demeaned log
RV series (ABDL) and the normalized demeaned log RV
series (ABDLn). The normalization procedure adopted in this
paper follows the procedure of Bivona et al. [11] that matches
the empirical cumulative probabilities P(y;) to the Gaussian
cumulative distribution D(z,), taking the mean y = E(y,) and
the variance o = E(y, — E(y,))” as:

D(z,) =

1 Z (x-3)? _ 3
Gymf_ooexp< 202 )dx =P(y.) 3

Meanwhile, to prepare for the back-transformation in the
process of forecasting, the empirical distribution is fitted with
Weibull distribution. This is justified as Weibull distribution is
flexible to assume the characteristics of many types of
distributions [11], [18]-[20]. The probability density function
is given in (4):

- exp (— (y;‘*)b),yt* >0 “4)

where a and b are the scale and shape parameters to be
estimated using maximum likelihood estimates given the
values in the series {y;}. To ensure that y; > 0, the empirical
data {y,} are adjusted such that y; = y; — y,,, + 0.1, where y,,
is the minimum of {y,}. As a Gaussian process, the series
{z;} is modelled with (1), and the parameters are then
estimated with the Whittle estimator r given by (2). The
model can be used to obtain the one-step ahead forecast Z,,, ;.
However, this quantity has to be back-transformed in order to
be of any utility. This involves two steps; namely, (i) matching
the Gaussian cumulative distribution function D(Z,,,) to the
Weibull cumulative distribution function F,(9;,,) =1—

i)’ R . .. .
exp (— (T) ) such that D(Z,4,) = E,(¥;.1), and (ii) obtain

o0 =2(%)

In+1 = Ine1 + Ym — 0.1

III. EMPIRICAL ILLUSTRATION

In this section, we compare the RV forecast performance of
ABDL and the normalized-ABDL (ABDLn) of which log RV
is transformed following (3) and (4). In the first application,
we consider the half hourly returns on the S&P500 indices
spanning a period from 2/1/08 to 19/7/13. The half-hourly
returns are computed as 1 = log(P;) — log(P;_1), where P; is
the asset price at the t** half hourly observation. There are 13
returns per day, computed from 9:30 a.m. to 3:30 p.m. In the
second application, we examine the same using DAX indices
spanning a period from 2/1/08 to 9/5/13, with 18 returns per
day from 3:00 a.m. to 11.30 p.m. For both indices, the RV for
day-i is computed as RV; =Z‘;’;’?+(i_l)*mr§, where m is the
number of intraday returns per day. The information regarding
these data sets is detailed in Table I.

TABLE 1
DESCRIPTIVE STATISTICS FOR THE FULL DATA SET, S&P 500 (2/1/08 —
19/7/13) AND DAX (2/1/08 —9/5/13)

S&P 500 DAX
T RV T RV
Mean 7.5238 10%  2.034510%  9.8656 107 2.9055 10
Std dev 0.0040 4.2067 10 0.0040 5.9095 10
Skewness -0.1165 6.0906 -0.3188 8.5049
Kurtosis 224317 54.1799 35.5520 101.6352
JB (p-value) 1 1 1 1
Q2 (p-value) 1 1 1 1

Note: JB is the Jarque-Bera statistic and Qy is the 20™ order of Ljung-Box
test.

It is noted that both data sets are not normally distributed in
their returns as well as RVs. Besides, these series portray
strong autocorrelations, indicating possible existence of long
memory. We compare the performance of ABDL and ABDLn
based on the daily RV forecasts. To project a fair comparison
between the two indices, the performances of these models are
judged based on 300 out-of-sample forecasts for both S&P
500 and DAX.

To examine if the logarithms of daily RV (denoted as log
RV) are normally distributed, we first compute the logarithms
of RV;,i =1, [%], where n = sample size and m = number
of intraday returns per day. In this empirical illustration, we
take a sample of 18196 S&P500 and 24145 DAX half hourly
indices. These log RVs are then demeaned with the respective
sample means and they are compared to the normalized
counterparts {z;} that follow the normalization procedure in
Section II. The comparison is shown in Fig. 1. It is clear that
the log RVs of both indices do not follow Gaussian
distribution, and this motivates the examination with ABDLn.

Let us take ABDLn model to forecast day ahead RV of
S&P500 as an example. Based on the computed series RV; =

P onast? i =1,--,1399, we set the estimation
window n,; = 742. Based on the autocorrelation plot in Fig. 2,
both the series {log RV;} and {z;} depict slow decaying
autocorrelation functions indicating the existence of long
memory. As such, we keep the approach of ABDL that fits the
742 log RV (as well as z, the normalized log RV) with an

610



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:12, 2016

ARFIMA(1,d,0) model. With the Whittle estimator, the
parameters of ABDL model are estimated as ¢ =
—0.3036,0, = 0.7796, and d = 0.5503, whilst the parameters
of ABDLn model are estimated as ¢ = —0.0006,0, = 0.826,
and d = 0.3896. Based on these fitted ARFIMA models, the
predicted log RV is then exponentiated, and RV, is
estimated as 2.4 10 by ABDL and 2.39 10" by ABDLn. To

0.35 T T

proceed to the subsequent forecast, we rotate the estimation
window forward by a day, that is, {RV;}722 U RV,,3, and the
procedures to estimate the parameters of ARFIMA(1, d, 0) and
forecast day ahead RV are repeated for both ABDL and
ABDLn, respectively.

I I — log RY
03r- - |
025 1
02
015 - 1
01 =
0,08 E
0 1 L L
-6 -4 2 0 2 4 ]
(a)
04 T T T T T
— g RV
0.35 |- —_
03}
025 =
0z s
015 |
01 1
0.05 1
o | 1 1 1 T
5 4 -3 2z 1 o 1 2 3 4 5
(b)
Fig. 1 Density plot of log RV and the normalized log RV for (a) S&P500 and (b) DAX
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Fig. 2 Autocorrelation of the training series {log RV;} and {z;} for RV,,3 of S&P500
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Fig. 3 Out-of-sample forecasts of daily RV for (a) S&P500 and (b) DAX

TABLE II
THE AVERAGES OF PARAMETER ESTIMATES OF ARFIMA (1, d, 0) ABDL AND
ABDLN OVER 300 REPLICATES FOR S&P500 AND DAX

S&P500 DAX
ABDL ABDLn ABDL ABDLn
¢ -02827 -0.2426 -0.1682 -0.1797

o.  0.8081 0.8291 0.7115  0.7164
d 05247 05018 04790  0.4806

TABLE IIT
FORECASTING PERFORMANCE OF ABDL AND ABDLN FOR S&P500 AND DAX
S&P500 DAX
ABDL ABDLn ABDL ABDLn
MSE 3.539 10 3.58810%  1.868 10"  1.83510™
MAD 8814010 8.7130 10 7390 10  7.361 10
MAPD 0.8033 0.7534 0.8773 0.8249

The logarithms of RV of DAX depict similar characteristic
as log RV of S&P500. As such, we keep the same
ARFIMAC(1,d,0) to fit the series of log RV as well as the
normalized log RV. The averages of the parameter estimates
over 300 replicates for both indices are shown in Table II. It
can be seen that the normalization of log RV does not produce

a very different result, but it mitigates the characteristic of
non-stationarity in modelling the volatility in S&P500. The
out-of-sample forecasts of the daily RV for S&P500 and DAX
are presented in Fig. 3. The forecast performance of these
volatility models is then examined with the commonly used
loss functions; namely, (i) the mean squared error (MSE), (ii)
the mean absolute deviation (MAD), and (iii) the mean
absolute percentage deviation (MAPD). The results of these
forecasting models for S&P 500 and DAX are summarized in
Table III. The best model in the respective performance
measure is set forth in bold. We observe that ABDLn is
consistently marked as a better model by the loss functions,
except for S&P500, whereby the MSE of ABDLn is 1.384%
higher than the result of ABDL. As a whole, ABDLn performs
better than ABDL in forecasting RV for these indices.

A. Economic Evaluation of the Forecast RVs

Besides the statistical evaluation, we examine the economic
appraisal of the forecast RVs in this study. VaR has been
widely used as a measurement of the market risk of financial
assets. It is a quantile forecast, of which VaR® is the a't
quantile of the conditional returns, which can be written in.
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mffm,j = flggrrj + Oegrrjfy 1), tg = [%] ,00, 299 + ®)
[+

where fl; 4, ; and 6;,.q; are the jt" model’s day ahead

conditional mean and conditional volatility forecasts

respectively, and Fg_1 is the inverse cumulative distribution

function of the innovations, g, = % From (5), the day

ahead VaR is predicted by replacing the quantity 6, ; with
the square root of the volatility forecasts obtained from the
ABDL and ABDLn models. In line with the characteristics of
financial series, the a'® quantile of the o, , brocess is
estimated based on a skewed student distribution. With these
results, we compute the forecasts VaR°*and VaR°® for both

S&P500 and DAX. The forecast results for DAX are
illustrated in Fig. 4. It can be seen that the VaR forecasts
following the volatilities predicted by ABDLn are in general
closer to the daily returns.

The forecasts of VaR are further evaluated in terms of
capital efficiency. We examine this aspect using FABL firm’s
loss function by Abad et al. [21] given in (6):

FABLyy11) i (6)
_ (VaR?dH,,- - Ttd+1) s if Tege1 <VaR{ 44

Vap% ; Vap%
—c(reys1 = VaRE41j),  if Tegrn 2 VaRE 4y

where c is the firm’s cost of capital.
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Fig. 4 DAX daily returns and the respective VaR forecasts for (a) 1% (b) 5% long positions

The results are confirmed with the superior predictive
ability (SPA) test by Hansen [12]. This examines the null
hypothesis that the benchmark model is not inferior to its
competing models. In our case here, we have only a
benchmark and a competing model with 300 out-of-sample

forecasts. The test statistic is deduced from the loss function
differential d; = L;g — L;,i=1,---,300 where L;, and L;.
are the loss variables (see (6)) of the benchmark and the
competing model at observation i respectively. Under the
assumption of the null hypothesis and that d; . is stationary,
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we expect that on average, the loss variable of the benchmark
model is not bigger than the competing model, that is, Ho:
te = E(d;.) < 0. The test statistic is given below.

V300 7
Tﬁs‘;’A = max [A—C,O] ( )

where @, is a consistent estimator of w, = var(v/300u,). The
test statistic p-values are then estimated using stationary
bootstrap of Politis and Romano [22]. Based on 2000
bootstraps, the performances of the VaR forecasts due to the
volatilities from ABDL and ABDLn models are shown in
Table IV. Interestingly, the volatilities from ABDLn model
are consistently contributing to a better predictive ability of
VaRs across the pre-set quantile (1% and 5%) as well as the
stock indices.

TABLE IV
ECONOMIC EVALUATIONS OF VAR RESULTS FOR S&P 500 AND DAX INDICES
S&P500 DAX
FABL  SPA (p-value) FABL  SPA (p-value)
1% VaR
ABDL  0.0014 0 0.0017 0
ABDLn  0.0014 0.1565 0.0016 0.1535
5% VaR
ABDL  0.00070 0 0.001 0
ABDLn  0.00068 0.098 0.001 0.1865

IV. CONCLUSION

Modelling the logarithmic daily RVs with fractionally-
integrated long memory Gaussian process is commonly
practiced in the literature. Nonetheless, the assumption of
Gaussianity in finite samples is uncertain. This paper
examines the characteristic of the distribution of log RV in
finite samples using the indices S&P500 and DAX. We noted
that the series are not Gaussian, and a parsimonious
normalization procedure is proposed. The performances of
ABDL and ABDLn are compared in terms of statistical as
well as economic evaluations. The empirical results show that
the volatilities predicted by ABDLn outperform the
counterpart from ABDL. This shows that pre-treating the
financial series with normalization is indeed beneficial in the
case where Gaussianity is assumed in the process of parameter
estimation.
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