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Development of Extended Trapezoidal Method for
Numerical Solution of Volterra Integro-Differential
Equations
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Abstract—Volterra integro-differential equations appear in many
models for real life phenomena. Since analytical solutions for this
type of differential equations are hard and at times impossible to
attain, engineers and scientists resort to numerical solutions that can
be made as accurately as possible. Conventionally, numerical
methods for ordinary differential equations are adapted to solve
Volterra integro-differential equations. In this paper, numerical
solution for solving Volterra integro-differential equation using
extended trapezoidal method is described. Formulae for the integral
and differential parts of the equation are presented. Numerical results
show that the extended method is suitable for solving first order
Volterra integro-differential equations.

Keywords—Accuracy, extended trapezoidal method, numerical
solution, Volterra integro-differential equations.

1. INTRODUCTION

OLTERRA integro-differential equations (VIDEs) play

important roles in modeling real life phenomena with
various disciplines including natural science, engineering,
physics, economics and biology. Applications of such
equations as stated in [1] include heat transfer, diffusion
process in general, neutron diffusion and many more. Since
the importance of VIDEs in modeling is increasing, finding
solutions for the equations has attracted many researchers
including scientists and engineers for decades. It is known that
analytical solutions for VIDEs are very hard and at times
impossible to obtain. As an alternative, scientists and
engineers seek numerical solutions which can be made as
accurately as possible.

Numerical methods for solving ordinary differential
equations (ODEs) are adapted to solve VIDEs where the
integral part of the equations is approximated using quadrature
formulas. Runge-Kutta type of methods and linear multistep
methods are the most common methods for solving VIDEs.
See, for example the implementations proposed by [2]-[10].

In this paper, we propose solving VIDEs using extended
one-step trapezoidal method. The extended method with
higher order of convergence and improved stability conditions
is suitable for solving many types of differential equations.
Previous literature have shown extensive implementations of
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extended one-step methods in solving ODEs, delay differential
equations and combination scheme of solving stiff and non-
stiff equations. Readers are advised to refer published work on
various implementations of extended one-step methods for
numerical solutions of differential equations, see for example
[11]-[15]. The motivation for this research is due to existing
limitation in the implementation of extended one-step
trapezoidal method for solving VIDEs. The extended
trapezoidal method has been first developed by [11] to solve
ODEs with third order convergence while preserving the
property of A-stability of the classical trapezoidal method. As
cited in [11], Dahlquist stated in 1963 that a method is to be A-
stable if the numerical solution of differential equation
y'=Ay where Re(1)<0 approaches zero as stepsize

approaches zero.
We focus on the development of numerical solution for
solving initial value VIDEs of the form:

yr(x) = f(X7 y(X)) +J‘ F(X7 S, y(s))dsa XO <X< XN 5
X0 (1)

Y(X0)=VYo,

where the given functions f(x, y(x))and F(X,s, y(s)) satisfy

Lipschitz conditions in their arguments such that the solution
y(X) exists. The value Y| is the given initial condition.

The organization of this paper is as follows. In Section II,
we discuss the development of the proposed method.
Numerical results and related discussions are presented in
Section III. Section I'V highlights the conclusions.

II. METHOD DEVELOPMENT
We consider (1) where the interval [X(, Xy ] is divided into

. . . XN — X .
N subintervals with stepsize h =ZN_20  The notation Yn

refers to the approximate solution for y(Xp)where y is the
solution of (1). The grids X, =Xq+ih, i=0,12,...,N
represent N equal subintervals. It is assumed that approximate
solutions have been obtained up to X,,. The immediate task is

to evaluate Yy,,;. The formulae pair Yy,,;, approximate
solution for y(Xn.;) and Y,.1,predicted value for y,.; are

implicit and being implemented in PECE mode where P
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stands for predict, E stands for function evaluation and C is for
correct.

A. Formulae Derivation

We derive the formulae by integrating (1) on both sides
with limit of integration from X, to X,,; to obtain:

Xn+1 Xn+1 X
Yn+1 = Yn +I f(x, Y(X))dX‘FI IF(X, S, y(s)) ds dx
Xn X0

Xn
= yn + Il + |2
where
Xn+1 Xn+1 (X
I :I f(x,y(x))dx and I, :I JF(X, S, y(s)) ds dx.
Xn X0

Xn

The integral Iy is solved by first interpolating f (X, y(X))
by P(x) using interpolation points (X,, fn), (Xni1s fnet)
and (Xp, fn42). The polynomial P(x) is given by:

n+2

POO= ) fili(0)
k=n

and foreach k=n,n+1,n+2,

n+2
_ (X=X%)
=] 5=
ik

Here, we denote f, =f(Xy,yn), oy =FfXnirs Yner)
and f,.» = f(Xp42, Ynen)- The notations Y,,; and Yo
refer to predicted values for yp,,; and Yyp,, respectively.

Using X = X;, + Sh, we have:

1
I = hI P(S)dS
0

1/ o2 2
- hJ. (% fr+(=S2+28)f, + S 2_5 fn+2JdS
0

h
:E(S fo +8fh1— fri2)

which the coefficients are as given in [11], [16]. Since the
formula for I;is implicit, we predict the values for y,,;and

Yn+2 using the formulae suggested in [11] as:

9,(1(?1 =Ynt hfn P

. h .
y;(qlll =VYn +E[fn + f(xn+1> yr(1+)1)]’

N (1
It =901
Yn+2 =5Yn —4Yns + h(2 fo +4fn+1)-

In similar manner we obtain the integral |, using

trapezoidal method. Thus,

._n[
27,

=l+1p

I " F (%5, Y(5))ds + j F X5, y(s))ds}

Xo X0

where

h (0
171 :EJ. F(Xy,8,y(s))ds
X0

h_h
:E[EF(XH:XOS y0)+hF(Xn5Xls yl)+'“

h
+ hF(anXn—layn—1)+EF(Xnaxna)’n)]

h2
:T[F(Xn’XOsy0)+2F(XnaX]’yl)+"'

+2F(Xn>xn—1ayn—l)+F(Xnaxnayn)]
and
h [+l
|22 = _IF(XH+1,S, Y(S)) ds
2 Xo
h_h
:E[EF(Xn+l’X0ayO)"'hF(XnH»Xlayl)""“

h .
+hF(Xp41, X, Yn)+5 F(Xna1> Xne1s Yne1)]

2
:T[F(XnH:XO,y0)+2F(Xn+laxl,y])+"'

+ ZF(Xr‘IH’ Xn> yn) + F(Xn+l5 Xn+ls 9n+1)]~

The derivatives are evaluated as follows,

Yo = (X0, Yo)

Yn+1 = fas +2[F(Xn+laX07YO)+2F(Xn+1>XlaYI)+
o+ 2F (Xng1s Xns Yn) + F (X1 Xnans YD

Yni2 = fni2 +2[F(xn+2,x0, Yo)+2F (Xny2, X, Y1) +
o+ 2F (X2, Xng1s Yne1) + F(Xng2, Xn42, Vg2l

B. Algorithm
The development of the algorithm is shown in the following
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Fig. 1.

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Begin. Initialize all given values.

Calculate ¥y,,1 and Yp,,5.

Solve for 1.

Solve for 1.

Calculate Y.

Calculate error.

Calculate Yy, and Yp,o for the next iteration.
Update X.

Step 9: Go to Step 2 if the endpoint is not reached. Else go to
Step 10.
Step 10: Stop.

Fig. 1 Algorithm for solving VIDEs

C.Test Problems

In order to analyze the accuracy of the method, we test the
algorithm on several test problems with exact solutions. The
test problems are taken from [2], [17].

- Test Problem 1

X
y'(x):l—jy(s)ds, y(0)=0, 0<x<I.
0

Exact solution is y(X) = sin X.

—  Test Problem 2
X
y'(X)=1+2x— y+J- x(1+2x)e5 9 y(s) ds,
0
y(0)=1, 0<x<1.

Exact solution is y(x) =e x|
—  Test Problem 3
y'(xX)= 2—x+éx3 —J:Ex—s)y(s) ds,
y(0)=-1, 0<x<1.

Exact solution is y(X) = x—e .

—  Test Problem 4

X
y'(x)=1+ x+J‘(x—s)y(s)ds,
0

y(0)=1, 0<x<I.

Exact solution is y(x) =e*.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are displayed in terms or
absolute error at grid points using various stepsizes for Test
Problem 1 — Test Problem 4. For illustrative purposes, errors

with h=0.1, h=0.025 and

h=0.01 are tabulated. We compare the results of using
extended trapezoidal method for solving VIDEs with that of
the Euler method. The errors in the numerical solutions for
Test Problem 1 — Test Problem 4 are given in Tables I-IV
respectively. The abbreviations h refers to stepsize, e. trap
means extended trapezoidal method and 4.98e-2 is equivalent

to 4.98x1072.

at specified grids stepsizes

TABLE I
ERRORS IN THE SOLUTIONS FOR TEST PROBLEM 1
h=0.1 h=0.025 h=0.01
euler e. trap euler e. trap euler e.trap
0.1 498e-2 828e-5 4.99¢-2 5.18e-6 4.99e-2 8.29¢-7
0.2 9.90e-2 1.63e-4 9.93¢-2 1.02¢-5 9.93e-2 1.63e-5
03 1.47e-1 238e-4 1.48e-1 1.49e-5 1.48e-1 2.39e-6
04 1.94e-1 3.07e-4 1.94e-1 1.92e-5 1.95e-1 3.07e-6
0.5 238e-1 3.65e-4 2.39-1 2295 2.40e-1 3.66e-6
0.6 2.80e-1 4.12e-4 2.82¢e-1 2.58e-5 2.82e-1 4.13e-6
0.7 3.19%-1 4.46e-4 3.2le-1 2.79e-5 3.22e-1 4.46e-6
0.8 3.55e-1 4.64e-4 3.58¢-1 2.90e-5 3.58e-1 4.64e-6
0.9 387e-l1 4.66e-4 39le-1 29le-5 39le-l1 4.66e-6
1.0 4.15e-1 4.50e-4 4.19¢-1 2.8le-5 4.20e-1 4.50e-6
TABLEII
ERRORS IN THE SOLUTIONS FOR TEST PROBLEM 2
« h=0.1 h=0.025 h=0.01
euler e. trap euler e. trap euler e.trap
0.1 9.75e-3  2.00e-4 593e-3 1.3le-5 5.24e-3 2.10e-6
02 2.78e-2 5.06e-4 2.04e-2 3.20e-5 1.90e-2 5.1le-6
03 5292 9.23e4 4.20e2 579%-5 3.99%-2 9.23e-6
04 837e-2 1.49e-3  6.95e-2 9.29¢-5 6.66e-2 1.48e-5
0.5 1.19e-1 226e-3 1.0le-1 1.4le-4 9.80e-2 2.25¢-5
0.6 1.5%-1 3.34e-3 1.37e-1 2.08e-4 1.33e-1 3.33e-5
0.7 2.0le-1 4.88e-3 1.76e-1 3.0de-4 1.70e-1 4.86e-5
0.8 247e-1 7012e-3 2.16e-1 4.44e-4  2.10e-1  7.09¢-5
0.9 296e-1 1.04e-2 2.58e-1 6.5le-4 2.50e-1 1.04e-4
1.0 3.48e-1 1.55e-2 3.0le-1 9.63e-4 29le-1 1.54c-4
TABLE III
ERRORS IN THE SOLUTIONS FOR TEST PROBLEM 3
« h=0.1 h=0.025 h=0.01
euler e. trap euler e. trap euler e.trap
0.1  9.49%-2 8.74e-5 9.69¢-2 5.66e-6 9.72¢-2  9.12e-7
0.2 1.85e-1 19le-4 1.89¢-1 1.24e-5 1.8%-1 1.99¢-6
03 2.70e-1 3.12e-4 2.75e-1 2.0le-5 2.77e-1 3.23e-6
04 3.50e-1 4.49e-4 3.57e-1 2.88e-5 3.59¢-1 4.64e-6
0.5 424e-1 6.0le-4 4.33e-1 3.86e-5 4.35e-1  6.20e-6
0.6 493e-1 7.69¢e-4 5.04e-1 4.93e-5 5.06e-1 7.92e-6
0.7 556e-1 9.52e-4 5.69¢-1 6.09¢-5 5.72e-1  9.78e-6
0.8 6.14e-1 1.15¢e-3  6.28¢-1 7.33e-5 6.31le-1  1.18e-5
0.9 6.66e-1 1.35e-3 6.82e-1 8.66e-5 6.84e-1  1.39¢-5
1.0 7.12e-1  1.58e-3 7.28¢-1 1.0le-4 7.3le-1 1.6le-5

From the tabulated errors in the numerical results, it is
clearly seen that extended trapezoidal method is suitable for
solving VIDEs as compared to the existing Euler method. For
various values of h, the errors in using extended trapezoidal
method improve as the stepsizes get smaller. Compared to
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Euler method, using extended trapezoidal method to solve
VIDEs improves the overall accuracy of the numerical results.
Thus it can be concluded that extended trapezoidal method is
suitable for solving VIDEs.

TABLE IV
ERRORS IN THE SOLUTIONS FOR TEST PROBLEM 4
h=0.1 h=0.025 h=0.01
euler e. trap euler e. trap euler e.trap
0.1 5492 79le-5 53le-2 4.95e-6 5.28e-2 7.92e-7
0.2 1.15e-1 1.50e-4 1.1le-1 9.38e-6 1.l1le-1  1.50e-6
03 1.80e-1 2.12e-4 1.75¢-1 1.33e-5 1.73e-1  2.13e-6
04 2.50e-1 2.67e-4 243e-1 1.67e-5 2.42e-1 2.67e-6
0.5 326e-1 3.14e-4 3.17e-1 1.97e-5 3.15e-1 3.14e-6
0.6 4.08e-1 3.53e-4 3.97e-1 2.2le-5 3.95e-1 3.54e-6
0.7 495e-1 3.85e-4 4.83e-1 24le-5 4.80e-1 3.86e-6
0.8 590e-1 4.1le4 5751 2.57e-5 572-1 4.12e-6
0.9 69le-1 430e-4 6.74e-1 2.69¢-5 6.71e-1 4.3le-6
1.0 8.00e-1 4.43e-4 7.82¢-1 2.78e-5 7.78e-1  4.45e-6

IV. CONCLUSIONS

We have presented the development of extended trapezoidal
one-step method for the numerical solution of VIDEs. The
extended trapezoidal method has been and adapted to solve
VIDEs and further implemented in PECE scheme. From the
numerical results, it is clearly shown that the extended
trapezoidal method is suitable to solve VIDEs.
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