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Spatiotemporal Analysis of Visual Evoked Responses
Using Dense EEG
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Abstract—A comprehensive study of object recognition in the
human brain requires combining both spatial and temporal analysis of
brain activity. Here, we are mainly interested in three issues: the time
perception of visual objects, the ability of discrimination between two
particular categories (objects vs. animals), and the possibility to
identify a particular spatial representation of visual objects. Our
experiment consisted of acquiring dense electroencephalographic
(EEG) signals during a picture-naming task comprising a set of
objects and animals’ images. These EEG responses were recorded
from nine participants. In order to determine the time perception of
the presented visual stimulus, we analyzed the Event Related
Potentials (ERPs) derived from the recorded EEG signals. The
analysis of these signals showed that the brain perceives animals and
objects with different time instants. Concerning the discrimination of
the two categories, the support vector machine (SVM) was applied on
the instantaneous EEG (excellent temporal resolution: on the order of
millisecond) to categorize the visual stimuli into two different
classes. The spatial differences between the evoked responses of the
two categories were also investigated. The results showed a variation
of the neural activity with the properties of the visual input. Results
showed also the existence of a spatial pattern of electrodes over
particular regions of the scalp in correspondence to their responses to
the visual inputs.
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1. INTRODUCTION

HE human brain is a very complex system [1]. The ability

of the brain to categorize or group visual stimuli based on
common features is a fundamental principle in cognition. This
categorization is very fast and occurs in few millisecond time
scales. In fact, the way how the brain regions activate/
communicate to produce cognitive functions is yet not well
defined. EEG technique is well known to study waves
representing the electrical activity of the brain. The main
advantage of the EEG signals is its excellent temporal
resolution (1ms), which is very crucial to track the brain
activity in very short periods (about hundreds of ms), of most
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of cognitive activities [2]. EEG has an advantage in temporal
resolution compared to fMRI. The continuous measure of
brain activity via ERP derived from the EEG recordings is an
important technique to investigate the time-course of
activation of the different brain regions.

Given that, we need to track the brain activity during very
short periods (about hundred of ms), the EEG has the
capability to instantly read the states of the brain while
avoiding the hemodynamic delay associated with fMRI. It is
well known that in order to understand the visual processing,
both spatial and temporal information of brain activities are
necessary. A multivariate pattern classification has been used
in [3] using together the MEG and fMRI and showed very
high performance in understanding the object categorization in
the human brain. This work has never been realized using
dense EEG, which is the main objective of this paper.

Here, we used dense-EEG recorded during picture naming
task combined with a Support Vector Machine (SVM)
classifier to explore the possibility of discriminating between
two categories of objects and animals from noninvasive EEG
recordings. We finally explored the spatial locations of the
most active EEG sensors over the scalp for each category of
stimuli.

II. MATERIALS AND METHODS

A. Participants

The participants were nine healthy volunteers: 5 women,
aged 19-40 and 4 men aged 19-33 years. The subjects have
reported having normal or corrected-to-normal vision and they
did not suffer from any neurological disease. They have also
given their informed consent to participate in this research
study. The study and the consent procedure were approved by
the National Ethics committee for the protection of persons
(CPP), conneXion study, agreement number (2012-A01227-
36), and promoter: Rennes University Hospital.

B. Experimental Protocol

A total of 148 displayed pictures on a screen using E-prime
2.0 software (Psychology Software Objects, Pittsburgh, PA)
are used in our study. They were selected from a database of
400 standardized pictures and their order of display was
randomized across the participants.

C. Procedure

The participants were tested individually in a soundproof
dimly light room. Before the experiment the subjects were
familiarized with the experimental pictures and their
corresponding names. A trial consists on naming at normal
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speed a sequence of 148 randomly displayed pictures on a
screen. Each picture appears during 3 seconds and is followed
by a jitter-stimulus interval of 2 or 3 seconds randomly. In this
task, participants were told to say the name of a picture aloud
as rapidly and as accurately as possible. Most of the answers
of the subjects were given while the image was still present at
the screen. The spoken answers were digitized and recorded
for later response latency and accuracy check.

D.EEG Acquisition and Preprocessing

EEG data were recorded with 256 channels covering the
entire scalp. Fig. 2 (a) shows the distribution of all the
electrodes. The main feature of this system is the large
coverage of the subject’s head by surface electrodes allowing
for the improved analysis of the intra-cerebral activity from
non-invasive scalp measurements, as compared with 32- to
128-electrodes standard systems.

Signals were sampled at 1 kHz with band-pass filters set
between 3 and 45 Hz. Based on a visual inspection which
followed each trial, epochs contaminated by movements, eye
blinking or any other noise source were rejected and excluded
from the analysis.

E. Classification

For classification purpose between the two classes Animals
and Objects, we used a SVM algorithm. An SVM model is a
representation of a set of different samples as points in a space
divided into two categories with a clear and as wide as

possible gap between them.
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Fig. 1 Pipeline of the SVM analysis used to differentiate between the
two categories Animals (A) and Objects (O) at each time point

In our application, we used an SVM classifier for each time
point, to classify between two classes Animals and Tools. As
illustrated in Fig. 1, we used supervised learning with a leave-
one-out cross-validation approach, to train the SVM classifier
to identify any of the two conditions [3]. We started by
extracting randomly from dense EEG of different images

including objects and animals, a set of training comprising all
the observed vectors minus one which is left for the test phase.
The process is repeated 100 times with random assignment of
the data to training and testing sets, yielding an overall
decoding accuracy of the classifier.

III. RESULTS

A. Spatiotemporal Characteristics

Fig. 2 (b) shows a typical example of ERP signals averaged
over animals’ stimuli for a particular subject while Fig. 2 (c)
shows the signals averaged over tools stimuli for the same
subject. As we see in the Fig. 2 the ERP signals have a close
behavior on all the electrodes over the time acquisition. We
can also point out that the maximum ERP value appears
during the time interval (100-200 ms) for both cases.
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Fig. 2 (a) Distribution of the 256 electrodes (EGI system), (b): ERP
averaged over the electrodes for a particular subject for the
visualization of the set of animals, (c): ERP averaged over the
electrodes for a particular subject for the visualization of the set of
tools
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Fig. 3 Averaged ERP signals for Animals and tools

In Fig. 3, we show the global average (over all the subjects,
trials and channels) of ERP signal for animals and objects. The
figure shows the same global behavior for both conditions.
However, we can notice a difference in the peak activation
between both signals. The peak is computed as the maximal
value which is attained by the ERP signal at the first 200ms
after Onset. The peak corresponding to the signal for animal
condition was about 149ms and the peak instant for objects is
about 135ms.

B. Classification

In Fig. 4, we show the decoding accuracy greater than 65%
at their corresponding time for two particular subjects. We can
see that the maximal values for classification accuracy are in
the interval (150-200) ms.
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Fig. 4 Decoding Accuracy (>65%) per each time for two different
subjects (¥)

In Table I, we show the most energetic electrodes at the
highest decoding accuracy for both of animals or objects.

TABLE
LiST OF ELECTRODES WITH MAXIMAL CONTRIBUTION TO THE
CLASSIFICATION TOOLS/ANIMALS

Time of peak Electrode where Electrode where
Subjects classification amplitude is maximal amplitude is maximal

accuracy (ms) Tools Animals

1 155 AFP9h FP2

2 420 F12h TTP7h

3 490 P2Hp Nz

4 180 T3 F8

5 253 FCC3 C4h

6 319 TTP7h P6h

7 272 F12h FP1

8 221 TP7h PO6

9 572 P2hp AFP10h

In table II, we show the distribution of the peak of
classification accuracy for each subject as well as their
occurrence time. In Fig 5, using EEGLAB [4] we show the
corresponding energetic electrodes (square for animal
experiment, circle for objects experiment) at the scalp. We
mark the electrodes where the ERP amplitude is maximal at
the time when the decoding accuracy is maximal. We can see
in the Fig. 5 that frontal zone is globally the most contributing
area to the classification task.

TABLE II
LIST OF MAXIMUM DECODING ACCURACY WITH THE CORRESPONDING
OCCURRENCE TIME PER SUBJECT
Subjects 1 2 3 4 5 6 7 8 9

Max Dec.
Acc. (%) 73 72 70 74 75 76 76 74 71

Time (ms) 170 300 270 200 250 300 250 220 151
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Fig. 5 Distribution over the brain of the electrodes contributing to the
maximal values of decoding accuracies

IV. DiIScussiON

In our paper, we used dense EEG during a picture-naming
task of different categories of visual stimuli. The main
advantage of this technique is its excellent time resolution (in
the order of millisecond) and a very good spatial resolution
(256 electrodes). The results obtained on nine subjects were
very promising and showed a high performance of the dense
EEG combined with the SVM classifier to differentiate
between spatiotemporal patterns associated to different
category of visual stimuli.

Despite the high inter-subjects’ variability, the results
showed that the time of discrimination between the particular
categories lies mainly in the time periods related to the
semantic processing. In addition, we think that other features
could improve the presented study specially the approach’s
based on the analysis of the functional connectivity between
brain regions at the scalp level (electrodes) [5], [6] but also at
the level of the cortical sources using a recently proposed
method called “dense-EEG source connectivity” [7].

V.CONCLUSION

In this paper, we reported a study to investigate the object
recognition in the human brain using dense-EEG data. Results
showed a difference in the discrimination of signals recorded
during recognizing animals and objects stimuli. These
preliminary results were very promising to understand the
categorization of objects in the human brain from EEG that is
a non-noninvasive and easy to use technology.
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