International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

A Review on Factors Influencing Implementation of
Secure Software Development Practices

Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin

Abstract—More and more businesses and services are depending
on software to run their daily operations and business services. At the
same time, cyber-attacks are becoming more covert and
sophisticated, posing threats to software. Vulnerabilities exist in the
software due to the lack of security practices during the phases of
software development. Implementation of secure software
development practices can improve the resistance to attacks. Many
methods, models and standards for secure software development have
been developed. However, despite the efforts, they still come up
against difficulties in their deployment and the processes are not
institutionalized. There is a set of factors that influence the successful
deployment of secure software development processes. In this study,
the methodology and results from a systematic literature review of
factors influencing the implementation of secure software
development practices is described. A total of 44 primary studies
were analysed as a result of the systematic review. As a result of the
study, a list of twenty factors has been identified. Some of factors that
affect implementation of secure software development practices are:
Involvement of the security expert, integration between security and
development team, developer’s skill and expertise, development time
and communication between stakeholders. The factors were further
classified into four categories which are institutional context, people
and action, project content and system development process. The
results obtained show that it is important to take into account
organizational, technical and people issues in order to implement
secure software development initiatives.

Keywords—Secure software development, software

development, software security, systematic literature review.

[. INTRODUCTION

HE rapid growth of internet and e-commerce has made

revolutionary change in peoples’ lifestyle and their living
standards. Most business organizations run their daily
operations and marketing activities through online
applications. In the recent years, web applications had become
a target of the hackers since networks are closely monitored
by firewalls and intrusion detection systems (IDS) [1]. Web
application attacks appear as the greatest threat to the security
of an organization [2]. Poorly constructed software systems
can induce security weaknesses and defects, which,
commonly, result in vulnerabilities that can be exploited by
malicious users and violate one or more software security
properties.

Software insecurity is commonly caused by negligence of
security, flaws in the software engineering process,
insufficient knowledge and understanding in relation with
secure software development. Security should be incorporated

Sri Lakshmi Kanniah and Mohd Naz’ri Mahrin are with the Advanced
Informatics School, Universiti Teknologi of Malaysia (UTM), Kuala Lumpur,
Malaysia (e-mail: Iksri2@live.utm.my, mdnazrim@utm.my).

during the whole engineering process, beginning from the pre-
study phase and ending when the software is in use. However,
software developers commonly apply “penetrate and patch”
approach to detect and solve vulnerability issues but the root
cause of the problem gets ignored. [3]. However, fixing or
patching flaws and defects at the later phases of development
or during deployment can be very costly and the patch itself
can possibly create a new vulnerability in the system. Security
is an emergent quality of software which requires advanced
planning and careful design [3]. Hence, it is important to
ensure that security is integrated into the software
development throughout the life cycle.

This paper deals with the identification and listing of
influencing factors which affects the implementation of Secure
Software Development (SSD) practices. The data
identification takes place from the literature by performing
systematic literature review (SLR) [4].

The rest of the paper is structured as follows: Section II
describes the related work, Section III illustrates the
methodology of the study, Section IV comprises of results,
Section V consists of findings and discussion, Section VI
explains the limitation of the study and Section VII is the
conclusion.

II. RELATED WORK

Research in security covers a varied range of approaches
and processes that deal with security during software
development. Several actions have been suggested in order to
incorporate security in software development life cycle
(SDLC) by using different software models. Several
modifications have been made to traditional lifecycle by
inserting security activities into traditional lifecycle for the
purpose of creating security enhanced methodologies and
processes [5].

Researchers at University College London have developed
'Appropriate and Effective Guidance in Information Security'
(AEGIS), a research model that has integrated security and
usability using a spiral model, based on UML. This model
defines a UML meta-model of the definition and the rational
over the system’s assets [6]. AEGIS guides developers to deal
with security and usability requirements in system design. The
UML meta-model defined by authors identifies assets, the
context of operation and supporting the modeling of security
requirements. All security decisions in AEGIS are derived
from knowledge of assets of the system. Core security
activities for system design sessions in AEGIS are:
Identification of assets and security requirements, analysis of
risk and secure design, and identification of the risks,

3032

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

vulnerabilities, and threats to the system. The output from
these activities is documented in a design document which
consist system architecture with all specified countermeasures.
In AEGIS, security expertise is absent in development
process. Moreover, decision making on the selection of
security countermeasures is done by stakeholders. The
author’s rationale behind this is that decision makers are
"better suited to deal with the enforcement of the social
requirements of security" while developers are "necessary for
the technical implementation of security.

Secure Software Development Model (SSDM) which was
developed at the Nigerian University of Agriculture [7]
integrates security activities into engineering process, which
are: Security training, threat modeling, security specification,
review of security specification, and penetration testing.
Furthermore, SSDM has separated security specification from
functional specification.

The security process 'Comprehensive, Lightweight
Application Security Process' — CLASP [8] introduces
lightweight process for SSD. CLASP provides structured
practices for deriving security requirements of software
systems [9]. CLASP outlines seven key best practices, such as:
Security awareness, application evaluations, derivation of
security requirements, implementation of secure development
practices, developing vulnerability remediation measures,
defining and monitoring metrics, and publishing operational
guidelines. CLASP also specifies a set of activities that should
be incorporated in the development lifecycle. CLASP provides
roles and security to structure and support the activities in the
resources methodology.

'The Microsoft’s Security Development Lifecycle (SDL)
has incorporated security activities into each development
phase of SDLC [10]. Its purpose is to reduce the number of
vulnerabilities in software [10]. SDL consists of a set of
activities that overcome security issues. The activities in SDL
are grouped in phases, which can be mapped to general
software development phases.

Seven 'touchpoints' exhibit how software developers can
implement them in the development stages. The aim of
‘touchpoints' is to increase effectiveness through: code review,
architectural risk analysis, penetration testing, risk-based
security tests, abuse cases, security requirements, and security
operations [9].

Conclusively, the aforementioned models focus on what is
needed to build secure software. However, there is lack of
research on identifying the factors required for successful
implementation of SSD process.

III. METHODOLOGY

The SLR was performed based on the guidelines provided
by [4]. The SLR process consists of three main phases:
Review Planning, Conducting Review and Review Reporting.

A.SLR Research Question

The objective of this review is to identify factors that affect
the implementation of SSD practices. In considering this,

research question was derived which supports the objective of

the review:

e RQI: What are the factors which may affect the
implementation of the secure software development
process?

B. Search Strategy

The SLR concentrates on searching in scientific databases.
The following sources were selected for the SLR search
process:

e Association for Computing Machinery Digital Library
o IEEE Xplore Digital Library

e Springer Link

e Science Direct

e Scopus

e Taylor and Francis Online

e Wiley Online Library

These sources were chosen because they provide a wide
range of software engineering related journals and conference
proceedings. The search consists of several stages. Fig. 1
shows the review process and the number of papers selected at
each stage. In stage 1, we searched the databases using the
search terms listed in Table I. Category 1 has more keywords
and shows many variations of the same term “Secure Software
Development” (SSD). These keywords were combined using
the Boolean “AND” operator, to make sure that only article
that focuses on both SSD and factors, will be retrieved. That
is, we searched every possible combination of one item from
Category 1 AND Category 2 in paper’s title, keywords, and
abstract.

TABLEI
KEYWORDS USED IN THIS REVIEW

Category Keywords

1 “Secure software development”
“Secure development”
“Security Development Lifecycle”
“Secure Application Development”
“Secure Web Development”

2 “factors”
“barriers”
“motivation”
“challenges”

Based on keyword list the following search string was
formulated:

((“Secure software development” OR “Secure development” OR
“Security development lifecycle” OR “Secure application
development” OR “Secure web development”) AND (“factors” OR
“barriers” OR “challenges” OR “motivation”))

C.Conducting the Review and Inclusion Decision

Studies were selected based on inclusion and exclusion
criteria. The inclusion criteria determines which study will be
included for data extraction where else the exclusion criteria
determines which studies are excluded for the review. Table 11
details out the inclusion and exclusion criteria that have been
used for this SLR.

3033

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

Stagel searchin selected databases MN=1154

| Stage 2

Exclude based ontitle, keyword and e,
Stage3 abstract h
Stage 4

Fig. 1 Study Selection process

I
ol

Exclude duplication N=727

Exclude based full text N=44

Initially, 1154 studies were identified in the Stage 1. Studies
identified were managed and stored using EndNote, a citation
management tool. In stage 2, studies that met the exclusion
criteria were excluded, leaving the selected numbers of studies
at 727. During stage 3, the title, abstract and keywords were
screened through to determine the relevancy of the study for
the review. At the end of stage 3, 321 studies were identified
for the next stage. In the stage 4, each study was reviewed and
44 studies were identified as primary studies for the final
review.

TABLEII

INCLUSION AND EXCLUSION CRITERIA
Inclusion o Studies that are related SSD implementation
Criteria o Studies that discusses on factors affecting SSD

implementation

Exclusion e Studies which not written in English
Criteria o Studies which does not provide full text

o Duplicated studies

Once the studies were selected based on inclusion and
exclusion criteria, quality assessment was conducted on the
primary studies to quantitatively assess the quality of the
study. In this SLR, the following four (4) Quality Assessment
(QA) questions were defined to ensure the studies address the
research topic. The scoring procedure used was Yes (Y) = 1,
Partly (P) = 0.5 or No (N) =0.

1. Does the study address the use of any secure software
development practice?

2. Does a paper discuss any real life experience of using
secure software development practices?

As there is a lack of existing empirical research, “lesson
learned” report based on expert opinion that address the
Secure Software Development factors were also considered.

3. Does the study discuss on the research process?
4. Does the paper discuss secure software development
implementation factors adequately?

These 4 points provided a measure of the extent to which
we are confident that a selected study could make a valuable
contribution to understand the factors affecting SSD
implementation. Out of 321 studies, 44 studies were finally
selected after conducting QA based on the four (4) QA
questions.

D.Data Extraction

From the final selected studies, data were extracted using a
predefined Data Extraction Form as shown in Table III. Data
extraction form is used to collectively record comprehensive
information in order to answer the research question. Upon
completion of data extraction process, in-depth analysis is
done on the gathered information.

TABLE III

KEYWORDS USED IN THIS REVIEW
Data Extracted Description
Data ID Unique ID for each study selected
Title Tile of the study selected
Author Name of authors who have written the article
Year Publication year
Type Publication type (Journal, Conference Proceedings,

Book Section)

Publisher Name of the publisher

Domain The domain the research was conducted (e.g Health,
Public Sector, Telecommunication)

Methodology Included technique for the design of the study, e.g.
case study, survey, experiment, interview to obtain
data, observation

Factors Description of factors that affect the implementation
of SSD practices

Practices Description of practices that are used in SSD

Models SSDMs adopted/adapted in the study

Phases Software Development Lifecycle phases in which the
SSD implementation occurs

IV. RESULTS

In the final review, 44 primary studies have been selected.
Table V presents the distribution of papers selected according
to sources in each stage. From the table it can be concluded
that IEEE provides the highest percentage (37.2%) of papers
relevant to this SLR, followed by Springer Link (23.3%) and
Scopus (13%) respectively.

Most papers identified from IEEE and Scopus at initial
stage were redundant with papers selected under ACM,
Science Direct and Springer Link. In Stage 2 of the review,
besides excluding duplications, studies which do not provide
full access to the studies were also removed from the list.

V.FINDINGS AND DISCUSSION

SSD implementation consists of a set of predefined
activities embedded into SDLC to develop and maintain
secured software. Most organizations find it challenging to
implement all the activities and put the responsibility on the
developers and programmers. Organizations that successfully
implement the full SSD lifecycle normally are big
organizations that provide commercial software such as
Microsoft or highly critical agencies such as banks [11]. Most
of the empirical research in this review focuses on selected
practices from SSD lifecycle. The most common practices
identified from the literature are static analysis, threat
modelling, and security requirement engineering.

3034

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

TABLE IV
DISTRIBUTION OF PAPERS BASED ON SOURCES
Source Stage Stage Stage Stage Percentage
1 2 3 4
ACM 102 100 57 5 11.6%
IEEE 524 261 127 16 37.2%
Science Direct 121 121 43 2 4.7%
Scopus 227 105 35 6 14.0%
Springer 111 111 50 10 23.3%
Taylor & Francis 36 15 6 3 7.0%
Wiley Online 33 14 3 1 2.2%
Total 1154 727 321 43 100.0%
TABLE V
LIST OF IDENTIFIED FACTORS ACCORDING TO LITERATURE
No Factors References Freq.
(N=44)
1 Developer's skill, experience and [12]-[25] 14
knowledge
2 Security Training and [117,[13], [15], [23], [26]- 9
Awareness [30]
3 Automated tool support [23], [31]-[36],[56] 8
Adequate development time [13], [14], [18], [22], [23], 11
[31], [35], [37)-[40],
5 Developer's Attitude and [13],[23], [26], [33] 4

Motivation
6 Top Management Support 11], [13],[14], [25], [26], 7
39], [41],
11], [18], [27], [34], [36], 9
39], [42]-[44],
[11],[18], [22]-[24],[27], 9
[35], [37], [38],

7 Building and retaining a security
team
8 Adequate budget/money/cost

9 Provide incentives for project [26] 1
team

10 Involvement of security expert [30], [38], [45]-[47] 5
in the project

11 Collaboration between security [36], [48]-[51] 5
experts, developers and other
stakeholders

12 Organization's objectives, [13], [36], [41] 3
culture and awareness

13 Security policies, standards and ~ [13], [25]-[27], [52] 5
reference guidelines

14 Change management team [13], [34] 2

15 Specified internal metrics and [13],[11] 2
KPI

16 Software development [39], [48] 2
methodology

17 Enforcement of policy [52], [11], [25] 3

18 Project Manager's experience, [15], [44], [24] 3
competence and skill

19 Sufficient numbers of security [18], [46], [40] 3

experts

20 Clear, comprehensive,
consistent, unambiguous
security requirements

[16],[53], [37], [27], [25] 5

Based on the comprehensive review on the literature, a list
of 20 potential factors that affect implementation of SSD
practices had been identified. “Factors” in this context of
study had been defined as any contributing element that
affects the implementation of SSD practices at organizations.
Some of the factors can be applicable to software development
projects generally. However, as SSD implementation is not
technological holistically, some factors identified are specific
for implementation of SSD practices. Table V summarizes the
review results that listed factors identified in this SLR. Among
the factors, ‘developer’s skill, experience and knowledge’,

‘adequate development time’, ‘adequate budget/cost’ and
‘security training and awareness’ were the most frequently
cited factors that affects SSD implementation.

The listed factors were further classified into 4 (four) key
factors adapted from [54] as shown in Table VI. According to
[1], institutional context, people and action, system
development processes and project content strongly
influence system development project outcome which includes
development or implementation process. Since SSD
implementation is a process to develop and produce secure
software, the factors identified from this SLR can be
categorized under the given key factors. Each factor had been
discussed in detail in the following section.

1) Developer's Skill, Experience and Knowledge

Successful implementation of SSD practices is influenced
by developer’s knowledge, experience and skill. According to
[27], developer’s education is critical because lack of
understanding on security threats causes the developer to
unknowingly introduce more vulnerability during
development. Developers require experience and skill to
implement secure development practices outlined by
organization [17], [19], [51]. Some organizations acquire
expensive security tools such as static analysis tools; however,
these efforts go in vain as the developers neither have skills
nor experience to effectively use them. Reference [22]
indicated that it is important that the people involved in the
whole of the SDLC understand what needs to be done in order
to produce secure applications and software.

2) Security Training and Awareness

Organizations must clearly draw an effective security
training and awareness program for their employees [11]. The
purpose of this program is to arm the project team with skills
and knowledge on SSD implementation. Awareness on the
importance of implementing SSD must be given to every
stakeholder involved in software development project to
ensure required support is provided for SSD initiatives.
According to [26], training is a learning process which can
help developers to be sensitized to the potential impact of
security problems on organizations at large. Educating
developers on the need for good coding practices can result in
good coding habits that improve security.

3) Automated Tool Support

SSD needs to be supported by automated security
development tools. Usage of standard analysis and design
tools enables identification of security strategies at design or
requirement specification phases of the SDLC [36]. In
addition, static analyzers and interactive support for
programmers are proven to reduce programming errors [56].
However, automated tool support must be usable, less
complex, compatible and customizable to fit into current
development environment [33]-[35]. Organization must make
sure that developers are given sufficient training and
awareness pertaining to the tool and make sure they are
following a process that will result in business value [23]. As

3035

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

mentioned by [23], automating a poor process just gives you
poor results faster.

4) Adequate Development Time

Time is highly influential in implementation of SSD
practices. This factor is one of the highly cited factors in the
review. The common reason for development team to ignore
SSD practices is tight deadlines. There has been a trade-off
between functionality and project deadlines [37], [22].
Implementing formal SSD methodology is time consuming
and developers are normally pressured with short project
deadlines [39], [18], [31], [35]. Adequate development time
must be given to project team to implement SSD practices
efficiently.

TABLE VI
FACTORS BASED ON CATEGORY

Category Sub Factors
Institutional Change management team
Context Enforcement of policy
Security Training and Awareness
Provide incentives for project team (S10)
Organization's objectives, culture and awareness
Sufficient numbers of security experts
People and Developer's Attitude and Motivation
Action Developer's skill, experience and knowledge
Top Management Support
Project Manager's Experience, competence and skill
Project Automated tool support
Content Adequate budget/money/cost
Involvement of security expert in the project
Building and retaining a security team
Collaboration between security experts, developers and other
stakeholders
Adequate development time
System Software development methodology
Development Clear, comprehensive, consistent, unambiguous security
Processes

requirements
Security policies, standards and reference guidelines

Specified internal metrics and KPI

5) Developer's Attitude and Motivation

Developers may have different attitude and value towards
security procedures and practices [26]. They need to be
consistently motivated to build secure systems. Besides this,
developers carry “not my problem” mentality when it comes
to securing the system because they do not believe that they
make mistakes which cause vulnerabilities in the system [23].
Another study [33] has reported that developer’s
inquisitiveness on security tools affect the adoption of the
tools. Hence, implementing SSD practices is influenced by
developer’s attitude and their motivation.

6) Top Management Support

There is no doubt that top management support has strong
influence on implementation of SSD practices. SSD
implementation must obtain top management’s approval and
support for successful implementation. It’s top management’s
responsibility to provide adequate resources for SSD
implementation [14]. Reference [13] mentioned that as SSD

involves many stakeholders in an organization, senior
executives need to mediate between various interest groups to
resolve political conflicts when necessary. According to [39],
management is the main driver for adoption of SSD
methodologies.

7) Building and Retaining a Security Team

Establishing and retaining a security team drives SSD
implementation in an organization [24]. The security team
must be well trained and skillful in security related matter.
They must be to contribute their expertise in development of
secure systems. The team must be familiar with security
updates and consistently advise the development team on
secure development procedures and technology [42], [43],
[36]. The organization must retain this security expert team
and use their expertise across multiple software projects. This
team must be given authority to delay projects if the security
requirements are not fulfilled [39], [34].

8) Adequate Budget/Cost

Just like any other software initiatives, cost is considered as
an influential factor in SSD implementation. Implementation
of SSD also requires adequate budget to be allocated to the
project [27], [37], [38], [18]. Security tools are very
expensive. Furthermore, when the tools are acquired relevant
training must be provided to the developers [35]. Professional
trainers need to be hired for this purpose which incurs cost.
Due to this constraint, SSD implementation is sidelined by
organizations [11].

9) Provide Incentives for Project Team

Providing incentives for project team can reflect on SSD
implementation. Providing incentives motivates the developer
to be more proactive towards potential vulnerability and risks
linked with application development. If management desires
and demand clean and secure code and also offer perks for
application developers, security will be greatly achievable
[26].

10) Involvement of Security Expert in the Project

The role of security expert in project team is very
important. It is common to have functionality analyst in the
team but functionality analyst and security analyst view the
project from different perspectives [45], [30]. Security analyst
is able to advice on what adversaries want and where and how
attacks are performed [46]. In fact, security expert can make
assist in SSD implementation.

11) Collaboration between Security Experts, Developers
and Other Stakeholders

SSD implementation typically requires a balanced
combination of execution teams. Both technical and business
competence must be available in a team. In addition, security
experts must be present in the team together and collaborate
with software developers throughout the development
lifecycle [51]. According to Glisson, it is important for
business owners to clearly communicate their expectation to
development team so that the team knows what is required to

3036

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

produce secure software [51]. This indicates that composition
of the project teams with effective collaboration and
communication between project members are essential for
SSD implementation.

12) Organization's Objectives, Culture and Awareness

There is no doubt that organization’s objective, culture and
awareness affects implementation of SSD [13], [36], [41].
Organizations that produce commercial software pay more
attention to SSD implementation to be competitive in the
market. The awareness of C-level management on the
importance of SSD influences its implementation.

13) Security Policies, Standards and Reference Guidelines

Implementation of SSD is much more successful if proper
security policies, standards and guidelines are provided [13],
[26], [52]. When the policies are in place, the development
team understands what needs to be done. Reference guidelines
are very helpful for developers who are not security experts
[25]. Developers must be encouraged to document their
security experience and use them as reference in other projects
[27].

14) Change Management Team

The effective implementation of an SSD practices requires
change management strategies and an understanding of
organizational culture. Change management techniques will
need to be included in the process if you are to gain the
support and acceptance of the process among developers,
project managers, and system architects [13]. Training and
education is an important process in change management. This
allows the users to understand the overall concepts of the SSD
and ensures their acceptance and readiness to implement SSD
practices. There must also be an individual or team with the
mandate to alter the organization’s development processes
[34]. This reduces prejudice among development team in
implementing the changes.

15) Specified Internal Metrics and KPI

Establishing internal metrics and key performance
indicators that can be used to determine the progress and
success of the organization’s security evolution has an impact
on SSD implementation [13]. Metrics and KPI stands as
checkpoint for developers to remind themselves on
implementing secure development practices [11].

16) Software Development Methodology

Organizations that employ standard software development
methodology finds it easier to implement SSD practices as
there is a basic structure in place for them to follow [39]. A
large number of activities related to security needs to be
performed throughout a software’s development lifecycle [48].

17) Enforcement of Policy

SSD implementation requires policy enforcement.
Organization must enforce their policy which leaves the
developers with no choice but to follow SSD practices [52],
[11], [25]. There is no use of having policies which are not
followed by employees.

18) Project Manager's Experience, Competence and Skill

Project manager’s experience, competence and skill are
necessary to ensure SSD implementation. Managers must
understand the need for building security into the development
life cycle and provide full support for their subordinates to
achieve the high-quality bar [44]. Project manager must make
sure security requirement are well derived and transferred into
development by developers. Managers must check and
balance security requirements throughout the development
lifecycle. This can ensure that developer implements SSD
practices in proper.

19) Sufficient Numbers of Security Experts

Lack of sufficient numbers of security experts hinders SSD
implementation in some organizations. Hiring security experts
is a costly affair. Currently security experts are bottlenecks in
some organizations and they are overburdened with existing
tasks. Having insufficient number of security expert causes
breakdown in SSD implementation as some practices gets
ignored due to the unavailability of security expert [46], [40].

20) Clear, Comprehensive,
Security Requirements

Consistent, Unambiguous

SSD implementation requires determination of security
requirement. Deriving security requirements involves
identification of stakeholders. Security requirement must be
clear, comprehensive, consistent and unambiguous. This
allows stakeholders who are business owners and developers
to understand what security practices must be implemented to
produce the expected outcome [16], [37]. Security policies and
standards can aid in determining the security requirement of
the software being developed. Absence of security
requirement document will create room for developers to
ignore SSD practices.

VI. LIMITATIONS

There are some limitations that need consideration in this
study. Although the study was conducted according to
guidelines suggested in [4], some papers could have missed
due to increase of research in the related fields. However, like
other SLR studies, this will not be a systematic omission. [55]

During the data extraction process, several papers were
found of lacking sufficient details about the reported projects’
contextual factors in SSD implementation. The data was
synthesized by identifying and categorizing the themes from
the papers included in this review. Since some of the selected
papers do not provide detailed information, there is a
possibility that the extraction process may have resulted in
some inaccuracies.

VII. CONCLUSION

A systematic review was conducted on SSD
implementation. The aim of this review is to identify factors
that affect the implementation of SSD practices. As a result,
20 factors were identified which were further classified into 4
(four) main factors. Identification of these factors can assist
organizations to evaluate their readiness in implementing SSD

3037

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

and where they should improve. These factors will be
integrated with factors derived from practitioners.

ACKNOWLEDGMENT

The authors would like to thank the Universiti Teknologi
Malaysia for their support and cooperation including students
and other individuals who are either directly or indirectly
involved in this project.

[10]

(1]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

Shuaibu, B.M., et al., Systematic review of web application security
development model. Artificial Intelligence Review, 2013: p. 1-18.
WhiteHat, Web Applications Security Statistics Report 2016. 2016.
Viega, J. and G. McGraw, Building secure software: how to avoid
security problems the right way. 2001: Pearson Education.

Keele, S., Guidelines for performing systematic literature reviews in
software engineering. 2007, Technical report, EBSE Technical Report
EBSE-2007-01.

Goertzel, K.M. and T. Winograd, Enhancing the development life cycle
to produce secure software. Technology Analysis Center (IATAC),
USA, October, 2008.

Flechais, 1., C. Mascolo, and M.A. Sasse, Integrating security and
usability into the requirements and design process. International Journal
of Electronic Security and Digital Forensics, 2007. 1(1): p. 12-26.
Sodiya, A.S., S.A. Onashoga, and O.B. Ajayi, Towards building secure
software systems. Issues in Informing Science and Information
Technology, 2006. 3.

Viega, J., Security in the Software Development Lifecycle: An
introduction to CLASP, the Comprehensive Lightweight Application
Security Process. Secure Software, Inc., McLean, Virginia, USA, White
Paper, 2005.

De Win, B., et al., On the secure software development process: CLASP,
SDL and Touchpoints compared. Information and software technology,
2009. 51(7): p. 1152-1171.

Lipner, S. The trustworthy computing security development lifecycle. in
Computer Security Applications Conference, 2004. 20th Annual. 2004.
IEEE.

Chess, B. and B. Arkin, Software Security in Practice. Security &
Privacy, IEEE, 2011. 9(2): p. 89-92.

Marback, A., et al., A threat model-based approach to security testing.
Software: Practice and Experience, 2013. 43(2): p. 241-258.

Jones, R.L. and A. Rastogi, Secure Coding: Building Security into the
Software Development Life Cycle. Information Systems Security, 2004.
13(5): p. 29-39.

Hein, D. and H. Saiedian, Secure Software Engineering: Learning from
the Past to Address Future Challenges. Information Security Journal: A
Global Perspective, 2009. 18(1): p. 8-25.

Allen, J., Why is Security a Software Issue?, in EDPACS. 2007, Taylor
& Francis. p. 1-13.

Mouratidis, H., P. Giorgini, and G. Manson, Integrating Security and
Systems Engineering: Towards the Modelling of Secure Information
Systems, in Advanced Information Systems Engineering, J. Eder and M.
Missikoff, Editors. 2003, Springer Berlin Heidelberg. p. 63-78.

Baca, D., et al. Static Code Analysis to Detect Software Security
Vulnerabilities - Does Experience Matter? in Availability, Reliability
and Security, 2009. ARES '09. International Conference on. 2009.
Okubo, T., H. Kaiya, and N. Yoshioka. Mutual Refinement of Security
Requirements and Architecture Using Twin Peaks Model. in Computer
Software and Applications Conference Workshops (COMPSACW), 2012
IEEE 36th Annual. 2012.

Xie, J., B. Chu, and H. Richter Lipford, Idea: Interactive Support for
Secure Software Development, in Engineering Secure Software and
Systems, U. Erlingsson, R. Wieringa, and N. Zannone, Editors. 2011,
Springer Berlin Heidelberg. p. 248-255.

Mockel, C. and A.E. Abdallah. Threat modeling approaches and tools
for securing architectural designs of an e-banking application. in
Information Assurance and Security (IAS), 2010 Sixth International
Conference on. 2010.

Haron, G.R. and S. Ng Kang. Extrapolating security requirements to an
established software process: Version 1.0. in Internet Technology and

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

B31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Secured Transactions (ICITST), 2011 International Conference for.
2011.

Colley, J., Why Secure Coding is not Enough: Professionals’
Perspective, in ISSE 2009 Securing Electronic Business Processes, N.
Pohlmann, H. Reimer, and W. Schneider, Editors. 2010,
Vieweg+Teubner. p. 302-311.

Payne, J., Integrating Application Security into Software Development.
IT Professional, 2010. 12(2): p. 6-9.

Davis, N., et al., Processes for producing secure software. Security &
Privacy, IEEE, 2004. 2(3): p. 18-25.

Jain, S. and M. Ingle. Techno-management view of Secured Software
Development. in Software Engineering (CONSEG), 2012 CSI Sixth
International Conference on. 2012.

Raghavan, V.V. and X. Zhang. Building security in during information
systems development. in 15th Americas Conference on Information
Systems 2009, AMCIS 2009. 2009. San Francisco, CA.

Bartsch, S. Practitioners' Perspectives on Security in Agile
Development. in Availability, Reliability and Security (ARES), 2011
Sixth International Conference on. 2011.

Mitropoulos, D., et al., Countering code injection attacks: A unified
approach. Information Management and Computer Security, 2011.
19(3): p. 177-194.

Chand, P., Building India as the Destination for Secure Software
Development — Next Wave of Opportunities for the ICT Industry, in
Information Systems Security, S. Jajodia and C. Mazumdar, Editors.
2005, Springer Berlin Heidelberg. p. 49-65.

Knauss, E., et al., Supporting Requirements Engineers in Recognising
Security Issues, in Requirements Engineering: Foundation for Software
Quality, D. Berry and X. Franch, Editors. 2011, Springer Berlin
Heidelberg. p. 4-18.

Kleidermacher, D. and M. Wolf. Using static analysis to improve
communications infrastructure. in Digital Avionics Systems Conference,
2008. DASC 2008. IEEE/AIAA 27th. 2008.

Waurster, G. and P.C.v. Oorschot, The developer is the enemy, in
Proceedings of the 2008 workshop on New security paradigms. 2008,
ACM: Lake Tahoe, California, USA. p. 89-97.

Witschey, J., S. Xiao, and E. Murphy-Hill, Technical and Personal
Factors Influencing Developers' Adoption of Security Tools, in
Proceedings of the 2014 ACM Workshop on Security Information
Workers. 2014, ACM: Scottsdale, Arizona, USA. p. 23-26.

Byers, D. and N. Shahmehri. Design of a Process for Software Security.
in Availability, Reliability and Security, 2007. ARES 2007. The Second
International Conference on. 2007.

Jing, X., H.R. Lipford, and C. Bill. Why do programmers make security
errors? in Visual Languages and Human-Centric Computing (VL/HCC),
2011 IEEE Symposium on. 2011.

Zia, T.A. and A. Rizvi. Source Code EMbedded (SCEM) security
framework. in 9th Australian Information Security Management
Conference, AISM. 2011. Perth, WA.

Guan, H., et al., Environment-Driven Threats Elicitation for Web
Applications, in Agent and Multi-Agent Systems: Technologies and
Applications, J. O’Shea, et al., Editors. 2011, Springer Berlin
Heidelberg. p. 291-300.

Zuccato, A., N. Daniels, and C. Jampathom. Service Security
Requirement Profiles for Telecom: How Software Engineers May Tackle
Security. in Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on. 2011.

Geer, D., Are Companies Actually Using Secure Development Life
Cycles? Computer, 2010. 43(6): p. 12-16.

Schneider, K., et al., Enhancing security requirements engineering by
organizational learning. Requirements Engineering, 2012. 17(1): p. 35-
56.

Teodoro, N. and C. Serrdo. Web application security: Improving critical
web-based applications quality through in-depth security analysis. in
International Conference on Information Society, i-Society 2011. 2011.
London.

Abramov, J., et al., A methodology for integrating access control
policies within database development. Computers & Security, 2012.
31(3): p. 299-314.

Alkussayer, A. and W. Allen, The ISDF Framework: Integrating
Security Patterns and Best Practices, in Advances in Information
Security and Its Application, J. Park, et al., Editors. 2009, Springer
Berlin Heidelberg. p. 17-28.

Bonver, E. and M. Cohen, Developing and Retaining a Security Testing
Mindset. Security & Privacy, IEEE, 2008. 6(5): p. 82-85.

3038

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:8, 2016

Riaz, M., et al., Using templates to elicit implied security requirements
from functional requirements - a controlled experiment, in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. 2014, ACM: Torino, Italy. p. 1-10.
Okubo, T. and H. Tanaka, Web security patterns for analysis and design,
in Proceedings of the 15th Conference on Pattern Languages of
Programs. 2008, ACM: Nashville, Tennessee, USA. p. 1-13.

Diamant, J., Resilient Security Architecture: A Complementary
Approach to Reducing Vulnerabilities. Security & Privacy, IEEE, 2011.
9(4): p. 80-84.

Ma, Z., et al., Model-driven secure development lifecycle. International
Journal of Security and its Applications, 2012. 6(2): p. 443-448.

Zhu, J., et al., Mitigating Access Control Vulnerabilities through
Interactive Static Analysis, in Proceedings of the 20th ACM Symposium
on Access Control Models and Technologies. 2015, ACM: Vienna,
Austria. p. 199-209.

Karpati, P., G. Sindre, and A. Opdahl, Visualizing Cyber Attacks with
Misuse Case Maps, in Requirements Engineering: Foundation for
Software Quality, R. Wieringa and A. Persson, Editors. 2010, Springer
Berlin Heidelberg. p. 262-275.

Glisson, W.B. and R. Welland. Web development evolution: the
assimilation of Web engineering security. in Web Congress, 2005. LA-
WEB 2005. Third Latin American. 2005.

Diaz, G. and J.R. Bermejo, Static analysis of source code security:
Assessment of tools against SAMATE tests. Information and Software
Technology, 2013. 55(8): p. 1462-1476.

Salini, P. and S. Kanmani, Model Oriented Security Requirements
Engineering (MOSRE) framework for web applications, in 2nd
International Conference on Advances in Computing and Information
Technology, ACITY 2012. 2013: Chennai. p. 341-353.

McLeod, L. and S.G. MacDonell, Factors that affect software systems
development project outcomes: A survey of research. ACM Computing
Surveys (CSUR), 2011. 43(4): p. 24.

Hossain, E., M.A. Babar, and H.-y. Paik. Using scrum in global software
development: a systematic literature review. in 2009 Fourth IEEE
International Conference on Global Software Engineering. 2009. Teee.
Xie, J., H.R. Lipford, and B. Chu. Evaluating interactive support for
secure programming. in 30th ACM Conference on Human Factors in
Computing Systems, CHI 2012. 2012. Austin, TX.

3039

