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Financial Portfolio Optimization in Electricity
Markets: Evaluation via Sharpe Ratio
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Abstract—Electricity plays an indispensable role in human life
and the economy. It is a unique product or service that must be
balanced instantaneously, as electricity is not stored, generation and
consumption should be proportional. Effective and efficient use of
electricity is very important not only for society, but also for the
environment. A competitive electricity market is one of the best ways
to provide a suitable platform for effective and efficient use of
electricity. On the other hand, it carries some risks that should be
carefully managed by the market players. Risk management is an
essential part in market players’ decision making. In this paper, risk
management through diversification is applied with the help of
Markowitz’s Mean-variance, Down-side and Semi-variance methods
for a case study. Performance of optimal electricity sale solutions are
measured and evaluated via Sharpe-Ratio, and the optimal portfolio
solutions are improved. Two years of historical weekdays’ price data
of the Turkish Day Ahead Market are used to demonstrate the
approach.

Keywords—Electricity market, portfolio optimization, risk
management in electricity market, Sharpe ratio.

1. INTRODUCTION

LECTRICITY plays a crucial role in industry, commerce,

agriculture, transformation, and the development of
countries. It is an indispensable part of the daily lives of
people and society. Furthermore, it has great effect on the
environment depending on the source. Primary energy sources
like coal, oil, natural gas, shell gas, nuclear energy, solar,
wind, and hydropower are used to generate electricity. Some
of them have adverse effects on environment. Meanwhile,
world primary energy consumption is estimated to increase by
36% between 2011 and 2030 [1]. In addition, there are many
stakeholders including electricity generators, transmission
companies, regulatory bodies, dispatchers, consumers,
industries, etc., comprising the electricity industry. Taking into
account above mentioned facts, it is understood that electricity
generation is a very strategic and important industry.
Competitive electricity market environments provide a
convenient stage for effective and efficient use of electricity.
In addition, appropriate risk management techniques should be
used by market players to compensate risks arising from the
market.
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Portfolio optimization used in finance is one of the effective
decision tools based on risk management. Tradeoff between
risk and profit is the main focus of this approach. According to
the classical portfolio theory, the total risk of the portfolio can
be decreased via diversification of assets, and expected to
converge the market risk level [2]-[5]. In the 1950s, Modern
Portfolio Theory was introduced to finance literature by H. M.
Markowitz, who is the recipient of the 1990 Nobel Memorial
Prize in Economic Sciences, which demonstrated that the
classical portfolio approach is not a systematic way of
managing risks in the portfolio because the co-movements of
assets are not taken into account, as the theory only focuses on
a number of assets in the portfolio [6]-[8]. The presence of a
positive high correlation between assets can produce less
effective risky portfolios and decrease the effect of
diversification [9]. Portfolio optimization is considered as risk
control technique and is described as the allocation of
portfolio risky assets based on their relative risk and benefit:
try to maximize return while minimizing risk or minimize risk
while maximizing the return [2], [10].

The theory demonstrated by Markowitz was improved by
Sharpe in 1964 and by Linther in 1965, respectively and
separately [8], [11]-[13]. Markowitz’s approach is based on
mean-variance optimization and produces an efficient frontier
that provides minimum risk for a given level of return under
predefined constraints. There are two other important methods
also: Down-side risk and Semi-variance risk approaches. They
are mainly concentrating on negative deviations of returns
from expected return of distribution. They are also called as
Lower Partial Moments (LPM), which is described as the
special case of Bernell Stones’s Generalized Risk Measure.
Down-side risk is taking into account first order of deviation
from expected returns and Semi-variance risk is taking into
account second order of deviation from expected returns [14]—
[17]. Recently, some other down-side based studies have also
contributed to the theory, including the optimization of
portfolios by applying a copula based extension of conditional
value at risk, and the multi-objective portfolio considering the
dependence structure of asset returns [18],[19].

This paper aims to provide a theoretical background for the
improvement of portfolio optimization results obtained using
the Mean-variance, Down-side, and Semi-variance methods.
Sharpe ratio is wused for performance evaluation and
improvement of the portfolio optimization results. Besides
obtaining efficient frontier for each method, adjusted utility
functions that include risk aversion constant representing of
investors risk aversion level, are used to find optimal portfolio
solutions. The performance of these optimal portfolio
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solutions are analyzed by using Sharpe ratio and improved by
determining optimal interval for investors’ risk aversion
constants to obtain better Sharpe performance portfolios.

This paper is organized as follows: Section II introduces the
theoretical background for portfolio optimization theory and
Sharpe ratio, Section III provides a brief glance into the
Turkish Electricity Market, Section IV introduces risky asset
and risk-free assets in electricity market. Data, methodology
and assumptions regarding an empirical case study and the
results of the study are also demonstrated in this section.
Finally, the conclusion section lists all the important findings
and offers future directions for further studies.

II. PORTFOLIO OPTIMIZATION THEORY

A. Modern Portfolio Theory & Mean-Variance Optimization

Classical portfolio theory claims that a sufficient level of
diversification can reduce the total risk of a portfolio. In the
stock market environment, investors can manage their risks by
investing in different stocks from diverse industries, treasury
bills or different currencies. Diversification can reduce the
total risk of a portfolio to a certain degree, while on the other
hand, co-movements of assets can negatively affect this
process and classical portfolio theory does not take this issue
into consideration [5].

Modern Portfolio Theory (MPT) takes account of co-
movement/correlation of risky assets. Considering the co-
movements/correlation of risky assets satisfies the ability to
construct a portfolio that has the same expected return and is
less risky than a portfolio constructed ignoring these factors
(2], 101, [17], [20].

It is difficult for an investor to know exactly what the
assets’ risk and return will be in the future. The main problem
for an investor in this case is portfolio selection to determine
the weighting percentage of assets in it [2]. H. M. Markowitz
published the article, “Portfolio Selection” in the Journal of
Finance in 1952. That article is assumed to be the first
milestone of MPT [7], [8]. Markowitz argued that the portfolio
selection process can be divided into two stages: the first stage
ends with beliefs about the future performance of securities,
while the second stage ends with a choice of a portfolio. His
paper is mainly concern about that second stage [7]. The
theory demonstrated by Markowitz was improved and
amplified by Sharpe in 1964 and by Linther in 1965,
respectively and separately [8], [11]-[13]. With the addition of
risk-free asset by Sharpe and Linther to portfolio optimization
model, they improved the capital market line and developed
Capital Asset Pricing Model (CAPM) [21].

Markowitz’s approach is based on mean-variance
optimization and it produces an efficient frontier that provides
minimum risk for a given level of return or maximum return
for given level of risk under predefined constraints. The main
assumptions of the theory are listed as follows:

1) Investors have all the information and understand the
market in the same way.

2) All investors are risk averse.

3) No transaction costs or taxes.

4) While taking investment decisions, investors are taking
account only of expected returns, standard deviations, and
co-variance of risky assets.

5) Returns on assets have normal distributions [22].

With the help of the normal distributions of assets’ return,
return distribution of alternative portfolios can be estimated by
using only their means and variances [23]. The efficient
frontier mentioned previously consists of efficient portfolios
on it, and is produced by Mean-variance optimization as
illustrated in Fig. 1, where an efficient portfolio is the only
portfolio that offers the highest return at the same level of risk.
So as seen in Fig. 1, the upper part of the efficient set is
known as the efficient frontier.

Efficient Frontier

iy
Global Minimum —F

Variance Portfolio

Opportunity Set

Expected Return (r)

Risk (o)

Fig. 1 Efficient frontier for mean-variance optimization model

The basic form of the Mean-variance optimization model
with “n” risky assets includes three essential constraints as:
e Non-negativity condition for assets’ portfolio weightings.
e Expected return of the portfolio will be equal to a target
return.
e Total weights of risky assets are equal to 1.
Expected return and variance of a portfolio are described as:

E(r,) =X¥. X (D

af = XL Xl X X0y )
where N describes a number of investable risky assets in the
portfolio opportunity set, X; denotes weights of i asset in the
portfolio while r; denotes expected return on them. gj
describes the covariance between assets. Object function and
constraints for Mean-variance optimization are set as:

Min.(o7) = XL, X0y X X; 05 (3)
s.t.
2?’:1 XiTi = Ttarget 4
LiXxi=1 (%)
X;>0,vX; €[i=12,..,N] (6)
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where Iige describes the target portfolio return for the
minimization of the portfolio’s variances. The solution of this
problem produces efficient portfolios on the efficient set. The
upper part of this set is known as the efficient frontier, as seen
in Fig. 1. To reach the optimal solution, the utility function
that represents an investor’s risk aversion level should be
determined first. Utility function for mean-variance
optimization is determined as a quadratic function and
produces indifferences curves of investors. The utility value
never changes along the curve, so it is also called as the
indifferences curve. The touchpoint between the differences
curve and efficient frontier is produced by optimal portfolio
solution as seen in Fig. 2.

[ IndifterencesCurve Efficient Frontier

Optimum portfolio

Global minimum
variance portfolio

ExpectedRate of Return (r)

Standart Deviation (o)

Fig. 2 Efficient frontier for mean-variance optimization model

Utility function includes the terms variance of a portfolio
opz expected return of a portfolio E(rp), and the risk aversion
constant of an investor A [2], [9], [10], [20], [23]-[26]. The
equation set that provides the maximum utility value for the
optimal portfolio solution is set up as:

Max.(U) = E(r,) — 1/2Ac? 0

S.t.
Lixi=1 (®)
X;>0,vX;€[i=1.2,..,N] )

where E(rp) and 0p2 can be seen in (1) and (2). If necessary, the
common upper investment limit ¢; for risky assets can also be
determined as an additional constraint in the following form:

X, <o,VX;€li=12,..,N] (10)

Depends on the need, the addition of risk-free asset,
customizing the upper investment constraints for each risky
asset, lending and borrowing, and other different issues can
easily be modelled too [2], [9], [17], [20].

B. Semi-Variance Portfolio Optimization

Semi-variance and Down-side risk approaches are described
as the special moments of Lower Partial Moments (LPM). In
Mean-variance optimization, one of the big major criticisms is

that it concentrates on positive and negative deviation from
expected return at the same time. Actually, only negative
deviations from expected returns are producing the loss for
portfolios. Semi-variance and Down-side account only for the
left-hand side of the return distribution as a risk [14].
Semi-variance is described as the second order moment of
LPM. It takes into account square of left-hand side deviations
from the expected return, and is formulized as [14], [16], [20]:

LMPy(t:7) = [* (v —1)?dF(r) (11)

The basic form of the Semi-variance optimization model for
N risk assets can be determined as:

Min. 3 p;(d7) (12)

S.t.
YiLirX =1, Ve [j=12,..,M] (13)
LiXxi=1 (14)
27:1 Pj-Tj = Ttarget (15)
dj_ = max[O, _(Tj - rtarget)] (16)
X;>0,vX; €[i=12,..,N] (17)

M denotes a scenario number, d; represents j™ scenario’s
negative deviation from expected return, and p; represents the
probabilities of j™ scenario. The solution of the equation set
produces the efficient frontier for Semi-variance optimization.
All scenarios are taken into consideration in the solution, so
according to Mean-variance it is a little bit complex. To find
the optimal portfolio solution, the utility function should be
maximized depending on the relative risk aversion level of the
investors [2], [9], [20], [24], [27]. The utility function for
Semi-variance optimization is as:

Max. Usemi-variance = E(rp) —1/2ALPM,(z:7)  (18)

S.t.
LiXi=1 (19)

X;=20,vX;€li=12,..,N] (20)

where E(rp) and LPM (z:r) can be seen in (1) and (11). Again
common upper investment limit ¢J; for risky assets can be
determined by adding other constraints as seen in (10).

C. Down-Side Portfolio Optimization

Down-side risk is also concentrating on deviations of
below-target returns like Semi-variance. It is the first order of
LPM. It is similar to Semi-variance but it takes direct
deviation from target return into consideration, not the square
of them [14], [16], [17], [20].

Being the first order LPM, Down-side can be formulized as:
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LMP,(t:7) = [*_(z = r)dF(r) 21

The basic form of the Down-side optimization model for N
risk assets can be determined as:

Min. ¥, p;(d)) (22)
s.t.
YiLirX =1, v e[j=12,..,M] (23)
LiXi=1 (24)
HLAPj T = Target (25)
di = max[O, - - rmrget)] (26)
X, >0,VX,€[i=12..,N] 27)

As can be seen from (22)—(27), all the constraints are the
same but the object functions are different with the Semi-
variance. As to the utility approach of Down-side, utility
function to reach optimal portfolio solution is as:

Max. Upoyn-size = E(r,) — 1/2ALPM, (x:7) (28)

s.t.
LiXi=1 (29)
X;=20,vX;€[i=12,..,N] (30)

where E(rp) and LPM; (z:r) can be seen in (1) and (21). Again
common upper investment limit ¢; for risky assets can be
determined by adding to other constraints as seen in (10).

D. Sharpe Ratio for Performance Evaluation

There are more than one performance measurement
approaches in portfolio performance measurement. Depending
on the point of view and need of the investor, these different
approaches can be used separately or together in the
performance evaluation of portfolios. The most common are
the Sharpe Ratio (reward to variability) and the Treynor Ratio
(reward to volatility) [28]. Jensen, Information Ratio (IR), and
Omega and Sortino are the other important performance
measurement indicators [29]. But, this paper focuses only on
the Sharpe Ratio.

The Sharpe Ratio is very well known and widely used
performance indicator in finance literature. It is one parameter
the risk/return measurement method and is also referred to as
the reward to variability. It is calculated by the division of
adjusted returns of the portfolio based on the risk-free rate
(residual return) to standard deviation of the portfolio itself. It
can be shown as:

RVAP, = 2 31)

9p

One of the important aims of this paper is the optimization
and improvement of the optimal portfolio solutions, which are
obtained from different portfolio optimization approaches,
using the Sharpe Ratio.

III. TURKISH ELECTRICITY MARKET

Turkey is considered an important developing country, and
was listed as the 18" biggest economy in the world in 2014. It
also has an important geopolitical position between Asia and
Europe.

Installed capacity in Turkey was only about 408 MW at the
beginning of 1950s and the total amount of electricity
generation was 789.5 GWh [30]. Public ownership and a
vertically integrated structure in the electricity industry
continued until 1984, at which time a reform programme was
initiated [20]. The programme gained momentum after the
Electricity Market Law entered into force in 2001 [31]. The
total installed capacity of Turkey has reached 74,627 MW as
of May, 2016 [32]. Deregulation and construction process in
the electricity market is continuing [33]. The related
regulatory body of Turkey took a decision to decrease the
limit of eligible/free customers (3600 kWh) at the end of 2015
and the market openness ratio reached over 85% after the
decision [34].

After 2001, which was the establishment date of the energy
sector’s regulatory body, many developments were put into
practice. The Turkish electricity market structure consists of
an ancillary services market operated by a Transmission
System Operator, a balanced market for real time balancing of
load imbalances, a day-ahead market as a spot market, and an
intra-day and Over The Counter (OTC) for bilateral contracts.
Hourly uniform marginal pricing mechanisms are used in the
spot markets with daily (24 hours) settlement periods. Supply
and demand lines are produced by linear interpolation and
final clearing price is produced by the intersection of these
lines. Turkey is aiming to adopt a European market model
[20]. Market participants can also tender block and flexible
offers, but hourly and block offers have priority against
flexible offers. In the day-ahead market, all offers for each
hour of next day are gathered 11-35 hours before real
consumption time [33]. While determining the final uniform
clearing price, transmission system constraints are taken into
consideration and applied to all market participants.

IV. DATA, METHODOLOGY AND RESULTS OF STUDY

The day-ahead electricity market structure came into effect
after December 2011 in Turkey. Within the scope of this
study, the hourly weekdays day-ahead electricity prices for a
two year period between April 28, 2014 and April 24, 2016
are used. All Turkish Liras price values for each hour (520
data for each of the 24 hours) are converted to Euros (€) using
the daily exchange rates of the Central Bank of the Republic
of Turkey. There are very high level of positive correlations
between the weekdays’ same hourly electricity market prices
(see Table I). The average value of the correlation between
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weekdays’ same hourly electricity market prices is equal to
0.7320.

Average hourly electricity prices for a given period of time
can be seen in Fig. 3. This shape is very characteristic and
moreover it has a very high positive correlation with the

consumption curve that reflects the consumption
characteristics of customers.
TABLEI
CORRELATION MATRIX FOR WEEKDAYS
p Mon Tue Wed Thu Fri

Mon 1 0.7974  0.7181 0.6592  0.617
Tue 0.7974 1 0.8024 0.7316  0.7096
Wed 0.7181 0.8024 1 0.7882  0.738
Thu  0.6592 0.7316  0.7882 1 0.7582
Fri ~ 0.6170 0.7096  0.738  0.7582 1

60 0090 e%ee

o
50 | o ; ®%e0

Prices (€/MWh)
o
(=]

0 4 8 12 16 20 24
Hours

Fig. 3 Average hourly prices

Different from the stock market, rate of returns are
calculated by using previously experienced approaches that
applied in this field: Market prices are normalized by the
generation cost for electricity [2], [9], [17], [20], [26]. In the
real environment, the generation cost for electricity depends
on the efficiency of the power plant, maintenance and
operation conditions, weather conditions, and the quality of
human resources, etc. Changes in generation costs can happen
on a daily and or seasonal basis, but to simplify it and
concentrate on the main scope of this study it is assumed
constant (30 €MWHh). In fact, this kind of information is
assumed strictly confidential for electricity generators, as this
is commercially sensitive information. The hourly rate of
returns for the day-ahead electricity market are calculated
using the above mentioned generation cost as:

Tm = (@nm — C)/C, (m = 1,2, ...,520) (32)
11 21 T24,1
_ T2 | _| 2,2 . 242
n = : I = : yram o, g = : (33)

l7’1,520J l7’2,520J l7’24,520J
where I, indicates the hourly rate of returns against ann
hourly weekdays’ spot prices for n" hour of m™" day for the

given two year period. Cy is assumed constant and equal to 30

€/MWh. The rate of return vectors for N hour represents I, as
seen in (33). Mean and standard deviation for hourly
electricity prices are demonstrated below (see Table II).

TABLE II
HOURLY ELECTRICITY PRICES AND DISTRIBUTION CONSTANTS

Hour é;ﬁ%r]lh S;?gggi Skewness Kurtosis (;/Saoi)
1 48.39 13.38 -0.240 0.816 22.16
2 42.77 14.91 -0.617 1.214 13.54
3 36.75 16.00 -0.294 0.337 5.39
4 31.94 16.48 -0.154 -0.295 -0.37
5 31.16 15.93 -0.235 -0.165 -0.06
6 32.30 14.98 -0.184 0.274 2.94
7 35.42 15.34 -0.393 0.635 5.35
8 4531 13.20 -0.413 1.747 19.43
9 56.37 12.67 -0.428 0.165 31.54
10 61.34 11.39 -0.774 1.183 39.01
11 61.72 11.78 -0.535 2.199 38.64
12 61.98 11.34 -0.662 0.016 39.74
13 56.25 14.24 -0.449 -0.182 28.33
14 58.31 13.11 -0.422 -0.513 32.61
15 59.96 12.50 -0.462 -0.550 35.45
16 58.96 12.68 -0.386 -0.616 34.11
17 58.73 12.96 -0.355 -0.651 33.33
18 56.33 14.59 -0.157 -0.425 27.75
19 53.86 13.63 -0.135 -0.415 27.14
20 52.69 12.58 0.152 -0.503 28.03
21 52.20 12.05 0.300 -0.511 28.58
22 49.88 13.02 0.266 -0.466 24.37
23 50.39 13.76 -0.100 -0.164 23.43
24 45.99 15.37 -0.294 0.392 15.87

The average rate of returns and related standard deviations
for risky assets are calculated as:

= 1/520 (£52° ) (34)
On = J ‘rsnzgl(rn,m - 771)2/(520 -1 (35)

A. Case Study

As mentioned in the first paragraph of this section, day—
ahead hourly weekdays’ electricity market prices of the
Turkish electricity market for a two year period are assumed
for our data set. For the application of risk/return based
approaches (Mean-variance, Down-side risk, Semi-variance
etc.), each of the 24 hours of a day is assumed as a separate
risky asset. Bilateral contracts and forward contracts under the
guarantee of a clearing house or other similar mechanism are
assumed as risk free assets for the electricity market [2], [17],
[20], [26], [33]. The main assumptions of study are listed as:

e Investor has a one-day investment horizon (electricity
selling).

e Generation cost of electricity is constant (30 €/ MWh)
during the analyzed interval and the one-day investment
horizon.

e  Market is deep enough and not affected by the amount of
electricity offered by the investor.
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e Rate of return for a risk-free asset is assumed as 10%.

e Bids can be divided into infinitesimal parts.

e  All bids will be bought by market.

e Investors are rational and prefer less risky portfolio at the
same level of return, and highest return at the same level
of risk.

e  There is no congestion for transmission.

e Generation units are 100% available to provide proposed
electricity.

e Rate of returns have normal distribution.

e Generation units are flexible to operate at every level of
generation without efficiency lost.

The credentials and parameters of the empirical case study

are demonstrated in the following table (see Table III).

TABLE IIT
CASE STUDY CREDENTIALS

Topic Case Value

Installed capacity 100 MWe

Total available electricity energy 500 MWh
Investment period 1 day (weekday)

Generation cost 30 €/MWh

Risk-free rate of return 10%
Bilateral contract price 33 €/ MWh

Monday, Tuesday, Wednesday, Thursday,
Friday (5 days)
Turkish day-ahead electricity

Weekdays for electricity selling

Market Data Spot market prices (from
April 28, 2014 to April 24, 2016)
Number of risky assets 24

Number of risk-free assets 1
Upper investment constraint 10% of available electricity

Optimization Methods Mean-variance, Semi-variance, Down-side

Performance Method Sharpe Ratio
TABLE IV
RISKY ASSETS BASED ON GENERATION COST
Hour Mean Return Star}dqrd Hour Mean Return Star}dqrd
100% Deviation 100% Deviation
1 0.6131 0.4462 13 0.8749 0.4747
2 0.4256 0.4970 14 0.9437 0.4371
3 0.2251 0.5334 15 0.9986 41.67
4 0.0648 0.5495 16 0.9655 42.26
5 0.0386 0.5309 17 0.9575 43.20
6 0.0765 0.4993 18 0.8778 48.62
7 0.1808 0.5115 19 0.7953 45.43
8 0.5104 0.4401 20 0.7563 41.94
9 0.8790 0.4223 21 0.7399 40.16
10 1.0448 0.3798 22 0.6628 43.39
11 1.0574 0.3926 23 0.6798 45.87
12 1.0659 0.3781 24 0.5331 51.24

The questions are: “What is the weighting percentage of the
available electricity for sale on the market to achieve
maximum profit while minimizing risk?”; “Can we improve
the performance of optimum portfolios obtained by using the
Mean-variance, Down-side, and Semi-variance methods?”

Hourly electricity market prices are converted to the rate of
return vectors using (32)-(35). The 24 risky assets have been
produced (see Table IV). A covariance matrix (24x24), which

is mostly used in Mean-variance optimization calculations, is
also produced using the return vectors of each asset.

The mathematical structure of Mean-variance (MV), Semi-
variance (SV), and Down-side (DS) methods for 24 risky
assets have been successfully modelled and the results of the
analysis were obtained in MATLAB. In Fig. 4, the efficient
frontiers obtained by three methods are demonstrated.

1
x X

0,95 x 0K
R
(=]
L=]
209
£
=]
E A Efficient Frontier for MV
$085
3 X Efficient Frontier for DS
[¢]
= 0,8 @ Efficient Frontier for SV

0,75

0,364 0,374 0,384 0,394 0,404
Standard Deviation (o)

Fig. 4 Efficient frontiers

The efficient frontiers are formed from the optimal portfolio
solutions of the related methods. The optimal portfolios have a
minimum risk value for a given target return or maximum
return for given target risk level. Depending on the
methodology, all three methods produce their own frontiers.
Although the methods are different, they produce very close
efficient frontiers as seen in Fig. 4. When the Sharpe
performance of the efficient frontiers are measured, it has been
seen that frontier portfolios are reaching their maximum
Sharpe value at very close points. Figs. 5 and 6 are
demonstrating the variation of the Sharpe ratio performance of
the efficient frontiers’ portfolios depending on their related
standard deviation and rate of return, respectively.

Utility functions for MV, SV, and DS methods are
described in (7), (18), and (28). All utility functions include A
constant that represents the risk aversion level of investors.
The higher values of A are suitable for risk averse investors,
while the lower values of A are suitable for risk seeking
investors. A is generally assumed 3 for normal risk averse
investors. Risk seeking investors prefer values that are < 3 and
risk averse investors prefer values > 3 [24].

For the given risk aversion levels, solutions that make
maximum the utility value of utility functions provide
optimum portfolios for investors’ decision. All utility
functions for MV, SV, and DS methods are optimized for
different values of risk aversion constant A (between 0 and
20). Rate of returns, standard deviations, Sharpe ratios based
on the 10% risk-free rate have been calculated for each
optimal utility function portfolios’ solution. In each method,
the Sharpe ratio is maximized for different values of A. In
MYV, the maximum Sharpe ratios are obtained by taking A
between 7 and 10. In DS, maximum Sharpe ratios are obtained
for values of A more than 7 and less than 12. On the other
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hand, in SV maximum Sharpe ratios are obtained for values of  risk aversion level in each method, so that application of
A more than 10 and less than 12. Even though they are  method should be customized by taking into account this
producing same Sharpe optimal portfolio result, investors important fact. The results of the Sharpe ratio performance
should be careful while applying these methods to find analysis can be seen in Fig. 7 and the optimal portfolio
optimal portfolio solutions. A are not representing the same  solutions are listed in Table V.
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Fig. 7 Sharpe ratios for different risk aversion levels

TABLEV
SHARPE OPTIMUM PORTFOLIO SOLUTION
Hour Wf;)ght Elif[t\;(]?ty Hour W;}ght Elif[t\;lf;ny
1 - - 13 - -
2 - - 14 10 50.0
3 - - 15 10 50.0
4 - - 16 10 50.0
5 - - 17 10 50.0
6 - - 18 - -
7 - - 19 - -
8 - - 20 10 50.0
9 10 50.0 21 10 50.0
10 10 50.0 22 - -
11 10 50.0 23 - -
12 10 50.0 24 - -

According to solution

V.CONCLUSION

In this paper, risk management through diversification is
successfully applied with the help of Markowitz’s Mean-
variance, Down-side and Semi-variance methods. These
methods have found wide application in finance literature.
Two years of historical weekdays’ price data of the Turkish
Day Ahead Market were used for application of study. Using
these data sets, risky assets have been created and determined
according to an empirical electricity cost value (see Table IV).

The performance of the efficient frontier and optimal
solutions obtained using the above mentioned optimization
methods have been measured and evaluated via the Sharpe-
ratio as seen in Figs. 5 and 6. The effective interval of the
optimum risk aversion constants A that maximize the Sharpe-
ratio for each methodology have been successfully determined
and demonstrated for Turkish Electricity Market, as seen in

Fig. 7. Finally, the same optimal portfolio solution that
maximizes the Sharpe performance for Electricity Generator
Company has been obtained using all methods (see Table V).
It is understood that depending on the optimization methods,
investors should customize their own risk aversion constant of
the Utility functions to reach the maximum Sharpe-ratio
performance. Otherwise sub-optimal solutions are obtained.

Suggestions for future directions of investigation can
include, according to the needs, the addition of risk-free
assets, customizing upper investment constraints for each
risky asset, lending and borrowing, variation in generation
cost, transaction costs, and other different issues that can
easily be modelled. Additional performance measurement
indicators like Treynor Ratio (reward to volatility), Jensen,
Information Ratio (IR), Omega and Sortino can be applied for
performance evaluation of the optimum portfolios and results
can be compared. Short, middle, and long term characteristic
values of the risk aversion constant can be analyzed for
different electricity market environments.
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