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Abstract—Auvailable commercial applications of power system
stabilizers assure optimal damping of synchronous generator’s
oscillations only in a small part of operating range. Parameters of the
power system stabilizer are usually tuned for the selected operating
point. Extensive variations of the synchronous generator’s operation
result in changed dynamic characteristics. This is the reason that the
power system stabilizer tuned for the nominal operating point does
not satisfy preferred damping in the overall operation area. The
small-signal stability and the transient stability of the synchronous
generators have represented an attractive problem for testing different
concepts of the modern control theory. Of all the methods, the
adaptive control has proved to be the most suitable for the design of
the power system stabilizers. The adaptive control has been used in
order to assure the optimal damping through the entire synchronous
generator’s operating range. The use of the adaptive control is
possible because the loading variations and consequently the
variations of the synchronous generator’s dynamic characteristics are,
in most cases, essentially slower than the adaptation mechanism. The
paper shows the development and the application of the self-tuning
power system stabilizer based on recursive least square identification
method and linear quadratic regulator. Identification method is used
to calculate the parameters of the Heffron-Phillips model of the
synchronous generator. On the basis of the calculated parameters of
the synchronous generator’s mathematical model, the synthesis of the
linear quadratic regulator is carried-out. The identification and the
synthesis are implemented on-line. In this way, the self-tuning power
system stabilizer adapts to the different operating conditions. A
purpose of this paper is to contribute to development of the more
effective power system stabilizers, which would replace currently
used linear stabilizers. The presented self-tuning power system
stabilizer makes the tuning of the controller parameters easier and
assures damping improvement in the complete operating range. The
results of simulations and experiments show essential improvement
of the synchronous generator’s damping and power system stability.

Keywords—Adaptive control, linear quadratic regulator, power
system stabilizer, recursive least square identification.

[. INTRODUCTION

HE synchronous generator (SG) is complex dynamical

system. To assure safe and economical operation of the
SG, a comprehensive control system with a lot of different
control loops is needed. The goal of the control system is to
follow the steady-state reference values and to damp the
oscillations. The problem of small value oscillations of rotor
speed, rotor angle and generated power is called dynamic
stability problem. This is one of the main stability problems of
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the SG. The oscillations of the SG’s quantities result in the
increased losses and decreased stability limit [1].

For damping of small value oscillations, the additional
damping windings on the rotor part of the SG are used. Such
solution assures good damping of electromechanical
oscillations. The application of the damping windings is
expensive and therefore not preferable in modern SG.

Another solution for the improvement of the dynamic
stability of the SG is the implementation of the additional
control system for the enhanced damping. This control system,
called power system stabilizer (PSS), amplifies damping of the
SG’s quantities [2].

The ordinary linear PSS are simply to implement but they
have some weaknesses. The tuning of the controller’s
parameters of the ordinary linear PSS is very time exhausting.
The ordinary linear PSS also enhances damping only in a part
of the operating range. Mostly, the ordinary linear PSS
improves dynamic stability in the area around the nominal
operating point. In other part of the operating area, the
ordinary linear PSS does not improve dynamic stability [3].

To enlarge the activity area of the PSS, the modern control
methods must be used. The most suitable modern control
theories for design and synthesis of effective PSS’s are
adaptive control and robust control [3]. Both control theories
could be used to develop the modern PSS which will
successfully damp SG’s oscillations in the entire operating
area.

There are many publications where adaptive and robust
control approaches were used for modern PSS design. The
thorough survey of these works is presented in [3]. In spite of
enormous effort considering this problem, the majority of
industrial SG’s control systems still use the ordinary linear
PSS. The reason is the complexity of the modern PSS. That is
why the researchers still try to find new effective and simple
solutions for this problem.

In this paper, the simple self-tuning PSS will be presented.
The presented self-tuning PSS is based on the serial use of
identification method, state-space observer and adjustable
controller. For the identification of the SG’s mathematical
model, the well-known recursive extended least square
identification method was used. State-space variables were
estimated by means of Kalman filter. On basis of the identified
mathematical model, the parameters of the Kalman filter and
linear quadratic controller were calculated. The development
and analysis of this control system are the main contributions
of this paper.
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II. METHODS

A.Modelling of the Controlled Plant

The mathematical model of the SG linked to the network is
a complex nonlinear state-space model described in many
works. For the purpose of the identification and control system
development and realization, this model is not convenient. For
this reason, the nonlinear model was linearized and simplified
[3]. The obtained simplified and linearized mathematical
model of SG with voltage control system is presented with
state-space equations:
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where Ty, is the mechanical torque [pu], T is the electrical
torque [pu],  is the rotor speed [pu], J is the rotor angle [rad],
E, is the voltage behind transient reactance [pu], Er is the

field excitation voltage [pu], V. is the terminal voltage [pu], H
is the inertia constant [S], D is the damping coefficient of the
damper windings [pu/pu], @ is the nominal synchronous
speed [rad s'], T, is the direct axis transient open circuit time

constant [S], K; ... K¢ are the linearization parameters [pu/pu],
kavr is the exciter and the voltage controller gain [pu/pul],
Tavr is the exciter time constant [S] and V. is the reference
terminal voltage [pu]. With , the difference from the
equilibrium state is described and S denotes a Laplace
variable.

B. Identification of the Controlled Plant

To determine the parameters of the mathematical model’s
system matrix, input matrix and output matrix, the recursive
extended least square identification method (RELS) was used
[4]. By means of RELS identification method the input-output
description of the controlled plant was identified. The selected
input signal for the identification of the discrete transfer
function was reference terminal voltage (Viwera) and the
preferred output signal for the identification of the discrete
transfer function was rotor speed wa. To carry out the accurate
identification by noised measured signals the added pseudo

random binary input signal was used. By means of RELS
identification method the discrete transfer function between
Virefa(S) and w(S) was identified. For the controller
development, the obtained discrete input-output model must
be converted in the appropriate state-space model as described
in [5].

C.Estimation of the Controlled Plant Variables

During SG’s operation, the measurement of the state-space
variables @, (), J6,(t), E, (1) and Eg,(t) of the SG’s

mathematical model (1), (2) is difficult. To estimate the state-
space variables from the input and output of the controlled
plant the Kalman filter could be used.

The linear system with random disturbances and reduced
number of measured state-space variables can be described by

x(t) = Ax(t) + Bu(t) + Gv(t) 3)

y(©) = Cx(0) +w(t) “4)

where x(t) is the vector of the state-space variables, u(t) is the
vector of the system input variables, y(t) is the vector of the
system output variables, v(t) is the system disturbance and
w(t) is the measurement noise. A is the system matrix, B is the
input matrix and C is the output matrix. The system is
controllable and observable and the parameters of the system
matrices are constant. Variables v(t) and w(t) are a white noise
random variables with zero means and with covariance equal
zero:

E{v()} =v=0, cov{v(t),v(r)} =V5(t-7) 5)
E{w(t)} =W =0, cov{w(t),w(r)}=Wds(t-7) (6)
cov{v(t), w(t)} =0 (7)

V is a non-negative definite covariance matrix and W is a
positive definite covariance matrix.

The target of the observation operation is to estimate the
mathematical state-space variables of a linear system (3), (4)
with the presumption that the measurement variables are
deteriorated. By the estimation the quadratic cost function (8)
must be minimized,

J= E{"x(t)—i(t)"z} = tr E{ZOF (1)} 8)

where X(t) is the estimate vector of the state-space vector
x(t) of the linear system described with (3) and (4). The

estimation error X(t) is calculated by:

() = x(t) — k(1) ©)

The optimal estimate X(t) for the discussed linear system is
defined by (10):
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X(t) = AX(t) + Bu(t) + L(t) [y () - CX(1)] (10)
where L(t) is the time varying gain
L(t) = P(t)C"W' (11)

and P(t) is the estimated error’s covariance. For the
calculation of P(t) the Riccati differential equation (12) must
be solved [6]:

P(t) = AP(t)+ P()AT + GVG™ - P(H)C"W'CP(t) (12)

In steady-state, the differential equation could be replaced
with algebraic Riccati equation [6]:

0=AP+PA" +GVG" -PC"W'CP (13)

D.Control Algorithm

The proposed self-tuning PSS is based on the linear
quadratic (LQ) controller. The state-space variable’s vector of
the mathematical model of the controlled plant represents the
input of the LQ controller. The output of the LQ controller
will be added to the reference terminal voltage (Vi refa)-

The LQ regulator is based on the state-space description of
the linear dynamic system described with (3) and (4). The
objective of the control law is to control the state-space vector
x(t) from any initial value to the zero state vector in such a
way that infinite-horizon quadratic cost function J defined
with (16) will be minimized [7].

J = [(x"®Qx(t) +u" (HRu(b))dt (14)

oS3

Q is the symmetric positive semi-definite matrix and R is the
symmetric positive definite matrix.

A feedback control law that minimizes cost function J is
defined as:

u(t) = —-Kx(t) (15)
where K is the feedback gain given by:
K=R'B'P (16)
and P is found by solving the algebraic Riccati equation:
A"P+PA-PBR'B'P+Q=0 (17)

III. RESULTS

The capability of the proposed self-tuning PSS was
appraised by means of numerical simulations. Examined was
turbo-type SG with transistor’s excitation system and voltage
control loop. A typical 160 MVA SG which is frequently used
in references was analyzed [8].

Data of the studied linearized state-space mathematical

model (1), (2) of the SG are shown in Table I where S,, Uy,
cos ¢y are nominal power [MVA], voltage [kV] and power
factor respectively.

TABLE I
SG’S DATA
S,=160 MVA U,=15kV cos ¢,=0.85
K,=1.4478 K,=1.3174 K3=0.3072
K,=1.8052 Ks=0.0294 Ke=0.5257
T =59s D=2 [pu/pu] H=3.96 s
Kave=59 pu/pu Tavr=0.05's

The behavior of the non-stabilized SG in small vicinity of
nominal operating point is presented in Fig. 1. The input of the
SG’s excitation control system (Vi) was combined with
white noise random signal. White noise random signal was
band limited, power spectral density (PSD) of the random
signal amounted 0.001. In Fig. 1 the main electromechanical
quantities of the SG are displayed: SG’s rotor speed, SG’s
rotor angle and SG’s stator (terminal) voltage. From the
responses displayed in Fig. 1, it is obvious that the dynamics
of the non-stabilized SG is weakly damped. The oscillations in
all quantities are significant small-signal stability oscillations
in frequency range from 0.5 Hz to 2.5 Hz [1]. These
oscillations reduce quality of the SG’s operation and lifetime
of the SG and equipment.

To improve the oscillation’s damping a self-tuning PSS was
built in the SG’s voltage control system. Numerical
simulations were carried out for the proposed self-tuning
controllers in the entire operating range. Obtained results
showed the exceedingly increasing of the oscillation’s
damping.

To assess the impact of the state-space estimation on the
damping augmentation the simulation results with and without
Kalman observer are displayed. Fig. 2 displays the SG’s rotor
speed, SG’s rotor angle and SG’s stator voltage in vicinity of
nominal operating point in case when self-tuning PSS with
RELS identification and LQ controller was used. In this case
the SG’s state-space variables

x(t) = [a}A 1) 6,() E,() Eg (t)} were measured by the

equipment and Kalman filter was not used. The output of the
LQ controller was calculated on the basis of these measured
variables.

In case when the measurement of the SG’s state-space
variables is not feasible the usage of the adequate state-space
observer is required.

Fig. 3 displays the same SG’s electromechanical quantities
under same circumstances as in Fig. 2 but with a difference
that instead of proper state-space measurements the Kalman
filter was used. The results show that Kalman filter represents
reasonable substitute to the complicated measurement system.
The results obtained with Kalman filter do not deviate from
the results obtained with measurements.

1381



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438
Vol:10, No:11, 2016

0.01 : : ‘ ‘
| I | |
| | | |
=3 ! | |
g_ ! | \
S 0,005} - --- |- O
< ! | |
=) | | |
g AT R
) | 1 | |
© 0 == 1 (il e e el T
o | | | |
[0} | | i [
g | |
%) | |
5 -0.005 - ---- N VA A
6 | I |
= | | |
| | | |
| | | |
-0.01 ! I | |
0 2 4 6 8 10
t[s]
T T T
\ ! !
= | |
8 | |
=3 Ry E I —— — = -
s 1 1
k) l ! :
> | | |
3 AT R AIREANETR
o | | |
g’ | | {
© | |
5 St A AR
<} | | | |
| | | |
| | | |
| | | |
-0.4 | | | |
0 2 4 6 8 10
t[s]
0.15

0.1

0.05

terminal voltage deviation [pu]

t[s]

Fig. 1 Oscillations in electromechanical quantities of the non-
stabilized turbo type SG

IV. DIscussION

In the paper, the self-tuning PSS for the improvement of the
dynamic stability of the SG connected to the network is
proposed. The presented solution is much more complicated
than ordinary linear PSS. The main benefits of the proposed
stabilizer are augmented damping in the entire operating area
and automated tuning procedure.
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Fig. 2 Oscillations in electromechanical quantities of the turbo type
SG stabilized with self-tuning PSS without Kalman observer

Obtained results show the advantages of the self-tuning
PSS. The tuning procedure is automated and stabilizer assures
increased dynamic stability in the entire operating area. The
RELS identification method converges fast to the proper
values of the mathematical model’s parameters. The Kalman
filter estimates the mathematical model’s state space variables
accurately and represents effective replacement for the
conventional measurements.
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Fig. 3 Oscillations in electromechanical quantities of the turbo type

SG stabilized with self-tuning PSS with Kalman observer
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