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Control Design

Li Jie, Zhang Wei

Abstract—In this paper, the problem of posture stabilization for a
kinematic model of differential drive robots is studied. A more
complex model of the kinematics of differential drive robots is used
for the design of stabilizing control. This model is formulated in
terms of the physical parameters of the system such as the radius of
the wheels, and velocity of the wheels are the control inputs of it. In
this paper, the framework of Lyapunov-based control design has been
used to solve posture stabilization problem for the comprehensive
model of differential drive robots. The results of the simulations
show that the devised controller successfully solves the posture
regulation problem. Finally, robustness and performance of the
controller have been studied under system parameter uncertainty.
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1. INTRODUCTION

IFFERENTIAL drive robots are an important and widely

used class of mobile robots. Simplicity and low cost of
production, as well as their simple mechanism of work, make
them a popular class of robots for mobile robotics
applications. The mechanical structure of these robots is
comprised of two active wheels on the sides of the robot and a
passive caster wheel which is responsible for balancing the
weight of the robot through the ground reaction forces. The
name “differential drive” comes from the fact that the
difference in the angular velocity of the wheels on the two
sides of the robot determines the direction of motion of this
robot. Differential drive robots have been widely used in many
applications such as service robotics [1], rescue robotics [2],
[3], and mapping and surveillance applications [4]-[6]. More
importantly, many other systems such as wheelchairs can be
modeled as differential drive robots [7]-[9]. Although these
robots are structurally simple, they have been widely studied.
Researchers have studied various aspects of differential drive
robots including their modeling and control. Modeling of
wheeled robots is a challenging task mainly due to the
complexities associated with the slipping phenomenon and
static friction force [1], [9]-[11], [28]. On the other hand,
control of these devices is a big challenge too. Many of the
studies in the literature study the kinematic model of these
robots. This is because the kinematics of this robot is
responsible for the challenges associated with their control.
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The non-holonomic nature of the kinematic constraints and the
under-actuated nature of these systems cause complications in
the design of controls. For example, linearization of the
differential drive robot kinematics about the point of operation
yield a linear system that is not controllable and thus cannot be
used for the design of a local linear controller [1], [2].

Control problems for mobile robots can be roughly
categorized into three groups which includes stabilization
[12]-[18], [23], [25], path following [9], [13] and their
tracking control [20]-[23], [26], [27]. In the posture
stabilization, the goal is to take robot from an initial position
and heading for a final a specified position and heading,
whereas tracking control is the problem of following a
predefined trajectory in the task space. The path following
problem is similar to tracking control with the difference that
only the path associated with the trajectory needs to be
followed in the task space, not the timing. In fact, stabilization
of differential drive robots is more challenging than the path
following and tracking problems [1], [13], [23]. This
complexity stems from the non-holonomic and under-actuated
nature of the differential drive robots which is deeply studied
in Brockett’s prominent work on controllability of non-
holonomic system [24]. Based on Brockett’s theorem,
stabilization of non-holonomic systems requires a number of
inputs equal to the number of states of the systems. As a result
of this conditions, it is known that stabilization of differential
drive robots is not possible via smooth time-invariant
feedback of state variables.

Stabilization of differential drive robots has been studied in
many research works. In general, it is not possible to stabilize
differential drive robots by smooth time invariant control.
Therefore, stabilizing controls are either discontinuous [12]-
[14] or time-dependent [15]-[19]. On the other hand, several
studies have used standard nonlinear control techniques such
as back-stepping [26], sliding mode control, adaptive control
[27] and feedback linearization [20], [22], [23], [25] to design
stabilizing controls. Quite many of the research works in the
literature use the simple unicycle model of the differential
drive systems for control design. This research work uses a
more comprehensive model of the differential drive robots
which includes the physical aspects of the mechanical
structure. Then the problem of posture regulation is studied,
and a stabilizing controller is designed using Lyapunov
control design method. The advantage of using a model
containing system’s physical parameters is the ability of the
designer to study the effect of parametric uncertainties on the
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control performance. Finally, this paper studies the robustness
and performance of the controller in stabilizing the posture of
differential drive robots under parametric uncertainty.

II. MODELING DIFFERENTIAL DRIVE ROBOTS

Many research studies in the literature have focused on the
so-called unicycle model [1], [13], [14], [20]-[23]. Unicycle
model is the simplest model for differential drive robots which
expresses the rolling without slip kinematic constraint of a
rolling disc. The unicycle model that is commonly used is:

x cosp 0
<y;> (%5 2)C) )
g 0 1

where X and y represent the coordinates of the robot and f
denotes the heading of the robot. The control inputs of this
model are vV and w which denote the forward velocity of the
robot and its rotation rate respectively. However, unicycle is a
very abstract model which is only focused on describing the
rolling without slip phenomena. In this paper, we use a more
comprehensive model for differential drive robots which
incorporates the physical dimensions of the system into the
model [13], [28]. Consider the schematics of a general
differential drive robot in Fig. 1 where (i,j) denotes the frame
of reference, (e1,6) is a rotating frame located on the axle line
connecting the two wheels, and f is the heading of the robot.
By applying zero relative velocity between the point of contact
of the wheel and the ground the kinematic model is found to
be:

@ -5 (J) )
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where (X,Y) denote the position of the robot’s center of mass
G, p is the robot heading, r is the radius of the wheels and
(¢, pr) are the angular velocity of left and right wheels
respectively. Other parameters in matrix B are the physical
dimensions of the robot specified in Fig. 1.

Rolling without slipping constraint in the unicycle model
limits the velocities the robot can achieve only to the
longitudinal direction. In other words, under the assumption of
rolling without slipping, lateral velocity of the robot is always
zero. In order for our model to be compatible with unicycle
model in this aspect, we modify the comprehensive model
proposed in [13], [28]. For this purpose, we consider the point
between the wheels of the robot as the point around which the
motion of the system is modeled. There are two possible
approaches for deriving the model. Either one could follow
similar steps by imposing zero velocity for the contact point of
wheels or set ¢ to zero in (2).

Fig. 1 Schematics of the differential drive robot [13], [28]

Either method yields the following model for the rolling
without slipping kinematics of differential drive robots:

1 0 LeosB|[X 0  rcosp P
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00 d B —r r R

Similar to the unicycle model, this model is under-actuated
since the number of inputs is 2 which is less than the number
of system states to be controlled in the stabilization process.
Also, (2) describes a set of non-holonomic constraints as
expected since the Lie bracket of the vectors in the driftless
form representation of the system is not included in their
spanned set.

III. NONLINEAR CONTROL BACKGROUND

As shown in Section II, the kinematic model of differential
drive robots is a non-holonomic underactuated nonlinear
system. Lyapunov theory is a useful tool for stability analysis
and design of control for nonlinear systems. In this section, we
briefly review this theorem and the Barbalat’s lemma which is
commonly used when the result of Lyapunov analysis is
inconclusive, and the derivative of Lyapunov function is
negative semidefinite. First, the definition of stability in the
sense of Lyapunov is introduced, and then the formal theory is
included.

Definition 1: Consider the dynamical system:

% =f(xt), x(0)=x, 4)

where f (X,t) is Lipschitz continuous with respect to X, and
piecewise continuous in t. The equilibrium point X* = 0 of (4)
is stable (in the sense of Lyapunov) at t = t,, if for any ¢ > 0
there exists a J(tg,¢) such that:
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Ixt)ll <6 - lx@ll <e, VE>t, (5)
Definition 2: Consider the dynamical system in (4). An
equilibrium point X* = 0 is asymptotically stable at t = {; if:

1. x*=0is stable, and

2. x*=0is locally attractive; i.e., there exists d(ty) such that:

lx(t)ll <6 - limx(t) = 0 (6)

Lyapunov’s Theory [29]: Let V (X, t) be a non-negative
function with derivative V (x,t) along the trajectories of the
system:

1. If V (x, t) is locally positive definite and V(x,t) < 0
locally in X and for all t, then the origin of the system is
locally stable (in the sense of Lyapunov).

2. IfV (x, 1) is locally positive definite and decreasing, and
V(x,t) <0 locally in X and for all t, then the origin of the
system is uniformly locally stable (in the sense of
Lyapunov).

3. If V (x, t) is locally positive definite and decreasing, and
—V (x, t) is locally positive definite, then the origin of the
system is uniformly locally asymptotically stable.

4. IfV (x, ) is positive definite and decreasing, and V (x, t)
is positive definite, then the origin of the system is
globally uniformly asymptotically stable.

Barbalat’s Lemma [29]: Suppose f (t) € C'(a,) and

lim; e f(t) = a < oo. If f ' is uniformly continuous, then:

lim,L, f'(t) =0

IV. LyApuNOV-BASED CONTROL DESIGN

Using Lyapunov analysis for the design of controllers is a
common and effective approach for nonlinear systems. The
idea is using a positive definite function and devising the
control signals such that the time derivative of the function
along the system trajectories is negative definite. To apply this
idea to the problem of posture stabilization, we need to
express the model of the system in Polar coordinates. Let’s
consider the following change of variables:

R=+X?+Y?
a=60-F+m (7)
6=0+m
where 6 is defined using the four quadrant inverse tangent as:
0 = ATAN2(Y,X)

Using this change of variables, the new set of state
equations can be found. To this end, the time derivative of R is
calculated as:

b= XX +YY)
B VXZ+v? ®

From the kinematic model of the robot in (3), the time
derivative of the position of robot is found as:

X = (r/z)(ﬁbL + ¢r) cos¢p
Y= (r/z)((/’L + ¢g) sing
. r

p=- (5) (9L — 9r)

Substituting these equations into (8):

©)

. . . (Xcos¢p + Ysing)
R=("/,)(gL + or) (W)

From Fig. 1, the following geometric relationship can be
easily deduced:

{7)( = cos8 = —cosd
i“y_ (10)

\/XZ—W = sinf = —sind
Thus, (9) can be simplified to:
Rz—(r/z)(¢L+¢R) cos(6 —¢) (11)

Similarly, the time derivative of 6 can be calculated as:

sin(éd — ¢) (12)

8 =6= (T/z)(fih + ‘pR) R

Therefore, model of the robot after change of variables is
found to be:

(R=—=("/2) (gL + pr) cos(6 — p)

8= (")) (@, + ¢z w (13)
(b =—("/4) @0+ )
Defining @ = § — ¢, (13) can be written as:
(R=-— (g) (¢, + @) cosa
i = (5) Gut om) 5+ () G — 00 (14)

‘i’ = _(g) (¢ — @r)

Using the transformed system in (14), Lyapunov-based
control design is used for synthesizing a posture stabilizing
control. This procedure is outlined in Theorem 1.

Theorem I: Consider the transformed rolling without slipping
kinematic of the differential drive robots in (14). Under the
control laws:

sin2a

o d
@ = ;Rcosa 3 <ka +0.5 (a+ h6)>

a

e = Reosa + = (ke + 05572 (a + ho) >
(pR_T‘ cosa o a . p a

where k, A, and h are positive scalars, the differential drive
robot is asymptotically stabilized (i.e. states of system reach
the origin asymptotically).

Proof: The proof is based on the Lyapunov analysis. Consider
the following positive definite function:

1596



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950
Vol:10, No:8, 2016

V=%AR2+%(az+h52) (16)

The first term is the norm of the distance error and the
second term is the norm of the alignment error. The time
derivative of this positive definite function along the system
trajectories is found to be:

V = ARR + ad + h&6 (17)

Substituting (14) into (17), the time derivative of V along
system trajectories is found as:

V= =R (£) (@ + ) cos0 = ¢) + a((2) (@ + 9e) 2222y
(Z) (¢ — ‘/’R)) +hé (G) (¢ + @r) Sin(;ﬁ)(lg)

Using the control signals of (15) in (18) and after long
algebraic calculations, it can be shown that:

V = —A2R?% cos? a — 12(cos? a)e? —ka < 0 (19)

Although the first term of (19) is a negative definite term,
all the function together is negative semidefinite. Since the
Lyapunov function V is positive definite, it is lower bounded
by zero. On the other hand, (19) shows that the value of V is
non-increasing. Therefore, the value of V is converging
asymptotically toward a finite non-negative value. V is a
radially unbounded function. Therefore, state trajectories for
any initially bounded condition will remain bounded and
resultantly V is uniformly continuous in time. Consequently,
based on Barbalat’s Lemma, V converges to zero which means
that the state of system will converge to [0, 0, 8] for some 8.
The next step is showing that § = 0 is the only possible
convergence point. To this end, the closed-loop equations of
the system is studied by substituting (15) into (14). The
closed-loop system is:

R = —AR cos®a

& =—ka—05yh

sin2a
a

(20)

6 =y cosa sina

We showed that the first and third equations both converge
to zero and from the second equation it is concluded that ¢ is
converging to a finite limit. Since state trajectories are
bounded, therefore ¢ is a uniformly continuous function in
time. Applying Barbalat’s lemma it follows that & converges
to zero. Convergence of & to zero is equivalent to convergence
of 0 to zero because of (20). Therefore 8 = 0 and the system
is asymptotically stabilized to origin.

V. SIMULATION RESULTS

To verify the performance of the stabilizing controller
proposed in this paper, simulation results are provided. In this
section the Lyapunov-based control is applied to the robot
model. The physical parameters of the differential drive robot
used for simulation are r = 0.1 ™ and d = 2L = 0.3 ™. The

posture stabilization scenario considered here is a stabilization
scenario where the initial and final configurations of the robot
are defined as:

0 =(-3,-2,"7/,)". q; = (0,0,0)

As the next step, we use the Lyapunov-based controller
devised in this paper (15) for stabilization of the differential
drive robot. The gains of the controller are chosen as k = 3, y
=1 and h = 2. Fig. 2 shows the path of the robot during the
posture stabilization where black arrows show a snapshot of
the motion of robot axle and Fig. 3 shows the state trajectories
for the stabilization process. Fig. 4 shows the control signal
used by this control to solve the stabilization problem.
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Fig. 2 Posture Stabilization Path-Lyapunov based control

15

[= =X

—_—

State Trajectories
-

o
L

N
@

[
i h

4

6 8 10 12 14 16 18 20
time

M-
s

Fig. 3 State Trajectories

As Figs. 2-4 show, the controller successfully stabilizes the
system. It should be taken into consideration that tuning the
gains of the Lyapunov-based control is challenging. Unlike
other controllers that have some level of linearity in their
structure, Lyapunov-based control is a pure nonlinear
controller, and the gains are not linearly affecting the transient
performance of the system.
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Fig. 4 Stabilizing Control Signals

To evaluate the efficiency of the proposed control, we have
used a well-known control, dynamic compensator, from
literature to compare their performance [23]:

( f = u,cosp + upsinp
v=¢
= (upcosp — ulsinﬁ)/fy o = 04

The results of the simulation are given next. Fig. 5 shows
the path of the robot during the stabilization and Fig. 6 shows
the time evolution of the state variables. Finally, Fig. 7 shows
the control signals used by the designed controller. As the
Figs. 5-7 show, the performance of our proposed control is as
good as the dynamic compensator. The transient performance
of Lyapunov-based control is as good as the dynamic
compensator. Also, the magnitude of the control signals is
within the same order of magnitude.
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Fig. 5 Stabilization Path

To study the effect of the parameter uncertainty in the
performance of the stabilizing controller, the same posture
stabilization scenario is simulated where a 20% parametric
uncertainty has been added to the dimensions of the robot. In
other words, the estimates of the parameters of the system
used by the controller are: # = 0.12™,d = 0.24™. For the

case of dynamic compensator, the uncertainty results in
residual additive terms to the linearized double integrator
model. In other words, the dynamic compensator is not able to
completely cancel out the nonlinear terms and some additive
terms remain in the system model. For the Lyapunov based
control this uncertainty acts as a parametric uncertainty in the
system parameters. The 20% uncertainty is successfully
compensated by both controllers.
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Fig. 6 State Trajectories

=

—mal |4

control signals
o

0.5 1 1.5 2 25 3 35 4
time

Fig. 7 Stabilizing Control Signals

In addition to parametric uncertainty, the effect of additive
uncertainty is also studied on these controllers. Additive
uncertainty can be realized by a violation of the rolling
without slipping assumption used for modeling the kinematics
of the robot. This physical phenomenon can happen at high
speeds or when the traction force between the wheels and the
ground are small. To simulate nonparametric additive
uncertainty, a random noise is added to the kinematic model of
the robot. Both controllers fail to compensate the additive
uncertainty, and the unactuated degree of freedom is not
stabilized as soon as the uncertainty is introduced into the
system. The design of a controller that is robust to additive
uncertainties is a future goal of our research.

As our future research goals optimizing the proposed
posture stabilization control with respect to the energy
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consumption or the stabilization time can be an interesting
issue. Using intelligent optimization methods such as Ant
Colony optimization [30], Genetic Algorithms [31], [32] and
Particle Swarm optimization [33] to search the space of
stabilizing controls can be a possibility for solving the
mentioned optimization problem.

VI. CONCLUSION

Differential drive robots are a class of mobile robots that are
widely studied by many researchers. Within this paper, a new
model of the kinematics of the differential drive robots under
the assumption of rolling without slipping was used. It was
also shown that the developed model is an under-actuated
nonholonomic system just as the unicycle model. The paper
also develops a posture stabilization control for the
comprehensive model of the differential drive robots using the
standard  frameworks  of  Lyapunov-based  control.
Incorporation of the physical parameters of the system into the
robot model enables studying the effect of parameter
uncertainty in the behavior of the control. Robustness of the
developed controls is studied via simulation. The results show
that Lyapunov-based control is robust to parametric
uncertainty but not additive uncertainty.
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